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Abstract

Background: The most common biomarkers of Alzheimer’s disease (AD) are amyloid β (Aβ) and tau, detected in
cerebrospinal fluid (CSF) or with positron emission tomography imaging. However, these procedures are invasive
and expensive, which hamper their availability to the general population. Here, we report a panel of microRNAs
(miRNAs) in serum that can predict P-tau/Aβ42 in CSF and readily differentiate AD from other dementias, including
vascular dementia (VaD), Parkinson disease dementia (PDD), behavioral variant frontotemporal dementia (bvFTD),
and dementia with Lewy body (DLB).

Methods: RNA samples were extracted from the participant’s blood. P-tau/Aβ42 of CSF was examined for
diagnostic purposes. A pilot study (controls, 21; AD, 23), followed by second (controls, 216; AD, 190) and third
groups (controls, 153; AD, 151), is used to establish and verify a predictive model of P-tau/Aβ42 in CSF. The test is
then applied to a fourth group of patients with different dementias (controls, 139; AD,155; amnestic mild cognitive
impairment [aMCI], 55; VaD, 51; PDD, 53; bvFTD, 53; DLB, 52) to assess its diagnostic capacity.

Results: In the pilot study, 29 upregulated and 31 downregulated miRNAs in the AD group were found. In Dataset
2, these miRNAs were then included as independent variables in the linear regression model. A seven-microRNA
panel (miR-139-3p, miR-143-3p, miR-146a-5p, miR-485-5p, miR-10a-5P, miR-26b-5p, and miR-451a-5p) accurately
predicted values of P-tau/Aβ42 of CSF. In Datasets 3 and 4, by applying the predicted P-tau/Aβ42, the predictive
model successfully differentiates AD from controls and VaD, PDD, bvFTD, and DLB.

Conclusions: This study suggests that the panel of microRNAs is a promising substitute for traditional
measurement of P-tau/Aβ42 in CSF as an effective biomarker of AD.
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Background
Amyloid β (Aβ) and tau pathologies are classic charac-
teristic features of Alzheimer’s disease (AD), and they
are widely used as diagnostic biomarkers [1]. Aβ and tau
burden in the brain can be identified with high accuracy
from cerebrospinal fluid (CSF) testing [2] and positron
emission tomography (PET) imaging [3, 4]. However,
the high cost and low availability of PET scans hamper
the feasibility of their use in clinical diagnostic practice
and clinical trials. Aβ and tau in samples of CSF obtained
from patients has been shown to diagnose AD with excel-
lent accuracy [5]. Multiple studies have suggested that the
combined measurements of phosphorylated-tau (P-tau)
and Aβ42 in the CSF can inform a more accurate diagno-
sis than either test alone; this improved diagnostic accur-
acy is likely due to the reduced impact of preanalytical
and analytical confounders [6–8]. Further supporting the
CSF ratio of P-tau/Aβ42 as a reliable diagnostic biomarker
for AD, several studies have reported similar threshold
levels, in the range of 0.09–0.14 [7, 9–11]. However, the
relatively invasive nature of CSF collection restricts its use
as a screening tool in the elderly population. Hence, there
is an unmet need for a minimally invasive, widely avail-
able, and cost-effective method of measuring biomarkers
for the early detection of AD in the general population.
By measuring a panel of microRNAs (miRNAs) in the

blood, the current study proposes a simple, antibody-
independent method of predicting the P-tau/Aβ42 ratio
in the CSF. miRNAs are short non-coding RNAs of ap-
proximately 20–25 nucleotides in length that bind to
complementary sites on the 3′ untranslated region
(UTR) of their mRNA targets, curbing their expression
[12]. Changes in miRNA expression may induce transla-
tional abnormalities, resulting in the alteration of corre-
sponding protein levels. An increasing number of
studies have demonstrated a relationship between miR-
NAs and AD; by targeting the expression of amyloid
precursor protein (APP) or beta-site APP cleaving en-
zyme 1 (BACE1) [13], miRNAs can directly affect poten-
tial pathogenic pathways and thus alter the risk and/or
progression of AD. A panel of 12 miRNAs can report-
edly diagnose AD with high performance [14], indicating
the combination of miRNA panels as a promising bio-
marker for AD. However, a recent review paper listed 48
studies on circulating microRNAs as potential bio-
markers for AD, which showed inconsistent data [15].
The first potential reason of the inconsistencies among
these studies may be the small sample sizes of these
studies. The sample size of these studies ranged from 6
to 287 (AD patients), and 29 studies (over 60.4% of 48
studies in total) included a sample size of < 30 AD pa-
tients. The too-small-sample-size studies may produce
bias in the results. The second reason for the inconsist-
encies would be that most studies did not use CSF or

