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Common DNA methylation changes in
biliary tract cancers identify subtypes with
different immune characteristics and
clinical outcomes
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Abstract

Background: DNA methylation-associated studies on biliary tract cancer (BTC), including cholangiocarcinoma (CCA)
and gallbladder cancer (GBC), may improve the BTC classification scheme. We proposed to identify the shared
methylation changes of BTCs and investigate their associations with genomic aberrations, immune characteristics,
and survival outcomes.

Methods: Multi-dimensional data concerning mutation, DNA methylation, immune-related features, and clinical
data of 57 CCAs and 48 GBCs from Eastern Hepatobiliary Surgery Hospital (EHSH) and 36 CCAs in the TCGA-CHOL
cohort were analyzed.

Results: In our cohort including 24 intrahepatic CCAs (iCCAs), 20 perihilar CCAs (pCCAs), 13 distal CCAs (dCCAs),
and 48 GBCs, 3369 common differentially methylated regions (DMRs) were identified by comparing tumor and non-
tumor samples. A lower level of methylation changes of these common DMRs was associated with fewer copy
number variations, fewer mutational burden, and remarkably longer overall survival (OS, hazard ratio [HR] = 0.07,
95% confidence interval [Cl] 0.01-0.65, P = 0.017). Additionally, a 12-marker model was developed and validated for
prognostication after curative surgery (HR = 0.21, 95% Cl 0.10-0.43, P < 0.001), which exhibited undifferentiated
prognostic effects in subgroups defined by anatomic location (iCCAs, d/pCCAs, GBCs), TNM stage, and tumor purity.
Its prognostic utility remained significant in multivariable analysis (HR = 0.26, 95% CI 0.11-0.59, P = 0.001). Moreover,
the BTCs with minimal methylation changes exhibited higher immune-related signatures, infiltration of CD8"
lymphocytes, and programmed death-ligand 1 (PD-L1) expression, indicating an inflamed tumor immune
microenvironment (TIME) with PD-L1 expression elicited by immune attack, potentially suggesting better
immunotherapy efficacy.

* Correspondence: libinjeff@126.com; jxq1225@sina.com

TZhiquan Qiu, Jun Ji, Yu Xu, and Yan Zhu are co-first authors.

Zhiquan Qiu, Yu Xu, Yan Zhu and Bin Li contributed equally to this work.
'Department of Biliary Tract Surgery |, Eastern Hepatobiliary Surgery Hospital,
Secondary Military Medicine University, No. 225 Changhai Road, Shanghai
200438, China

Full list of author information is available at the end of the article

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-021-02197-w&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:libinjeff@126.com
mailto:jxq1225@sina.com

Qiu et al. BMC Medicine (2022) 20:64

Page 2 of 17

Conclusions: In BTCs, DNA methylation is a powerful tool for molecular classification, serving as a robust indicator
of genomic aberrations, survival outcomes, and tumor immune microenvironment. Our integrative analysis provides
insights into the prognostication after curative surgery and patient selection for immunotherapy.
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Background

Biliary tract cancers (BTCs), including cholangiocarci-
noma (CCA) and gallbladder cancer (GBC), are rare but
aggressive [1]. Multi-omics analysis may improve the
previous classification framework based on anatomic lo-
cation and pathological features and provide insight into
the mechanism of tumorigenesis and potential targets
for precision medicine.

BTCs at different anatomic locations may display similar
genomic/epigenomic features. Previous comparative ex-
ome sequencing studies have found commonalities among
BTCs in different locations, such as TP53, KRAS, KMT2C,
and SMAD4 mutations, with a second tier of less fre-
quently mutated genes including ARIDIA, CDKN2A, and
PIK3CA [2-10]. Mutational differences between CCAs
and GBCs have tended to be in the frequency of muta-
tions in certain genes, rather than different pathways of
genes being mutated [2, 5]. As for DNA methylation, the
DNA methylation pattern of CCA and its association with
prognosis have been reported in several studies [8—11]. As
for GBC, the gradual methylation changes in the sequence
of gallstone disease, dysplasia, and gallbladder cancer have
been described [12], indicating the importance of DNA
methylation in GBC carcinogenesis. There are several
studies illustrating the associations of survival with the
methylation of specific genes in GBCs, e.g., WIFI and
WISPIN [13-15], while the prognostic effect of DNA
methylation changes has not been not fully addressed. In
addition, no comparative study to date has identified the
similarities among BTC methylomes and further explores
their associations with prognosis and potential benefit
from precision medicine.

Here, we identified 3369 common differentially meth-
ylated regions (DMRs) between CCAs and GBCs and
uncovered their associations with genomic aberration,
survival outcome, and immune characteristics. Of note,
the BTCs with minimal methylation changes exhibited
an inflamed tumor immune microenvironment (TIME)
with programmed death-ligand 1 (PD-L1) expression
elicited by immune attack, potentially suggesting better
immunotherapy efficacy.

Methods

Patients

The included samples of the Eastern Hepatobiliary Sur-
gery Hospital (EHSH) cohort consist of three parts: can-
cerous, adjacent, and precancerous tissues. The 105 tumor

samples (24 intrahepatic CCAs [iCCAs], 20 perihilar
CCAs [pCCAs], 13 distal CCAs, and 48 GBCs) and 50
adjacent non-tumor samples (gallbladder [# = 28] and bile
duct [# = 22]) were obtained immediately following
surgery at EHSH from October 2017 to September 2019.
The diagnosis and tumor purity were confirmed by two
independent pathologists based on the resected samples.
Characteristics of the cancerous and adjacent normal
tissues are shown in Additional file 1: Table S1-2, respect-
ively. All participants had not received anti-tumor treat-
ment before surgery. Participants with carcinoma or
benign disease of other organs were excluded from this
study. In addition, eight samples of precancerous disease
(e.g., gallbladder polyps) were collected for exploratory
analysis (Additional file 1: Table S3).

