
RESEARCH ARTICLE Open Access

Exploring the causal effect of maternal
pregnancy adiposity on offspring adiposity:
Mendelian randomisation using polygenic
risk scores
Tom A. Bond1,2,3,4,5* , Rebecca C. Richmond4,5, Ville Karhunen1,6,7, Gabriel Cuellar-Partida3,8,
Maria Carolina Borges4,5, Verena Zuber1,9, Alexessander Couto Alves1,10, Dan Mason11, Tiffany C. Yang11,
Marc J. Gunter12, Abbas Dehghan1,2, Ioanna Tzoulaki1,2,13, Sylvain Sebert6, David M. Evans3,4,14, Alex M. Lewin1,15,
Paul F. O’Reilly16, Deborah A. Lawlor4,5† and Marjo-Riitta Järvelin1,2,6,17,18†

Abstract

Background: Greater maternal adiposity before or during pregnancy is associated with greater offspring adiposity
throughout childhood, but the extent to which this is due to causal intrauterine or periconceptional mechanisms
remains unclear. Here, we use Mendelian randomisation (MR) with polygenic risk scores (PRS) to investigate
whether associations between maternal pre-/early pregnancy body mass index (BMI) and offspring adiposity from
birth to adolescence are causal.

Methods: We undertook confounder adjusted multivariable (MV) regression and MR using mother-offspring pairs
from two UK cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC) and Born in Bradford (BiB). In
ALSPAC and BiB, the outcomes were birthweight (BW; N = 9339) and BMI at age 1 and 4 years (N = 8659 to 7575).
In ALSPAC only we investigated BMI at 10 and 15 years (N = 4476 to 4112) and dual-energy X-ray absorptiometry
(DXA) determined fat mass index (FMI) from age 10–18 years (N = 2659 to 3855). We compared MR results from
several PRS, calculated from maternal non-transmitted alleles at between 29 and 80,939 single nucleotide
polymorphisms (SNPs).
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Results: MV and MR consistently showed a positive association between maternal BMI and BW, supporting a
moderate causal effect. For adiposity at most older ages, although MV estimates indicated a strong positive
association, MR estimates did not support a causal effect. For the PRS with few SNPs, MR estimates were statistically
consistent with the null, but had wide confidence intervals so were often also statistically consistent with the MV
estimates. In contrast, the largest PRS yielded MR estimates with narrower confidence intervals, providing strong
evidence that the true causal effect on adolescent adiposity is smaller than the MV estimates (Pdifference = 0.001 for
15-year BMI). This suggests that the MV estimates are affected by residual confounding, therefore do not provide an
accurate indication of the causal effect size.

Conclusions: Our results suggest that higher maternal pre-/early-pregnancy BMI is not a key driver of higher
adiposity in the next generation. Thus, they support interventions that target the whole population for reducing
overweight and obesity, rather than a specific focus on women of reproductive age.
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Background
It has been hypothesised that prenatal exposure to greater
maternal adiposity during or prior to pregnancy causes
greater adiposity in the offspring throughout life, via intra-
uterine effects or periconceptional mechanisms (for ex-
ample effects on the oocyte) [1–4]. There are well-
replicated observational associations between maternal
body mass index (BMI) before or during pregnancy and
offspring adiposity and cardiometabolic outcomes in child-
hood, adolescence and adulthood [5–8]. Furthermore, evi-
dence from animal experiments suggests that such
associations are plausibly due to causal biological effects in
the intrauterine period [9, 10]. If true, this could have im-
portant implications for obesity prevention policy, because
interventions to reduce maternal obesity before pregnancy
might reduce offspring obesity risk in later life [1, 2, 6].
Triangulated epidemiological evidence from different

study designs [11] suggests that associations between
maternal BMI and offspring childhood/adolescent adi-
posity may not reflect a causal effect. For example, nega-
tive paternal exposure control studies [12–18] and
studies examining associations within sibling groups [19,
20] suggest that confounding by genetic and/or environ-
mental factors shared within families may be an import-
ant explanation for the associations. In addition, two
Mendelian randomisation (MR) [21, 22] studies, which
used genetic variants as instrumental variables (IVs) for
maternal BMI, provided no strong evidence for a causal
effect [14, 23]. However, in order to avoid bias due to
genetic inheritance, the primary analysis in the most re-
cent MR study [23] was adjusted for an offspring
weighted allele score, and simulations suggest that the
use of a weighted allele score may not be the optimal ap-
proach to avoid bias (Personal communication, Wang G,
Warrington N, Evans DM, 2020). In addition, both pre-
vious studies [14, 23] were unable to adjust for paternal
genetic variants, which may be necessary to avoid col-
lider bias [24]. Furthermore, the causal estimates from