PET biomarkers to recruit AD patients. In this study,
the strict inclusion criteria involving CSF biomarkers
and a large sample size were recruited, which may guar-
antee the potential clinical application of positive
findings.
In addition, AD and other types of dementia, such as

vascular dementia (VaD), Parkinson disease dementia
(PDD), behavioral variant frontotemporal dementia
(bvFTD), and dementia with Lewy body (DLB), may
have overlapping clinical manifestations, pathology, and
biomarkers, often resulting in difficulties in clinical diag-
nosis [16]. Whether miRNAs can differentiate AD from
other forms of dementia has been addressed by few
studies. Given the crucial role of miRNAs in the expres-
sion of genes that are key to AD pathology, their relative
stability, tissue enrichment, and amenability to quantita-
tive measurement [15], we speculated that measuring
single or multiple miRNAs may reflect the concentration
of Aβ and tau in the brains of AD patients. Therefore,
this study aimed to evaluate whether the levels of blood
miRNAs (1) predict the P-tau/Aβ42 ratio in the CSF, (2)
can be used to differentiate patients with AD from cog-
nitively normal controls, and (3) can effectively discrim-
inate AD from VaD, PDD, bvFTD, and DLB.

Methods
Experimental design
Four datasets were acquired in this study (Fig. 1, Tables
1, 2, 3, and 4). The data for the pilot study (Dataset 1)
were obtained from a Beijing center (n = 44; controls,
21; AD, 23); those for the development of our model
(Dataset 2) were collected from centers in the provinces
of Shandong, Henan, and Guangxi (n = 406, controls,
216; AD, 190); those for the validation of the model
(Dataset 3) were acquired from centers in Guizhou,
Hebei, Jilin, and the Inner Mongolia Autonomous Re-
gion (n = 304; controls, 153; AD, 151). Those for the ap-
plication of the model (Dataset 4) were acquired from
Beijing center (n = 503; control, 139; AD, 155; amnestic
mild cognitive impairment [aMCI], 55; VaD, 51; PDD,
53; bvFTD, 53; DLB, 52). Diagnoses of AD were based
on the criteria published by the National Institute on
Aging and Alzheimer’s Association (NIA-AA) [1]. In-
formed by previously published data [10, 11], a cutoff
value for the P-tau/Aβ42 ratio of 0.14 was used to differ-
entiate patients with AD from normal controls (Fig. 1a–
d). In addition, based on the ATN framework, low CSF
Aβ42 is the key “Alzheimer’s pathological change” [17].
We, therefore, used a reported CSF Aβ42 cutoff of 500
pg/ml (Fig. 1c) [18] as another inclusion criterion. Diag-
noses of aMCI [19], VaD [20], PDD [21], bvFTD [22],
and DLB [23] were based on previously published cri-
teria. In addition, other neurodegenerative diseases may
share overlapping clinical manifestations and pathology
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Fig. 1 The levels of Aβ42 and P-tau in the cerebrospinal fluid of cognitively normal controls and patients with Alzheimer’s disease (AD). The
cutoff value of P-tau/Aβ42 (0.14) was used to determine AD in Dataset 1 (a), 2 (b), 3 (c), and 4 (d). Dotted line: slope = 0.14 indicates the cutoff
value of P-tau/ Aβ42; 500 pg/ml in horizontal axis indicates the cutoff value of Aβ42. Abbreviations: AD, Alzheimer’s disease; VaD, vascular
dementia; PDD, Parkinson disease dementia; bvFTD, behavioral variant frontotemporal dementia; DLB, dementia with Lewy body

Table 1 Characteristics of participants in Dataset 1

Characteristic Total sample
(n = 44)

Controls
(n = 21)

AD
(n =23)

Age, median (25th–75th percentile) 69 (66–73) 69 (67–72) 72 (65–73)

Education year, median (25th–75th percentile) 9 (7–11) 10 (8–11) 9 (7–10) *

Women, No. (%) 23 (52.3) 12 (52.2) 11 (52.4)

ApoE ε4 positive (%) 13 (29.5) 4 (17.4) 9 (42.9) *

MMSE score (SD) 25.2 (4.1) 28.7 (0.8) 22.0 (3.1) *

Aβ42, mean (SD), pg/ml 572.8 (186.4) 740.1 (118.6) 420.1 (63.1)

T-tau, mean (SD), pg/ml 443.3 (206.6) 297.1 (100.2) 576.7 (187.9)

P-tau, mean (SD), pg/ml 104.9 (76.9) 52.9 (20.4) 152.5 (79.2)