The Cancer Genome Atlas-cholangiocarcinoma
(TCGA-CHOL) cohort of 36 patients with epige-
nomic, transcriptomic, mutational, immune-related,
and survival (OS and progression-free interval [PFI])
data were analyzed in the present study [10, 16]. The
immune characteristics of this cohort (e.g., signatures
and immune cell sorting) were retrieved from the
study of Thorsson et al. [16].

Patients or the public were not involved in the design,
conduct, reporting, or dissemination plans of our
research. All collection and usage of human samples and
clinical data were in accordance with the principles of
the Declaration of Helsinki and approved by the Ethics
Committee of Eastern Hepatobiliary Surgery Hospital
(EHBHKY2018-02-014). The written consents were re-
ceived from all the participated patients. This report fol-
lows the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) reporting guideline.

DNA methylation profiling and identification of
differentially methylated region (DMR)

All sequencing experiments were implemented in a
College of American Pathologists (CAP)- and Clinical
Laboratory Improvement Amendments (CLIA)-certified
laboratory (Burning Rock Biotech, Guangzhou, China)
before May 2020. The procedure for DNA extraction
was as previously described [17]. In brief, DNA was
extracted with a QIAamp DNA formalin-fixed paraffin-
embedded (FFPE) tissue kit according to the manufac-
turer’s instructions. DNA concentration was measured
by the Qubit double-stranded DNA assay (Life
Technologies, Carlsbad, CA, USA).
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As for methylation sequencing, a capture-based
method, SeqCap Epi CpGiant Probes (Roche Sequencing
Solutions, Madison, WI, USA) was performed to detect
> 5.5 million CpG sites (capture size, 80.5 Mb) [18]. We
generated a bisulfite sequencing library with the
brELSA™ method (Burning Rock Biotech, Guangzhou,
China) [19]. The target libraries were quantified by real-
time PCR and sequenced on NovaSeq 6000 with 50x
target depth on average.

Since differentially methylated regions consisting of
multiple CpG sites played more important roles than a
single CpG site in cancer detection as reported [20], we
defined 319,133 methylation regions of CpG sites with
close genomic distance and highly correlation in methy-
lation level [19], which were analyzed in the present
study.

NGS testing and analysis of mutation and copy number
variation

As for mutation sequencing, a capture-based targeted
deep sequencing was performed using a 520-gene panel,
spanning 1.64 Mb of the human genome (included genes
are shown in Additional file 1: Table S4). Detailed de-
scriptions of sequencing and capturing single nucleotide
variant and copy number variation are shown in Add-
itional file 2: Method S1.

Mutated genes included in our analysis were restricted
to non-silent mutations consisting of non-sense muta-
tion, missense mutation, frameshift mutation, inframe
mutation, splice site mutation, translation start site mu-
tation, and non-stop mutation. Truncating mutations of
oncogene were excluded because most of these are pas-
senger mutations with limited cancer-promoting
function.

The signaling pathways and their members we analyzed
are shown in Additional file 1: Table S5. The definition of
pathways drew upon previous genomic studies [3, 5].

Assessment of programmed death-ligand 1 (PD-L1)
protein expression

For each tumor FFPE block, a 5-um section was cut and
stained with the Dako 22C3 mouse monoclonal antibody
with Dako Autostainer Link-48 platform according to the
manufacturer’s instructions. Cores showing a neoplastic
component > 30% were considered as adequate. PD-L1 posi-
tivity was determined by any expression in tumor cells or im-
mune cells evaluated independently by two pathologists.

Statistical analysis

To assess the between-group difference, we performed
the (i) Fisher exact test, chi-square test, and Cochran-
Armitage test for trend for categorical variables; (ii)
Mann-Whitney test for continuous variables; and (iii)
Kaplan-Meier (KM) method, log-rank method, and Cox
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regression (hazard ratio [HR] and 95% confidence inter-
val [CI]) for survival variables (OS and PFI). The covari-
ates with P value below 0.05 in the univariable analysis
were included in the following multivariable model. The
differentiated methylation regions (DMRs) between tu-
mors and adjacent tissues were selected by the Mann-
Whitney test for further clustering. Detailed description
of single sample gene set enrichment analysis is shown
in Additional file 2: Method S2.

The non-supervised clustering of methylation data in
both the EHSH and TCGA cohorts was performed by
the K-means method (R package, ConsensusCluster-
Plus). Gene Ontology (GO) enrichment analysis was per-
formed by R (R package, clusterProfiler) [21-23]. The
12-DMR prognostic model was built via least absolute
shrinkage and selection operator (LASSO).

All statistical analyses mentioned above were per-
formed using IBM SPSS Statistics 22 and R 3.4.2, and
the graphs were drawn by GraphPad Prism 9 and R
3.4.2. The nominal level of significance was set as 5%,
and all 95% ClIs were 2-sided.