previous MR studies were imprecise [14, 23, 24]. For ex-
ample, in the largest study (N = 6057), a one standard
deviation (SD) higher maternal BMI was associated with
a 0.05 SD increase in mean offspring BMI at age 7, but
the 95% confidence interval was consistent with a 0.11
SD reduction or a 0.21 SD increase [23]. If a positive
causal effect is present, this could have important public
health implications, because it could lead to an acceler-
ating intergenerational cycle of obesity that is difficult to
break [1, 25]. It is therefore important to conduct fur-
ther MR investigations with improved methods, in order
to obtain more precise estimates that are not subject to
the aforementioned biases.
We aimed to use maternal non-transmitted allele poly-

genic risk scores (PRS) as IVs in a one-sample MR de-
sign, to explore the causal effect of maternal BMI on
offspring adiposity from birth to adolescence, and to
compare those results with confounder adjusted multi-
variable (MV) regression estimates. Because we used
only maternal alleles that were not inherited by the off-
spring, we did not need to adjust for offspring or pater-
nal genotype and thereby avoided biases that may have
affected previous studies. We included thousands of gen-
etic variants (hereafter referred to as single nucleotide
polymorphisms [SNPs]) in the PRS, affording increased
precision over previous MR studies which used only
genome-wide significant (GWS; P < 5e-8) SNPs [14, 23].
Based on previous MR studies [23, 26, 27], we hypothe-
sised that greater maternal BMI would cause increased
offspring birth weight (BW), but that the causal effect
would attenuate over childhood and adolescence.

Methods
Study design
We have followed the MR-STROBE reporting guidelines
in this paper [28]. We conducted one-sample MR and
compared these results with confounder adjusted
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multivariable (MV) regression analyses. We analysed
data from two British population based prospective birth
cohorts: the Avon Longitudinal Study of Parents and Chil-
dren (ALSPAC) and Born in Bradford (BiB). These co-
horts are described in Additional file 1: Supplementary
information S1 [14, 22–24, 29–75] and details of the study
methodology have been reported previously [29–31].

Selection of participants
Full details of sample selection for each cohort are given
in Additional file 1: Supplementary information S2, and
selection flow charts are presented in Additional file 1:
Supplementary information S3. We included live-born
singletons with non-missing data for the variables re-
quired for MR analyses and excluded one offspring from
any sibling groups present (chosen at random in ALSP
AC or to maximise the sample size with data available in
BiB). As the effects we were exploring may differ by eth-
nicity [32], we limited analyses to two ethnic groups:
White European and South Asian, which comprised 40%
and 51% of the sample with offspring genotype data
available respectively. There were very few participants
from other ethnic groups in either cohort. ALSPAC
(93% White European) contributed only to the analyses
in White Europeans and we meta-analysed these results
with those from models fitted separately for BiB South
Asians and BiB White Europeans. Derivation of ethnicity
variables is described in Additional file 1: Supplementary
information S4. The overall sample size for MR analyses
ranged from 2659 to 5085 for ALSPAC, 1566 to 2262
for BiB South Asians and 1339 to 1992 for BiB White
Europeans. The sample sizes for confounder adjusted
MV estimates were somewhat smaller due to missing
confounder data (1884–3265 for ALSPAC, 325–449 for
BiB South Asians and 442–604 for BiB White Euro-
peans). To enable comparison between the confounder
adjusted MV estimates from models that adjusted for
different covariates, we fitted all the models for each
outcome using an identical sample with non-missing
data for all relevant variables.

Parental anthropometric variables
In ALSPAC, maternal pre-pregnancy weight and height
were retrospectively reported by the women during
pregnancy (at a mean gestational age of 24.7 weeks [SD
6.3]) or postnatally for 11.2% of mothers (at a mean of
22.0 weeks after birth [SD 6.7]). The reported weights
correlated highly with weight recorded at the first ante-
natal clinic (Pearson correlation coefficient = 0.96). Pa-
ternal height and weight were reported by the fathers
during their partner’s pregnancy (or postnatally for a mi-
nority of fathers). In BiB, early pregnancy BMI was cal-
culated from height reported by the mothers at
recruitment (26–28 weeks gestation) and weight

extracted from the first antenatal clinic records (median
12 weeks’ gestation). Paternal height and weight were re-
ported by the fathers at recruitment, which for the ma-
jority of fathers was at the time of their partner’s
pregnancy.

Offspring anthropometric variables
Offspring outcomes included BW and BMI at age 1 and
4 years (in ALSPAC and BiB), BMI at age 10 and 15
years (ALSPAC only) and fat mass index (FMI) at age
10, 12, 14, 16 and 18 years (ALSPAC only). The assess-
ment of these outcomes is described in Additional file 1:
Supplementary information S5 and Additional file 1:
Supplementary information S6 and included extraction
of measurements from routine data sources (birth re-
cords/notifications, child health records, primary care re-
cords and school nurse records), clinical measurement
by research staff or UK Government National Child
Measurement Programme (NCMP) staff and maternal/
offspring questionnaire responses. In ALSPAC, we calcu-
lated FMI as fat mass (kg) / height (m)2 using fat mass
measured by whole body dual-energy X-ray absorpti-
ometry (DXA) (Additional file 1: Supplementary infor-
mation S5).