The values of age, education year, and MMSE are shown as mean (SD)
Abbreviations: AD, Alzheimer’s disease; VaD, vascular dementia; PDD, Parkinson disease dementia; bvFTD, behavioral variant frontotemporal dementia; DLB,
dementia with Lewy body; ApoE ε4, apolipoprotein ε4; MMSE, Mini-Mental State Examination; SD, standard deviation
*P < 0.05 compared to controls
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with AD, which often result in difficulties in clinical
diagnosis. To avoid the mixture of other dementias and
AD, patients with VaD, PDD, bvFTD, and DLB who had
AD-like cutoff values of P-tau/Aβ42 and Aβ42 were ex-
cluded (Fig. 1d, Additional file 1: Fig. S1). A previously
published paper has showed the very different levels of
CSF P-tau and Aβ42 in VaD, PDD, FTD, and DLB [24].
It would reasonable to use P-tau/Aβ42 and Aβ42 as bio-
markers for these diseases. The details of diagnostic cri-
teria were included in Additional file 2: materials and
methods. Written informed consent was obtained from
all participants or their legal guardians. This study was
approved by the Institutional Ethics Board of Xuanwu
Hospital, Capital Medical University (LYS[2017]004).

RNA collection and sequencing
Blood samples were collected in the morning after a 12-
h fast. Twenty milliliters of whole blood were drawn
from each subject and stored in a polypropylene tube
containing EDTA. The whole-blood samples were im-
mediately processed at the Beijing center (Xuanwu Hos-
pital). At the other centers, the collected samples were

immediately centrifuged at 4200×g for 10 min at room
temperature to obtain the plasma, which was then kept
at 4 °C and shipped in dry ice to the Beijing central la-
boratory within 12 h. Total RNA was isolated using the
miRNeasy Serum Kit (Qiagen, USA) following the man-
ufacturer’s instructions. For the preparation of the se-
quencing library, we used 1 μg of total RNA (quantified
with Nano Drop 8000 [Thermo Fisher Scientific, USA]
and Agilent 2100 bioanalyzer [Agilent, USA]). Total
RNA was purified by electrophoretic separation with
15% urea denaturing polyacrylamide gel electrophoresis
(PAGE). Small RNA regions corresponding to the 18–
30 nt bands in the marker lane (14–30 ssRNA Ladder
Marker, TAKARA, Japan) were excised and recovered.
The small 18–30 nt RNAs were ligated to adenylated 3′
adapters annealed to unique molecular identifiers (UMI),
followed by the ligation of 5′ adapters. The adapter-
ligated small RNAs were subsequently transcribed into
cDNA by SuperScript II Reverse Transcriptase (Invitro-
gen, USA). Several rounds of PCR amplification with
PCR Primer Cocktail and PCR Mix were then performed
to enrich the cDNA fragments. The PCR products were

Table 2 Characteristics of participants in Dataset 2

Characteristic Total Sample
(n = 406)

Controls
(n = 216)

AD
(n =190)

Age, median (25th–75th percentile) 68 (63–71) 67 (63–72) 68 (64–71)

Education year, median (25th–75th percentile) 10 (8–11) 10.0 (9–11) 9 (8–10)*

Women, No. (%) 211 (52.0) 112 (51.9) 99 (52.1)

ApoE ε4 positive (%) 120 (29.6) 41 (19.0) 79 (41.6)*

MMSE score (SD) 24.9 (4.7) 29.0 (1.0) 20.3 (2.4)*

Aβ42, mean (SD), pg/ml 555.5 (199.6) 711.3 (130.7) 378.2 (81.3)

T-tau, mean (SD), pg/ml 460.9 (206.1) 382.3 (98.9) 611.7 (192.1)

P-tau, mean (SD), pg/ml 70.6 (33.1) 52.3 (20.6) 91.4 (32.3)

The values of age, education year, and MMSE are shown as mean (SD)
Abbreviations: AD, Alzheimer’s disease; VaD, vascular dementia; PDD, Parkinson disease dementia; bvFTD, behavioral variant frontotemporal dementia; DLB,
dementia with Lewy body; ApoE ε4, apolipoprotein ε4; MMSE, Mini-Mental State Examination; SD, standard deviation
*P < 0.05 compared to controls

Table 3 Characteristics of participants in Dataset 3

Characteristic Total Sample
(n = 304)

Controls
(n = 153)

AD
(n =151)

Age, median (25th–75th percentile) 69 (64–72) 68 (64–72) 69 (65–73)

Education year, median (25th–75th percentile) 10 (8–11) 10 (9–11) 9 (7–10)*

Women, No. (%) 155 (50.9) 78 (50.9) 77 (50.9)

ApoE ε4 positive (%) 90 (29.6) 28 (18.3) 62 (41.1)*

MMSE score (SD) 25.0 (4.5) 29.0 (0.6) 20.9 (2.8)*

Aβ42, mean (SD), pg/ml 559.2 (213.4) 742.6 (128.2) 373.4 (79.2)

T-tau, mean (SD), pg/ml 478.7 (212.9) 322.2 (98.6) 637.3 (177.2)