Results

Identification of common DMRs among BTCs

By comparing the methylomes of cancerous and normal
adjacent tissues separately in CCAs (57 treatment-naive
CCAs vs. 22 adjacent bile ducts) and GBCs (48
treatment-naive GBCs vs. 28 adjacent gallbladders), 5279
significant DMRs with S value difference above 0.15 in
both CCAs and GBCs were identified (Fig. 1A). More-
over, we assessed the consistency of these 5279 DMRs
among iCCAs, pCCAs, and dCCAs, and 3369 DMRs had
minimal B value differences of 0.15 in all three sub-
groups (Fig. 1A). Of these, 835 DMRs showed lower 8
values in tumor samples compared to adjacent non-
tumor samples (referred to as hypomethylation DMRs),
and the other 2534 DMRs exhibiting higher S values
were referred to as hypermethylation DMRs. All of the
3369 DMRs showed great significance by comparing
BTCs and adjacent non-tumor samples (maximal P value
= 5.66 x 10°%, FDR P value< 0.05, Fig. 1B). In addition,
we found significant positive correlations of the f value
differences of the 835 hypomethylation DMRs among
iCCAs, pCCAs, dCCAs, and GBCs (Fig. 1C). Similarly,
significant positive correlations were found in the 2534
hypermethylation DMRs (Fig. 1D). These correlations
further indicate the consistency of these DMRs among
the BTCs at different anatomic locations.

The hypermethylation DMRs were enriched in the re-
gions of CpG islands, promoters, and exons of coding
sequence, but not CpG shores, CpG shelves, open sea,
introns, and intergenic regions (Fig. 1E and Additional
file 1: Table S6). The top 50 hypermethylation and hypo-
methylation DMRs are displayed in Additional file 1:
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Fig. 1 Identification of the common DMRs among BTCs in the EHSH cohort. A Diagram of the identification process. B Volcano plot illustrating
the P value and S value difference of the 3369 DMRs. C The S value difference of the hypomethylation DMRs and their inner-correlations among
iCCAs, pCCAs, dCCAs, and GBCs. D The 8 value difference of the hypermethylation DMRs and their inner-correlations among iCCAs, pCCAs,
dCCAs, and GBCs. E Sankey plot of the hypomethylation and the hypermethylation DMRs. F, G Gene Ontology enrichment analyses of the
hypomethylation- (F) and the hypermethylation-associated genes (G). BTC, biliary tract cancer; i/p/dCCA, intrahepatic/perihilar/distal
cholangiocarcinoma; DMR, differentially methylated region; GBC, gallbladder cancer; GO, Gene Ontology

Table S7 and S8, respectively. GO analysis revealed that
hypomethylation mainly affected the genes related to
Rho GTPase binding, transmembrane transporter activ-
ity, and lyase activity (Fig. 1F), and hypermethylation tar-
geted DNA binding and transcription (Fig. 1G).

Prognostic correlates of DNA methylation-based clusters

Using the top 1000 most variable DMRs of the 3369
DMRs identified above, 163 tissues (105 treatment-naive
BTC samples, 50 adjacent non-precancerous bile duct or
gallbladder tissues, and 8 precancerous lesions) were
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classified into 6 groups by non-supervised consensus
clustering (Fig. S1). Baseline characteristics of the above-
mentioned samples and the comparison among iCCAs,
d/pCCAs, and GBCs are shown in Additional file 1:
Table S1-3. As delineated in the heatmap (Fig. 2A), ran-
ging from the methylation cluster 1 to cluster 6, the de-
gree of global methylation changes gradually decreased,
and the proportion of non-precancerous adjacent tissues
gradually increased. Despite that the GBCs in our cohort
exhibited poorer histological grade and later TNM stage
compared to iCCAs and d/pCCAs (Additional file 1:
Table S1), similar proportions of GBCs, dCCAs, pCCAs,
small-duct iCCAs, and large-duct iCCAs were observed
in different methylation clusters (P = 0.72), indicating
that the methylation clusters based on the 3369 common
DMRs were independent of anatomic sites and poten-
tially reflected a shared characteristic among the cancers
along biliary tract.

As non-precancerous adjacent tissues were enriched in
the methylation clusters 4—6 with minimal methylation
changes (Fig. 2A), we speculated that the BTCs in clus-
ters 4—6 might exhibit lower invasiveness, and therefore,
clusters 4—6 might be associated with longer survival.
Among the 80 BTC patients with OS data (characteris-
tics are shown in Additional file 1: Table S1), clusters 4—
6 showed better prognosis compared to clusters 1-3
(HR = 0.07, 95% CI 0.01-0.65, P = 0.017, Fig. 2B). Simi-
lar trends were observed in the subgroups classified by
anatomic location, i.e., iCCAs, d/pCCAs, and GBCs (Fig.
2C, D), and stage, i.e., stages I-II and stage III-IV (Fig.
2E). We hereby defined the cluster-based risk according
to our methylation clusters (high cluster-based risk, clus-
ters 1-3; low cluster-based risk, clusters 4—6). We fur-
ther use the top 500 and 250 most variable DMRs to
perform non-supervised clustering. Compared to the
one using top 1000 DMRs as described above, 95.7% of
the samples had the same results of the cluster-based
risk (Additional file 1: Table S9), indicating the robust-
ness of the classification by common methylation DMRs
among BTCs.