Anthropometric variable standardisation
In each of the three samples (ALSPAC, BiB White
Europeans and BiB South Asians) we internally stan-
dardised exposure and outcome variables to give
measures in standard deviation (SD) units. We stan-
dardised maternal BMI by maternal age (at delivery),
in 1-year age categories. We standardised offspring
BW by sex, and offspring BMI and FMI by sex and
age (in one month categories).

Confounder adjusted multivariable regression
We considered the following variables to be potential
confounders: maternal age (which was adjusted for in
the standardised exposure by calculating z-scores within
maternal age strata), parity, maternal smoking during
pregnancy, parental occupation, maternal educational at-
tainment, paternal educational attainment and paternal
BMI. Standard protocols for assessing these variables
were used in each cohort, and full details are provided in
Additional file 1: Supplementary information S7. We fit-
ted three MV regression models: in model one, we ad-
justed for maternal age, offspring age and offspring sex;
in model two, we additionally adjusted for the potential
confounders listed above except for paternal BMI; and
in model three (which was the main multivariable model
of interest and is presented in the “Results” section), we
additionally adjusted for paternal BMI. We took a
complete case approach and excluded individuals with
any missing data; therefore, models one to three were
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fitted using identical samples. In sensitivity analyses, we
adjusted all models for gestational age at delivery, and
for 20 genetic principal components (PCs) which we cal-
culated from genome-wide SNPs separately for each of
the three samples (Additional file 1: Supplementary in-
formation S8), in order to adjust for ancestry. In BiB, we
had to exclude a large number of individuals from the
main MV models due to missing paternal BMI data. We
therefore refitted models one and two without first ex-
cluding individuals with missing paternal BMI data (i.e.
on larger samples), in order to explore potential selec-
tion bias.

Genotyping, quality control and imputation
Mothers, offspring and (in ALSPAC only) fathers were
genotyped using genome-wide arrays, followed by stand-
ard quality control (QC) measures (Additional file 1:
Supplementary information S9). Array genotypes were
then imputed to the Haplotype Reference Consortium
(HRC), 1000 Genomes or UK10K reference panels [46–
48] (Additional file 1: Supplementary information S9). In
order to maximise the sample size, we did not exclude
cryptically related individuals for the primary analyses.
As a sensitivity analysis, we removed cryptic relatedness
at a level corresponding to first cousins (dropping 6.7%,
13.5% and 9.1% of individuals in ALSPAC, BiB South
Asians and BiB White Europeans respectively) by apply-
ing a KING [48] kinship coefficient threshold of 0.044 to
the offspring using the PLINK software package version
2.00 [49, 50].

Inference of maternal non-transmitted alleles
Our MR analyses used maternal PRS as IVs for maternal
pre-pregnancy BMI. MR assumes that the IV is only as-
sociated with the outcome via its association with the
exposure (Additional file 1: Supplementary information
S10). For this to be true, the maternal PRS must be inde-
pendent of the offspring’s genotype, but due to genetic
inheritance this is not the case for PRS calculated in the
usual way from all maternal alleles. We therefore calcu-
lated maternal PRS from only those maternal alleles that
were not inherited by the offspring (maternal non-
transmitted alleles [34]). After conversion of imputed ge-
notypes to hard calls (integer valued allele dosages) and
application of QC filters (Additional file 1: Supplemen-
tary information S9), we phased offspring imputed SNPs
(for the sample of genotyped mother-offspring duos)
using the duoHMM method implemented in the SHA-
PEIT v2 (r904) software package, with a window size of
5Mb as per the authors recommendations for parent-
offspring duos [76]. This yielded maternal transmitted
alleles (i.e. maternal alleles that were inherited by the
offspring), which we used (along with the maternal ge-
notypes) to infer the maternal non-transmitted alleles,

from which we calculated maternal PRS, having first es-
timated SNP weights using maternal genotypes (see
below).