P-tau, mean (SD), pg/ml 73.4 (36.8) 55.7 (24.2) 91.3 (38.7)

The values of age, education year, and MMSE are shown as mean (SD)
Abbreviations: AD, Alzheimer’s disease; VaD, vascular dementia; PDD, Parkinson disease dementia; bvFTD, behavioral variant frontotemporal dementia; DLB,
dementia with Lewy body; ApoE ε4, apolipoprotein ε4; MMSE, Mini-Mental State Examination; SD, standard deviation
*P < 0.05 compared to controls
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subsequently purified with PAGE gel, and the recycled
products were dissolved in EB solution. The double-
stranded PCR products were validated on an Agilent
Technologies 2100 bioanalyzer. They were then heat-
denatured and circularized with the splint oligo se-
quence. The single-strand circle DNA (ssCir DNA) was
formatted as the final library. The library was amplified
with phi29 to generate DNA nanoball (DNB), which has
more than 300 copies of one molecule. The DNBs were
loaded onto the patterned nanoarray, and single-end 50-
base reads were generated with combinatorial Probe-
Anchor Synthesis (cPAS). The final ligation PCR prod-
ucts were sequenced using the BGISEQ-500 platform
(BGI-Shenzhen, China). Samples for quantitative real-
time PCR analyses were added with synthetic Caenor-
habditis elegans miR cel-miR-39 (Qiagen) after
homogenization by QIAzol Lysis reagent, as an external
calibration for RNA extraction, reverse transcription,
and miRNA amplification [25].

miRNA data analysis
The raw tags—i.e., the raw sequencing data—were proc-
essed according to the following procedure: removal of
low-quality tags, removal of tags with 5′-primer contam-
inants, removal of tags without three primers, removal
of tags without insertion, removal of tags with poly A,
and removal of tags whose lengths were shorter than 18
nt. After filtration, the remaining tags were mapped to
the reference genome NCBI GRCh38 and other data-
bases, including miRbase with Bowtie2 [26]. Cmsearch
[27] was performed for Rfam mapping. miRDeep2 [28]
was used to predict novel miRNAs by exploring second-
ary structures. The level of miRNA expression was cal-
culated by counting the absolute numbers of molecules
using unique molecular identifiers [29]. Differential ex-
pression analysis was performed using the DEseq2 [30];
Q value ≤ 0.001 and the absolute value of Log2Ratio ≥ 1

were used as the default thresholds to judge the signifi-
cance of the differences in expression.

Quantitative real-time PCR analyses
Quantitative real-time PCR (qPCR) analyses were per-
formed to confirm the altered miRNAs in the validation
study. The miRNA levels were quantified using the
NCode™ VILO™ miRNA qRT-PCR kit (Invitrogen, USA)
and normalized to synthetic Caenorhabditis elegans
miR-39-3p. All reactions were triplicated in three inde-
pendent experiments. The 2-ΔΔCt method was used to
calculate miRNA expression [31]. All miRNA primers
are listed in Additional file 2: Table S1. To improve ex-
perimental precision, triplicates for qPCR were per-
formed. Coefficient of variation (CV) was calculated
using standard deviation divided by mean value of a
group of replicates. All CV% in the study were lower
than 5%, indicating that the data were of high quality
(Additional file 2: Table S2).

Collection of CSF and measurement of Aβ42, T-tau, and
P-tau
CSF was collected immediately after the collection of
blood samples according to international guidelines [32].
Specifically, 15 mL of CSF were collected from each sub-
ject using lumbar puncture while they were positioned
in a left lateral position. The participants were moni-
tored for any signs of discomfort for at least 12 h follow-
ing the lumbar puncture. The CSF samples were
centrifuged at 2000×g for 10 min at room temperature
and stored in a polypropylene tube at − 80 °C. The levels
of Aβ42, total-tau (T-tau), and P-tau (tau phosphory-
lated at Thr 181) in the CSF were then measured using
an enzyme-linked immunosorbent assay (ELISA) kits, all
of which are listed in Additional file 2: Table S2.

Table 4 Characteristics of participants in Dataset 4

Characteristic Total Sample
(n = 503)

Controls
(n = 139)

AD
(n =155)

aMCI
(n =55)

VaD
(n =51)

PDD
(n =53)

bvFTD
(n =53)

DLB
(n =52)

Age, median (25th–75th percentile) 67 (63–72) 67 (65–73) 68 (63–73) 67 (64–70) 67 (63–70) 68 (64–73) 66 (62–70) 66 (62–70)

Education year, median
(25th–75th percentile)

9 (8–11) 10 (9–11) 9 (8–10) 10 (8–12) 10 (8–11) 9 (8–10) 10.0 (9–11) 9.0 (7–11)

Women, No. (%) 255 (50.7) 71 (51.1) 79 (51.0) 28 (50.1) 24 (47.1) 26 (49.1) 28 (52.8) 27 (51.9)