Tumor purity (also termed as tumor cellularity) might
somewhat influence the sequencing data of methylome
and therefore the clustering outcome. Similar to the re-
sult of Goeppert et al’s study in iCCAs, we observed
slightly lower tumor cellularity in the samples with lower
methylation changes (average, 40.8% in clusters 4-6
compared to 64.1%, 56.5%, and 47.7% in clusters 1, 2,
and 3, respectively, Fig. 2F). Lower tumor purity might
indicate a higher proportion of stromal area and/or
higher density of tumor-infiltrating immune cells, which
was partially suggested by the lower CD8A methylation
in clusters 4—6 which might reflect higher infiltration of
CD8" T cells. Despite the slight difference of tumor pur-
ity in different clusters, tumor purity was not linked with
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OS (continuous variable: HR = 1.00, 95% CI 0.99-1.02,
P = 0.933; categorical variable [> 50% vs. <50%]: HR =
1.00, 95% 0.99-1.02, P = 0.672). The cluster-based risk
showed an undifferentiated prognostic effect in the pa-
tients with higher tumor purity (= 50%, P = 0.077) and
lower tumor purity (< 50%, P = 0.022, Fig. 2G). These re-
sults rule out the influence of tumor purity on the prog-
nostic effect of the cluster-based risk.

To investigate whether the prognostic effect of the
cluster-based risk is independent of other variables, we
firstly analyzed the association between clusters and key
clinicopathological variables, including sex, age, smoking
history, anatomic location, TNM stage, histological
grade, resection margin, carcinoembryonic antigen
(CEA), carbohydrate antigen 19-9 (CA19-9), alpha-
fetoprotein (AFP), and multiple immunohistochemical
staining markers (e.g., Hep-1, Mucin 1 [MUC-1], P63,
and S100). No significant association was revealed ex-
cept the lower frequency of CEA abnormality in clusters
4—6 (P = 0.007, Additional file 1: Table S10). Moreover,
univariable analyses discovered that anatomic location,
TNM stage, histological grade, resection margin, and
CEA abnormality were significantly associated with OS
in addition to the cluster-based risk (Table 1). In the
multivariable model, OS was significantly associated with
the cluster-based risk (HR = 0.13, 95% CI 0.02—-0.96, P =
0.045), rather than anatomic site (Table 1). These results
suggest that the methylation-based clusters might be an
independent biomarker predicting prognosis in BTCs.

Prognostic correlates of the methylation level of
individual DMRs.

To specifically discover the prognosis-related DMRs, 80
BTC patients with OS data were randomly assigned to
the training and validation sets with a 2:1 ratio (Fig. 3A),
and univariable analysis revealed 54 prognosis-related
DMRs in the training set. Based on these 54 DMRs,
LASSO regression was performed and constructed a
LASSO score based on 12 DMRs (optimal lambda selec-
tion and LASSO coefficient profiles are shown in Fig. S2
and Additional file 1: Table S11, respectively). Using this
score and the cutoff (median value) derived from the
training set, we observed a consistent prognostic effect
in both the training set (P < 0.001, Fig. 3B) and the val-
idation set (P = 0.047, Fig. 3C). In the total 80 BTC pa-
tients (methylation data are shown in Fig. 3D), a lower
LASSO-based risk was associated with better OS (HR =
0.21, 95% CI 0.10-0.43, P < 0.001, Table 1). Combining
the LASSO-based risk and the cluster-based risk could
differ the BTC patients into subgroups with distinct sur-
vivals (P < 0.001, Fig. 3E). The prognostic effect of the
LASSO-based risk was undifferentiated in the subgroups
classified by anatomic location (GBC: P = 0.009; CCA: P
= 0.041, Fig. 3F), TNM stage (stages I-II: P = 0.070;
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Table 1 Univariable and multivariable analyses of OS in the EHSH cohort

Parameter Univariable analysis

risk)

Multivariable analysis 1 (cluster-based

Multivariable analysis 2 (LASSO-based
risk)

HR (95% Cl) P value HR (95% Cl) P value HR (95% Cl) P value

Age (2 65 vs. <65) 067 (0.37-123) 020

Sex (male vs. female) 0.73 (041-1.31) 0.29

Anatomic site <0.001 0.70 0.98
Extrahepatic CCA vs. GBC 022 (0.10-049) <0.001 066 (0.22-1.93) 045 1.10 (0.36-3.34) 0.87
Intrahepatic CCA vs. GBC 038 (0.17-0.86)  0.021 0.72 (0.26-1.96) 052 1.08 (0.39-3.03) 0.88
GBC (dummy variable)

Smoking (smoker vs. non-smoker) 4 (067-231) 049

TNM stage (III/IV vs. I/1l) 555 (296-1041) <0.001 3.92 (1.22-12.59) 0.021 3.80 (1.17-12.39) 0.027

Resection margin (RO vs. R1/R2) 0.28 (0.15-0.53) < 0.001 048 (0.24-0.96) 0.038 043 (0.22-0.86) 0.016

Histological grade (> G2 vs. < G2)  2.86 (1.50-5.46)  0.001 1.81 (0.84-3.90) 0.13 1.84 (0.85-4.00) 0.12

Microsatellite (unstable vs. stable) 5 (040-6.86) 049

CEA (ng/mL, >5vs. £5) 4 (1.02-3.30) 0.042 1.08 (0.53-2.18) 0.84 1.38 (0.70-2.73) 0.35

CA199 (U/mL, > 40 vs. < 40) 0.74 (040-137) 033

AFP (ng/mL, > 20 vs. < 20) 030 (0.04-2.18)  0.23

Tumor purity (continuous variable) 0 (0.99-1.02) 093

Cluster-based risk (low vs. high) 0.09 (0.01-0.65) 0017 0.13 (0.02-0.96) 0.045

LASSO-based risk (low vs. high) 021 (0.10-043) < 0.001 0.26 (0.11-0.59) 0.001

AFP alpha-fetoprotein, CA7199 carbohydrate antigen 199, CCA cholangiocarcinoma, CEA carcinoembryonic antigen, GBC gallbladder cancer, NA not applicable

stages III-IV: P < 0.001, Fig. 3G), or tumor purity (=
50%: P = 0.001; <50%: P = 0.004). Furthermore, in the
multivariable model, the LASSO-based risk (HR = 0.26,
95% CI 0.11-0.59, P = 0.001), rather than the anatomic
site (d/pCCA vs. iCCA vs. GBC), was associated with OS
(Table 1). These results indicate the good robustness of
LASSO-based risk that may be effective regardless of
other key variables including TNM stage and anatomic
location.