ApoE ε4 positive (%) 133 (26.4) 25 (18.0) 64 (41.3)* 15 (27.3) 13 (25.5)* 10 (18.9) 11 (20.8) 10 (19.2)

MMSE score (SD) 23.4 (4.5) 29.1 (0.57) 20.8 (3.2)* 26.4 (0.6) 21.5 (2.9)* 21.0 (3.2)* 21.9 (3.0)* 21.8 (3.6)*

Aβ42, mean (SD), pg/ml 581.2 (184.7) 683.5 (135) 371.6 (80.7)* 507.3 (134.1)* 705 (108.5) 700.6 (127.6) 678.8 (141.5) 667.6 (142.4)

T-tau, mean (SD), pg/ml 449.2 (166.6) 340.1 (93.6) 595.6 (187.1) 474.3 (130.9) 395.5 (91.6) 359.2 (107.8) 448.6 (110.7) 422.6 (113.4)

P-tau, mean (SD), pg/ml 63.2 (31.5) 50.1 (19.5) 90.6 (37.7)* 65.6 (21.8)* 48.9 (17.7) 49 (13.5) 53 (22.6) 53.2 (25.1)

The values of age, education year, and MMSE are shown as mean (SD)
Abbreviations: AD, Alzheimer’s disease; VaD, vascular dementia; PDD, Parkinson disease dementia; bvFTD, behavioral variant frontotemporal dementia; DLB,
dementia with Lewy body; ApoE ε4, apolipoprotein ε4; MMSE, Mini-Mental State Examination; SD, standard deviation
*P < 0.05 compared to controls
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Statistical analysis
Statistical analyses were performed using SPSS v.22 and
Stata 13.0. Datasets 1, 2, and 3 were analyzed independ-
ently. Group differences in categorical data, such as sex,
clinical subgroups, and p ε4 allele (ApoE ε4) carrier distri-
butions, were analyzed with the χ2 test. Group differences
in continuous data, such as the concentrations of bio-
markers, were analyzed with Welch’s t test or analyses of
variance (ANOVAs). In Dataset 1, the false discovery rate
(FDR) correction was performed to select the differential
miRNAs. Q values were used to show the analysis results.
In Datasets 2 and 3, the correlative analysis of miRNAs
and P-tau/Aβ values was performed using a linear regres-
sion model. The tolerance, variance inflation factor (VIF),
eigenvalue, and condition index were calculated to assess
multicollinearity [33]. After the generation of the linear re-
gression model, the predicted values of P-tau/Aβ42 were
calculated with miRNA levels. Receiver operating charac-
teristic (ROC) curves were established using the predicted
P-tau/Aβ42 ratio. All tests were two-tailed, and the level
of significance was set at P < 0.05.

Results
Participant characteristics
Four datasets were included (Fig. 1). Tables 1, 2, 3, and
4 list the characteristics of the participants. There were

no differences in the ages, or ratio of males/females be-
tween the AD and control groups in Datasets 1, 2, 3,
and 4. The education years, percentages of ApoE ε4, and
findings of the Mini-Mental State Examination (MMSE)
differed significantly (P < 0.05) between AD patients and
controls in Datasets 1, 2, and 3. MMSE scores were also
reduced in VaD, PDD, bvFTD, and DLB compared to
controls in Dataset 4 (all P < 0.05).

A pilot study
A pilot study was performed in a relatively small sample
(Dataset 1). The RNA-sequencing results revealed 860
miRNAs in the blood of patients with AD and the con-
trols. The miRNAs whose read counts were lower than
100 were excluded from subsequent analyses. Differ-
ences in fold changes of ≥ 1.2 or ≤ 0.80 between patients
with AD and controls were selected as significant miR-
NAs; we thus identified 29 upregulated and 31 downreg-
ulated miRNAs in the AD group (all Q < 0.05 with FDR
correction, Fig. 2).

Establishment of the predictive model
The extended samples (Dataset 2) were included to in-
vestigate the miRNAs that were differentially expressed
between the patients with AD and controls. All 29 up-
regulated and 31 downregulated miRNAs in Dataset 1

Fig. 2 Heat map after hierarchical clustering of the 29 upregulated and 31 downregulated miRNAs in the pilot study (Dataset 1). Abbreviations:
miRNA, microRNA; AD, Alzheimer’s disease; NC, normal control
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were confirmed in Dataset 2, supporting the significance
of the sequencing data obtained in the pilot study. We
then analyzed the potential association between miRNA
expression and the ratio of P-tau/Aβ42. The 29 upregu-
lated and 31 downregulated miRNAs were included as
independent variables in the linear regression model,
and P-tau/Aβ42 as the dependent variable. After adjust-
ing for age, sex, and ApoE ε4, the P-tau/Aβ42 ratio was
found to be associated with a panel of seven miRNAs:
miR-139-3p, miR-143-3p, miR-146a-5p, miR-485-5p,
miR-10a-5p, miR-26b-5p, and miR-451a-5p (Fig. 3).
Among these, miR-139-3p, miR-143-3p, miR-146a-5p,
and miR-485-5p were decreased in patients with AD,
while miR-10a-5p, miR-26b-5p, and miR-451a-5p were

increased (P < 0.001; Fig. 3a–g). The linear regression
analysis yielded P values of > 0.05 for the variables of
age, sex, and ApoE ε4, indicating that the linear regres-
sion model was independent of these variables. Perform-
ing a linear regression analysis of only the panel of seven
miRNAs, we found that the seven miRNAs were signifi-
cantly associated with the values of the P-tau/Aβ42 ratio
(adjusted R2 = 0.64, P < 0.001, Fig. 4a). The predictive
equation of P-tau/Aβ42 was established and showed in
Additional file 2: materials and methods. The equation
was applied to Datasets 3 and 4 to predict P-tau/Aβ42 in
the following analyses. We performed analyses to esti-
mate the multicollinearity between the seven miRNAs in
AD and controls. All tolerances were > 0.1, VIFs were <

Fig. 3 The measurements of miRNAs in Dataset 2. miR-139-3p (a), miR-143a-3p (b), miR-146a-5p (c), and miR-485-5p (d) were decreased in
patients with Alzheimer’s disease (AD), and miR-10a-5p (e), miR-26b-5p (f), and miR-451a-5p (g) were increased in AD. Abbreviations: FC,
fold change

Jia et al. BMC Medicine          (2021) 19:264 Page 7 of 15



Fig. 4 The establishment of the predictive model. The panel of the seven serum miRNAs was linearly correlated with the P-tau/Aβ42 ratio in CSF
and predicted the P-tau/Aβ42 ratios in the patients with AD in Datasets 2 (a) and 3 (b). The predicted P-tau/Aβ42 was significantly increased in
patients with AD in Datasets 2 (c) and 3 (d) and performed well in differentiating patients with AD from controls in Datasets 2 (e) and 3 (f).
Abbreviations: AUC, area under the curve; AD, Alzheimer’s disease. The dotted line in c and d is cutoff value (0.14)

Jia et al. BMC Medicine          (2021) 19:264 Page 8 of 15



10, eigenvalues were > 0, and condition index < 30, indi-
cating that there is no significant multicollinearity be-
tween each miRNA. By applying the linear regression
model, the predicted values of P-tau/Aβ42 ratio in pa-
tients with AD and the controls were calculated (Fig.
4c). Further ROC analyses showed that the P-tau/Aβ42
ratio predicted from the panel of seven miRNAs had a
significantly high area under the curve (AUC; 0.90, P <
0.001; Fig. 4e) that far exceeded random chance (AUC of
50%).

Confirmation of the prediction model
An independent dataset (Dataset 3) was used to confirm
the above findings. We found that miR-139-3p, miR-
143-3p, miR-146a-5p, and miR-485-5p were decreased

in patients with AD relative to the controls, while miR-
10a-5p, miR-26b-5p, and miR-451a-5p were increased in
patients with AD (P < 0.001; Fig. 5a–g). Multicollinearity
analyses showed that there is no significant multicolli-
nearity between each miRNA in AD and controls (all
tolerances > 0.1, VIFs < 10, eigenvalues > 0, and condi-
tion index < 30). The predictive equation generated from
Dataset 2 was used to predict P-tau/Aβ42. The predicted
P-tau/Aβ42 was highly associated with the actual P-tau/
Aβ42 ratio in CSF (adjusted R2 = 0.67, P < 0.001, Fig.
4b). By using the predicted P-tau/Aβ42 ratio to dis-
tinguish the controls and AD (Fig. 4d), ROC analyses
revealed a very high AUC (0.90, P < 0.001; Fig. 4f),
which was the same as the AUC calculated from
Dataset 2. Taken together, our model generated by

Fig. 5 The measurements of miRNAs in Dataset 3. miR-139-3p (a), miR-143a-3p (b), miR-146a-5p (c), and miR-485-5p (d) were decreased in
patients with Alzheimer’s disease (AD), and miR-10a-5P (e), miR-26b-5p (f), and miR-451a-5p (g) were increased. Abbreviations: FC, fold change
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the panel of 7 miRNAs in the blood may help to pre-
dict the P-tau/Aβ42 ratio in CSF, and diagnose of
AD.