Genomic correlates of DNA methylation-based clusters
Of the 105 tumor samples, 99 received targeted deep se-
quencing of mutational events of the coding sequence
and splice sites, large genomic rearrangement, copy
number variation (CNV), fusion, and microsatellite (Fig.
4A). Tumor mutational burden (TMB) was slightly
higher in cluster 1 (Fig. 4B), and CNV events were
enriched in clusters 1-2 (Fig. 4C), indicating the associ-
ation between methylation changes and chromatin
instability.

The mutational frequencies of TP53, BRCA1/2, ATM,
and PI3K; WNT; homologous recombination repair
(HRR); and cell cycle pathway gradually decreased with
the order of the anatomical position (GBC, dCCA,
pCCA, iCCA-large duct, and iCCA-small duct), while
the changing trend of BRAF mutational frequency was
the opposite (Fig. 4D). Similar differences were observed
between the GBCs and the CCAs of the public cohorts

in cBioPortal [3-7, 24, 25]. In addition, CCNDI1/E1 and
APC mutations were enriched in metastatic BTCs (Fig.
S3).

Ranging from clusters 1, 2, and 3 to 4—6, the muta-
tional frequency of cell cycle pathway (P = 0.022),
CCND/E1 (P = 0.005), FGFR family (P = 0.049), and
NOTCH pathway (P = 0.029) decreased gradually (Fig.
4E), suggesting the potential association between these
mutational events and DNA methylation changes. In
addition, mutations in the MMR pathway, BRAF,
TGFBR1/2, and ARIDIA were associated with worse OS
in both univariable and multivariable analyses (Fig. 4E
and Additional file 1: Table S12).

Immune correlates of DNA methylation-based clusters

Due to the limited publicly available datasets of GBCs
with all epigenomic, transcriptomic, and survival data,
we sought to firstly investigate the association between
methylation and immune characteristics in a cholangio-
carcinoma dataset from TCGA (TCGA-CHOL). Thirty-
six cancerous tissues and nine matched normal tissues
were classified into six groups via non-supervised con-
sensus clustering (Fig. S4). Similar to the result in the
EHSH cohort, gradual changes of methylation were ob-
served ranging from cluster 1 to cluster 6 (Fig. 5A). All
normal samples were in cluster 6. Clusters 1-2 and clus-
ters 3—5 were defined as the methyl-risk high and the
methyl-risk low groups, respectively. Compared to the
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Fig. 3 Association between individual methylation DMRs and prognosis in the EHSH cohort. A Diagram of the workflow of developing the 12-
DMR model. B, C Association between the LASSO-based risk and overall survival in the training set (B) and the validation set (C). D Heatmap and
table illustrating the methylation data and features of the 12 DMRs involved in the LASSO model. E, F Kaplan-Meier curves illustrating the OS data
of 80 BTC patients of the subgroups classified by LASSO-based risk and TNM stage (E) and the subgroups classified by LASSO-based risk and
anatomic location (F). BTC, biliary tract cancer; DMR, differentially methylated region; LASSO, least absolute shrinkage and selection operator

methyl-risk high group, OS (HR = 0.47, 95% CI 0.15-
146, P = 0.19, Fig. 5B) and PFI (HR = 0.14, 95% CI
0.04—-0.50, P = 0.002, Fig. 5C) were longer in the methyl-
risk low group. In multivariable analysis, consistent re-
sults were revealed (OS: multivariable HR = 0.25, 95%
CI 0.05-1.31, P = 0.100; PFI: multivariable HR = 0.06,
95% CI 0.01-0.52, P = 0.011, Additional file 1: Table
S13-14). Fraction altered (percentage of copy number al-
tered chromosome regions out of measured regions) was
higher in the methyl-risk high group, indicating chroma-
tin instability (Fig. 5D).

Thorsson et al. presented immunogenomics analyses
of more than 10,000 tumors in TCGA, identifying 6 im-
mune subtypes (Cl: wound healing, C2: IFN-y domin-
ant, C3: inflammatory, C4: lymphocyte depleted, C5:
immunologically quiet, C6: TGF-p dominant) that en-
compass 33 cancer types based on 6 key signatures [16].
Higher frequencies of C1 and C2 and lower frequencies
of C4 and C6 were observed in the methyl-risk low
group (P = 0.045, Fig. 5E), and a lower methyl-risk was
associated with higher scores of macrophage and
lymphocyte signatures (Fig. 5F). As described by Thors-
son et al, both C1 and C2 subtypes had low Th1/Th2
ratio, high proliferation rate, and high intratumoral het-
erogeneity, and C2 had the highest M1/M2 macrophage
polarization, a strong CD8 signal, and the greatest TCR
diversity. On the contrary, C4 displayed a more promin-
ent macrophage signature with suppressed Thl and high
M2 response, and C6 had the highest TGF-} signature,
demonstrating their immunosuppressive tumor micro-
environments [16].