Application of the prediction model
To assess the diagnostic capacity of the model when ap-
plying to subjects in clinical practice that may include
controls, AD, and other neurodegenerative diseases, such
as aMCI, VaD, PDD, bvFTD, and DLB, a fourth dataset
was used. We obtained similar results to Datasets 1, 2
and 3; levels of miR-139-3p, miR-143-3p, miR-146a-5p,
and miR-485-5p were decreased, while miR-10a-5p,
miR-26b-5p, and miR-451a-5p were increased in pa-
tients with AD (P < 0.001; Fig. 6a–g). For aMCI, al-
though all the seven miRNAs were altered, the alteration
of miRNAs was slight in aMCI than in AD or in con-
trols. This is reasonable, since aMCI is considered to be

the early stage of AD. Thus, miRNAs may start changing
at this stage, with changes in miRNAs in the AD stage
becoming more significant as the disease progresses. All
the seven miRNAs were not altered in patients diag-
nosed with VaD, PDD, bvFTD, and DLB (all P > 0.05),
suggesting that these miRNAs are AD-specific. The pre-
dictive equation generated from Dataset 2 was used to
predict P-tau/Aβ42. The predicted P-tau/Aβ42 was
highly associated with the actual P-tau/Aβ42 ratio in
CSF (adjusted R2= 0.62, P < 0.001, Fig. 7a). The pre-
dicted P-tau/Aβ42 ratio in AD patients was robustly in-
creased compared to non-AD (combination of controls,
VaD, PDD, bvFTD, and DLB) (P < 0.001, Fig. 7b). Fur-
ther ROC analysis showed a very high AUC (0.90, P <
0.001, Fig. 7c), indicating that the panel of seven miR-
NAs is highly effective to identify AD from healthy con-
trols and other neurodegenerative diseases. In addition,

Fig. 6 The measurements of miRNAs in AD, aMCI, VaD, PDD, bvFTD, and DLB. miR-139-3p (a), miR-143a-3p (b), miR-146a-5p (c), miR-485-5p (d),
miR-10a-5P (e), miR-26b-5p (f), and miR-451a-5p (g) were measured. Abbreviations: AD, Alzheimer’s disease; aMCI, amnestic mild cognitive
impairment; VaD, vascular dementia; PDD, Parkinson disease dementia; bvFTD, behavioral variant frontotemporal dementia; DLB, dementia with
Lewy body; FC, fold change; NS, no significance

Jia et al. BMC Medicine          (2021) 19:264 Page 10 of 15



the predicted P-tau/Aβ42 ratio was also compared be-
tween aMCI and Non-AD (0.76, P < 0.001, Fig. 7d), and
AD and aMCI (0.72, P < 0.001, Fig. 7e).

Discussion
The present study identified an association between a
panel of blood miRNAs and the ratio of P-tau/Aβ42 in
the CSF of patients with AD, suggesting miRNAs as a
promising tool for predicting the Aβ42 and P-tau levels
in patients with AD.
Biomarkers have played an important role in the diag-

nosis [1] and research [17] of AD. Because of its minimal
invasiveness and relatively low cost, the use of peripheral
blood to diagnose AD has garnered increasing attention.
The attendant surge in research has revealed a series of
promising markers in the blood, including Aβ42 [34],
the neurofilament light protein (NFL) [35], P-tau181 and
217 [36], exosomal Aβ42, T-tau, P-tau, synaptic proteins,
and inflammatory factors [10, 11, 37]. Despite their high
diagnostic efficacy, this method is subject to limitations.
Requiring advanced skill and specialized equipment, the
collection and measurement of Aβ42 from the blood by
immunoprecipitation coupled with mass spectrometry is
cost-prohibitive. Moreover, NFL is not a specific bio-
marker for AD; aberrant NFL concentrations may indi-
cate other diseases causing axonal damage, such as
multiple sclerosis (MS) [38], frontotemporal dementia

(FTD) [39], and amyotrophic lateral sclerosis (ALS) [40].
While blood P-tau can be easily measured, it requires a
specialized testing system that may require further de-
velopment before its cost can allow for extensive, wide-
spread use [41]. The screening of biomarkers from exo-
somes in the blood may be excessively expensive, as it
requires the collection and enrichment of neuron-
derived exosomes through a series of experiments, in-
cluding immunoprecipitation and ELISA.
By contrast, the analysis of miRNAs in blood is an

antibody-independent and easily implemented method
for differentiating patients with AD from their cogni-
tively normal counterparts, as well as patients with other
forms of dementia. By only requiring the widely used
technique of qPCR to quantify a panel of serum miR-
NAs, our technique can predict the P-tau/Aβ42 ratio—a
well-known AD biomarker—in the CSF. To the best of
our knowledge, this study is the first to provide support
for an association between miRNAs in the blood with P-
tau/Aβ42 in CSF and is a promising application to
screen for AD in older populations at relatively little cost
and with minimal invasiveness.
Recent studies have increasingly implicated miRNAs in

AD pathology; miRNAs regulate the expression of APP
[42–45] and proteins involved in APP metabolism, such
as α-secretase, ADAM10 [46, 47], β-secretase, and BACE1
[48, 49]. miRNAs also play an important role in Aβ

Fig. 7 The application of the predictive model to patients with AD, aMCI, VaD, PDD, bvFTD, and DLB. The linear regression analyses were
performed in patients with AD, aMCI, VaD, PDD, bvFTD, and DLB (a). By applying model, the predicted P-tau/Aβ42 ratio in CSF was compared
between AD, aMCI, and non-AD subjects (combination of controls, VaD, PDD, bvFTD, and DLB) (b). The predicted P-tau/Aβ42 ratio successfully
differentiated patients with AD from non-AD (c). The predicted P-tau/Aβ42 ratio was also compared between aMCI and Non-AD (d) and AD and
aMCI (e). Abbreviations: AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; VaD, vascular dementia; PDD, Parkinson disease
dementia; bvFTD, behavioral variant frontotemporal dementia; DLB, dementia with Lewy body; AUC, area under the curve
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clearance, e.g., miRNAs can downregulate ApoE lipidation
[50] and TREM2 levels [51] and impair Aβ metabolism in
the brain. Moreover, miRNA levels are related to the ex-
pression and hyperphosphorylation of tau in the brain
[52–54] and are involved in other AD-associated mecha-
nisms, such as aberrant mitochondrial function [55–57],
autophagy [58, 59], mitophagy [60, 61], neurotransmitter
release and clearance [62, 63], and synaptic plasticity [64].
Due to their important roles in the pathology of AD,

miRNAs can act as biomarkers of the disease [65]. miR-
NAs have been used as biomarkers for a range of dis-
eases, such as cancer [66, 67], cardiovascular disease [68,
69], and diabetes [70, 71]. In agreement with the obser-
vations of dysregulation of miRNAs in the CSF of pa-
tients with AD [72], alterations of miRNAs in the
peripheral blood have shown potential as promising can-
didate biomarkers of AD. The combination of several
miRNAs was able to discriminate the CSF of patients
with AD from that of controls with sufficient accuracy
[73]. A recent literature review showed that, among 137
miRNAs found to be abnormally expressed in the blood
of patients with AD, 36 had been replicated independ-
ently in more than one study [74]. This finding provides
evidence in support of the use of miRNAs as diagnostic
biomarkers. Moreover, a signature of 12 miRNAs in the
blood could not only inform the discrimination between
AD patients and controls but also between patients with
AD and those with other neurological disorders, such as
Parkinson’s disease and schizophrenia [14]. While our
findings confirm the utility of miRNAs as biomarkers for
AD, our study further suggests that miRNAs could re-
flect the P-tau/Aβ42 ratio in the CSF, an established AD
biomarker. We attribute this association to the import-
ant roles of miRNAs in the regulation of AD pathways
in the brain. We further compared miRNA levels be-
tween AD and VaD, PDD, bvFTD, and DLB. Although
all these degenerative diseases have some similar clinical
manifestations such as cognitive impairment, AD has its
unique pathological process, which may be the reason
why the changes of these seven miRNAs are AD-specific
and differentiates AD from other neurodegenerative dis-
eases. However, our results concerning the upregulation
or downregulation of a single miRNA were inconsistent
with the observations of other studies: while miR-17 was
reported to be significantly altered in the blood of AD
patients [75], our own study could not confirm this. This
discrepancy might suggest that miRNA expression may
vary according to ethnicities. Further multi-center stud-
ies are needed to evaluate genetic differences in miRNA
expression between different ethnic populations.
This study is limited by its cross-sectional design. Al-

though we confirmed that a panel of seven miRNAs
could be applied as diagnostic biomarkers of AD, longi-
tudinal designs would be better suited for the evaluation

of the performance of these biomarkers. Hence, longitu-
dinal studies investigating the relationship between the
levels of biomarkers and the decline in cognitive func-
tions of patients are warranted. This study was further
limited by its not having considered patients with mild
cognitive impairment that progressed to either AD or
stable amnestic mild cognitive impairment. The applica-
tion of our method to the prediction of the progression
from prodromal to probable AD is thus diminished. Fi-
nally, measuring miRNAs with qPCR is a relative quanti-
fication approach that cannot indicate absolute levels of
miRNAs in the blood, limiting the comparisons of the
absolute levels of miRNA between our study and others.

Conclusions
In summary, the results of the present study indicate
that a panel of seven miRNAs are potential blood bio-
markers for AD. Specifically, the association between the
levels of seven miRNAs and the P-tau/Aβ42 ratio in the
CSF of AD patients confirms that miRNA biomarkers
may reflect pathological changes in the brain and, there-
fore, can inform the identification of patients with AD.
However, our findings require further validation in lon-
gitudinal studies.
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