We further assess the association between the clusters
and immune features. The samples with a lower methyl-
risk exhibited higher (i) richness and Shannon index of
B/T cell receptor (Fig. 5G); (ii) expression of CD274
(PD-L1) and cytotoxic T-lymphocyte antigen 4 (CTLA-
4, Fig. 5H); (iii) fraction of infiltrated leukocytes (Fig. 5I),
including naive B cell, plasma cell, monocyte, macro-
phage, CD8" T cell, follicular helper T cell, and regula-
tory T cell (Fig. 5)); and (iv) multiple immune-related
and angiogenesis signatures (Fig. 5K, L). Previous studies
have demonstrated the pivotal role of vascular endothe-
lial growth factor (VEGF) in interfering (i) the migration
of antigen-specific T cells from the vessel into tumor
and (ii) the recognition of cancer cells by cytotoxic T
cells [26—28]. Generally, the angiogenesis score is nega-
tively correlated with immune infiltration; however, we

observed an overlap of greater infiltration of CD8" T cell
and higher angiogenesis signature in the methyl-risk low
group (Fig. S5). We further calculated the signatures
concerning the comparisons between naive, effector, and
exhausted CD8" T cells (Fig. S6) and observed that the
scores of (i) naive vs. effector (P = 0.089) and (2) naive
vs. exhausted (P = 0.089) trended higher in the methyl-
risk high subgroup, and the effector vs. exhausted score
was similar in the methyl-risk high and the methyl-risk
low subgroups (P = 0.58). These results indicate that al-
though the samples with lower methyl-risk had more ef-
fector and exhausted CD8" T cells compared to naive
CD8" T cells, the quantities of effector and exhausted
CDS8" T cells were comparable, reflecting an adaptive re-
sistance to immune attack, which might be partially due
to the higher level of angiogenesis and potentially benefit
from the regimens inhibiting VEGF and immune
checkpoints.

Given the above findings from the TCGA-CHOL co-
hort, we sought to partially verify them in the EHSH co-
hort in terms of PD-L1 protein expression and tumor-
infiltrating CD8" T cells. A lower methyl-risk was asso-
ciated with PD-L1 positivity (P = 0.040, Fig. 6A). The
quantity of tumor-infiltrating CD8" T cells could be
reflected by CD8A methylation, as significant correla-
tions were revealed between higher CD8A methylation,
lower CD8A mRNA expression, and fewer tumor-
infiltrating CD8" T cells in the TCGA-CHOL cohort
(Fig. 6B). In the EHSH cohort, we observed higher
methylation levels of the five DMRs related to the CD8A
gene in clusters 1/2/3 (P < 0.001, Fig. 6C), indicating
poorer infiltration of CD8" T cells in the clusters with
larger methylation changes. Similar trends of the above
results were shown in both the CCAs and the GBCs in
the EHSH cohort, indicating the associations of methyla-
tion changes with PD-L1 expression and tumor-
infiltrating CD8" T cells might be a common feature in
all BTCs. Given all the above immune-related results
from two independent cohorts, fewer methylation
changes might potentially be a novel predictor of better
response to immunotherapy.

Distinguished by the density of tumor-infiltrating lym-
phocytes (TILs), there are two causes of PD-L1 expres-
sion: (i) prior attack by immunity (adaptive resistance)
and (ii) activation of the oncogenic pathway (intrinsic in-
duction) [29] respectively predicting better and worse
benefit from immune checkpoint inhibitors (ICIs) in
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Fig. 4 (See legend on next page.)
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Fig. 4 Association between methylation cluster and mutational events in the EHSH cohort. A Clinicopathological and mutational data of the 99
BTC samples. B, C Associations of the methylation-based clusters with TMB (B) and CNV (C). D Association between anatomic location and
mutational rate. E Associations of mutation with the methylation-based clusters and overall survival. BTC, biliary tract cancer; CCA,
cholangiocarcinoma; CNV, copy number variation; DMR, differentially methylated region; GBC, gallbladder cancer; LASSO, least absolute shrinkage

and selection operator; TMB, tumor mutational burden

non-small cell lung cancer [30]. In our cohort, all PD-
L1" samples in clusters 1/2 had a high level of CD8A
methylation (above median), and all PD-L1" samples in
clusters 3—6 had a low level of CD8A methylation (below
median, P < 0.001, Fig. 6D). In addition, a large differ-
ence of OS with borderline significance was uncovered
between the PD-L1'/CDSA™™'™M8" and the PD-L1'/
CD8A™™HOY groups (HR = 4.96, 95% CI 0.59-41.75, P
= 0.104, Fig. 6E), indicating the differed prognostic ef-
fects of the PD-L1 elicited by immune attack and the
one induced by the oncogenic pathway. To identify the
possible “PD-L1-inducing oncogenic pathway,” we re-
vealed several enrichments of mutational event in the
eleven PD-L1*/CD8A™™ Mgl samples, including the
mutations in BRAF (proportion = 4/11, OR = 13.1, 95%
CI 2.43-71.0, P = 0.005), MMR pathway (proportion =
4/11, OR = 7.66, 95% CI 1.66—35.3, P = 0.016), Fanconi
pathway (proportion = 4/11, OR = 5.31, 95% CI 1.24—
22.7, P = 0.035), NOTCH pathway (proportion = 6/11,
OR = 3.60, 95% CI 0.98-13.2, P = 0.053), Hippo pathway
(proportion = 8/11, OR = 6.06, 95% CI 1.47-25.0, P =
0.010), and SWI/SNF pathway (9/11, OR = 9.59, 95% CI
1.92-48.0, P = 0.002). Within the SWI/SNF pathway, the
mutations of BAF complex (ARID1A: 5/11, OR = 517, P
= 0.024, and ARIDIB: 4/11, OR = 13.1, P < 0.001) rather
than those of PBAF complex (ARID2: 3/11, OR = 2.63, P
= 0.194; PBRMI: 2/11, OR = 1.78, P = 0.395) were
enriched in the PD-L1*/CD8A™ ™™gt samples. Our re-
sults might provide novel insights into the molecular
basis underlying the intrinsic induction of PD-L1 in
BTCs.

Getting back to the prognostic effect of methylation
changes, in order to determine whether the effect of
methylation on OS is mediated by immune characteris-
tics, we performed multivariable analysis to adjust for
CD8A methylation and PD-L1 positivity. The association
of the cluster-based risk and the LASSO-based risk with
OS remained significant (Fig. 6G), indicating that the
prognostic effect of DNA methylation might be partially
but not completely on account of the infiltration of
CD8" T cells and the immune escape via PD-L1.

Discussion

The common DNA methylation changes among BTCs
may reflect their similar oncogenic mechanisms. Using
these common DMRs, BTCs could be stratified into sub-
groups with distinct genomic aberrations, immune-

related features, and survival outcomes (summarized in
Fig. 6H).

Previous studies have identified the critical methyla-
tion changes during the tumorigenesis and development
of CCAs and GBCs, respectively. However, no compara-
tive study to date has identified the shared methylation
features among BTCs. We identified 3369 common
DMRs, and GO analysis revealed that hypomethylation
mainly affected the genes related to Rho GTPase bind-
ing, transmembrane transporter activity and lyase activ-
ity, and hypermethylation targeted DNA binding and
transcription. The mutations of IDH1/2 in our EHSH
cohort were rare, and none of the two mutations (IDH1I:
p. V152L and p. K4N) was at the hotspot (codon 132),
which made us impossible to assess the contribution of
IDH1/2 to epigenetic regulation. It is presumable that by
using these common DMRs in the following analyses,
we may arrive at the results generally available for all
BTCs, but not limited to a specific BTC subtype at a cer-
tain anatomic location.

As for prognostication, a higher level of DNA methyla-
tion changes was independently associated with a poorer
prognosis in the present study. Two previous studies
mainly focusing on iCCAs reached similar results [8, 9],
and we further expand its application to d/pCCAs and
GBCs by using the common 3369 DMRs. Furthermore,
we identified 12 significant DMRs associated with OS by
LASSO regression, and the LASSO score effectively pre-
dicted OS in both training and validation sets and was
identified as an independent prognostic risk factor.
Compared to other prognostic risk factors, the discrim-
ination potentials of the cluster-based risk and the
LASSO-based risk were found to be superior. Of note,
abundant studies have pointed out the different progno-
ses in GBCs, d/pCCAs, and iCCAs, which we also ob-
served in the univariable analysis (P < 0.001). However,
the prognostic effect of anatomic location was remark-
ably decreased after adjusting for TNM stage, resection
margin, histological grade, CEA abnormality, and the
cluster-based risk or the LASSO-based risk based on
methylation changes (P = 0.70 and 0.98, respectively,
Table 1). These results indicate that the different sur-
vivals in GBCs, d/pCCAs, and iCCAs may be largely on
account of other key parameters. Moreover, the signifi-
cant prognostic effects of the cluster-based risk and the
LASSO-based risk in the multivariable models suggest
their robustness. Combining methylation biomarkers
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TMB, tumor mutational burden

Fig. 6 Association between global methylation changes and immune characteristics in the EHSH cohort. A Association between the methylation-
based clusters and PD-L1 positivity (CPS score). B Correlations between CD8A methylation, CD8A mRNA, and the infiltration of CD8" T cells in the
TCGA-CHOL cohort. € Heatmap and table illustrating the methylation data and features of the five CD8A DMRs. D Associations of the methyl-risk
with PD-L1 positivity and CD8A methylation. E Kaplan-Meier curves illustrating the OS of the subgroups classified by PD-L1 positivity and CD8A
methylation. F Prognostic effect of the cluster-based and the LASSO-based risks after adjusting for CD8A methylation and/or PD-L1 positivity. G
Representative features of the methylation-based clusters in terms of methylation changes, mutational events, immune-related characteristics,
prognosis, and potential usefulness for predicting the benefits from targeted therapy and immunotherapy. CCA, cholangiocarcinoma; CPS,
combined positive score; GBC, gallbladder cancer; LASSO, least absolute shrinkage and selection operator; PD-L1, programmed death-ligand 1;

with clinical features may further improve the prognostic
estimation, which helps identify patients who would
need more aggressive treatment and surveillance. How-
ever, our study was limited by sample size (n = 105), and
further investigations to adequately assess the reliability
of methylation biomarkers in clinical decision-making
for BTC patients are still needed.

Of note, tumor cellularity, a confounding feature in
DNA methylome studies in general, is detrimental in the
study of BTCs which display desmoplasia [31]. We ob-
served lower tumor purity in clusters 4—6 with minimal
methylation changes compared to clusters 1-3 with lar-
ger methylation changes (37.5% vs. 60.0%, difference =
—-22.5%) in our EHSH cohort. However, in the TCGA
cohort, we also observed a higher leukocyte fraction in
the clusters with minimal methylation changes to a simi-
lar extent (31.0% vs. 9.3%, difference = 21.7%). These re-
sults indicate that the difference in the tumor cellularity
across different clusters may be on account of immune
cell infiltration instead of desmoplasia. In addition, it is
the cluster- and LASSO-based risks rather than tumor
purity that were associated with OS in our analysis, and
the subgroup analyses based on tumor purity and the
multivariable analyses both support that the prognostic
utilities of the cluster- and LASSO-based risks are not
influenced by tumor purity.

In terms of precision medicine, the clusters with min-
imal methylation changes exhibited fewer opportunities
for targeted therapy (IDHI1/2 mutation 0%, FGFR2 fu-
sion 0%, BRCA1/2 mutation 6%, ERBB2 amplification
0%, BRAF mutation 0%), but a hot and inflamed tumor
immune microenvironment (TIME), indicating favorable
benefit from immunotherapy [32-41]. More importantly,
the PD-L1 expression in the methyl-risk high BTCs may
be mainly induced by intrinsic activation of oncogenic
pathways rather than prior immune attack. We further
put forward possible candidates for this “oncogenic
pathway,” including BRAF, NOTCH pathway, Hippo
pathway, BAF complex, and two DNA damage repair
pathways (MMR and Fanconi). On the contrary, all PD-
L1-positive samples with lower methyl-risk exhibited
lower CD8A methylation, suggesting immune attack-
induced PD-L1 expression. The PD-L1*/CD8A™e™low
and the PD-L1*/CD8A™™'™8" BTCs had different

prognoses and may potentially respond to ICI treatment
in different depths owing to the immune-desert proper-
ties of the PD-L1*/CD8A™™!™hieh BTCs with no prim-
ing. In the CD8A™™! 1% BTCs, we also observed higher
scores of angiogenesis signature probably suggesting
stromal interactions in TIME that inhibits further im-
mune cell infiltration, suggesting a possibility that anti-
angiogenic agents might further enhance the density of
TILs and boost immunotherapy efficacy in the BTCs
with higher CD8" TILs.

Recently, Huang et al. have described the larger TIME
component of Epstein-Barr virus (EBV)-associated
iCCAs (EBValCC) compared to non-EBValCC [42]. Al-
though the DNA methylome was not assessed in their
study, plenty of evidence has pointed out the associa-
tions of EBV infection with the abnormal DNA methyla-
tion changes in solid tumors such as gastric and
nasopharyngeal carcinomas [43]. Despite the rarity of
EBV infection in BTCs [42], it is interesting and valuable
to investigate whether the EBV-associated BTCs exhibit
distinct genetic and epigenetic alterations and benefit
from ICI treatment.

As for the methyl-risk high patients, immunotherapy
efficacy might be improved by combining demethylation
agents [44], which can induce T cell attraction and re-
activation by synergistically upregulating tumor antigen
presentation [45-47] and downregulating immune sup-
pressive signals in solid tumors [48-50]. At present, all
the clinical trials are in phase I/1I, assessing the tolerance
and efficacy of ICI plus demethylation agent [44]. More
clinical and basic research probing into whether larger
methylation changes can predict favorable benefits from
this combination therapy is warranted.

As for limitation, first, the TNM stage was different
among iCCAs, d/pCCAs, and GBCs in the present study,
which may limit the exploration of the associations of
anatomic location with methylation subtypes and prog-
nosis. Given this, we performed subgroup analysis and
multivariable analysis to rule out the impact from covar-
iates including TNM stage and anatomic location on the
prognostic effect of DNA methylation. Second, the sam-
ple size of the present study is not large and most sam-
ples were not obtained from advanced BTC patients,
making it difficult to provide reliable explanations for
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the different responses to ICIs of the tumors in different
anatomic locations. Third, whole-genome sequencing
and gene expression data that could contribute to com-
prehensive molecular subtyping are missing, and this
study also lacks the functional validation of specific
genes in cell lines to further clarify the relation between
DNA methylation and mutational events. ARID2 muta-
tions were enriched in clusters 1-2 with greater methy-
lation changes, and a previous study in hepatocellular
carcinoma indicates that ARID2 could recruit DNMT1
to the promoter, which increased promoter methylation
[51]. Future basic studies may focus on the effect of
ARID2 on the methylation in BTCs. Despite these, only
based on the DNA methylation data, we successfully
stratified BTC patients into subgroups with distinct
prognosis and immune-related features in two independ-
ent cohorts. Importantly, consistent stratification utilities
were observed in iCCAs, d/pCCAs, and GBCs, demon-
strating the robustness of our findings.

Conclusions

To our knowledge, this is the first study that identifies
common DNA methylation changes of CCAs and GBCs.
By leveraging the common 3369 DMRs, we subtyped the
BTC patients into subgroups with distinct genomic aber-
rations, immune characteristics, and survival outcomes.
Additionally, the 12-marker prognostic model may be
used for estimating survival outcomes. Our integrative
analysis based on the common DMRs provides insights
into BTC pathogenesis, prognostication after curative
surgery, and patient selection for immunotherapy. Con-
ceivably, by stratification of BTCs according to molecu-
lar profiling, subtype-specific treatment modalities may
be achieved in the future, which in the long term might
improve the survival of BTC patients.
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