Polygenic risk score (PRS) calculation
Previous MR studies followed the widely used practice
of using up to 97 GWS (P < 5e−8) SNPs, but for poly-
genic traits such as BMI, it is known that substantially
improved phenotypic prediction can be achieved by in-
cluding many more SNPs in the genetic risk score (i.e.
more weakly associated SNPs that individually are not
GWS) [61, 77–79]. In order to maximise statistical
power, we used thousands of genome-wide SNPs to cal-
culate a BMI PRS, as a weighted sum of BMI-increasing
maternal non-transmitted alleles at SNPs across the gen-
ome. We tested four PRS methods (clumping and
thresholding [80], LDPred [52], lassosum [53, 81] and
the BOLT-LMM linear predictor [54]) (Additional file 1:
Supplementary information S11 provides further infor-
mation for each of these). Of these four methods, lasso-
sum explained the highest proportion of variance (R2)
for maternal BMI in both ALSPAC and BiB (which we
refer to as the target datasets); therefore, we used the
lassosum PRS for subsequent MR analyses. Lassosum re-
quires summary statistics from a genome-wide associ-
ation study (GWAS), which we refer to as the base
dataset. We conducted a GWAS in the UK Biobank
(UKB), a prospective cohort of 502,628 volunteers (with
5% response rate of those invited), recruited from across
the UK at age 40–69 years between 2006 and 2010 [58,
82] (Additional file 1: Supplementary information S11).
In order to avoid overfitting due to overlap between the
base and target samples, we excluded attendees of the
Bristol (where ALSPAC participants would have
attended) or Leeds (where Born in Bradford participants
would have attended) UKB assessment centres. We
meta-analysed the summary statistics from the UKB
GWAS with a published BMI GWAS from the GIANT
consortium [60, 83], giving a total base sample size of up
to 756,048. We applied the lassosum algorithm to the
meta-analysed base dataset; lassosum uses penalised re-
gression to carry out shrinkage and selection on the base
GWAS SNP effects and accounts for LD information
from a reference panel. We used the ALSPAC or BiB
datasets as the reference panels as per the authors’ rec-
ommendations) [53]. PLINK was used to calculate the
PRS for ALSPAC and BiB individuals using the lassosum
SNP weights for around 80,000 SNPs (see Table 2 for
the exact number of SNPs for each cohort). We also cal-
culated three PRS from fewer SNPs, to be used in sensi-
tivity analyses to explore potential pleiotropic effects (we
would expect that the risk of pleiotropic bias might de-
crease as fewer SNPs are included in the IV; see below).
These PRS used (i) around 30 GWS SNPs identified in a
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2010 BMI GWAS [67], (ii) around 90 GWS SNPs identi-
fied in a 2015 BMI GWAS [60] and (iii) around 500
GWS SNPs identified as primary signals in a 2018 BMI
GWAS [61]. Full details of these analyses, including the
exact number of SNPs used to calculate each PRS
(which varied between samples), are given in Additional
file 1: Supplementary information S12.

Mendelian randomisation
For the primary MR analyses, we used the lassosum
non-transmitted allele BMI PRS as an IV for maternal
BMI and fitted models using the two-stage least squares
(TSLS) method [22] (i.e. one sample MR). Additional file
1: Supplementary information S10 shows our MR ana-
lyses diagrammatically. We included 20 genetic PCs as
covariates in order to adjust for population stratification.
We tested for a difference between the most extensively
confounder adjusted MV estimates (model three) and
MR estimates using a z-test (Additional file 1: Supple-
mentary information S13) and used a bootstrapping pro-
cedure to estimate the covariance between MV and MR
estimates in order to calculate the z-statistic. Evidence
for a difference between the two could reflect residual
confounding in the MV analyses or violation of one or
more of the MR assumptions.

Meta-analysis
We examined the point estimates, I2 statistics and
Cochran’s Q test P-values for the MV and MR associa-
tions and found little evidence for heterogeneity between
ALSPAC, BiB South Asians and BiB White Europeans
(Additional file 1: Supplementary information S14). We
therefore meta-analysed estimates from the three sam-
ples using a fixed effects model. Results were similar
when we instead used a random effects model. For the
meta-analyses, we used the ratio estimator (calculated as
the meta-analysed PRS-outcome regression coefficient

β̂ZY divided by the meta-analysed PRS-exposure regres-

sion coefficient β̂ZX ; in the present study, both coeffi-
cients were estimated in the same sample) which gives
equivalent results to TSLS [84]. We calculated the stand-
ard errors for the pooled MR estimates using a Taylor
series approximation [70].

Checking MR assumptions
We checked the assumptions made by MR analyses
(Additional file 1: Supplementary information S10); if
these assumptions are met, then our MR estimates can
be interpreted as causal effect estimates [22]. We first
assessed whether the PRS were associated with maternal
BMI using the R2 and F-statistics. Next, we explored
whether the PRS-outcome associations were confounded
by ancestry (population stratification) using a linear

mixed model (LMM). LMMs have been widely used in
GWAS to adjust for population stratification and cryptic re-
latedness [71]. We fitted models for the numerator and de-
nominator of the ratio estimator separately, using the
--reml-est-fix command in the GCTA software package
(version 1.91.7beta) [43]. Further details of the LMM ap-
proach are given in Additional file 1: Supplementary infor-
mation S15. Finally, we conducted several analyses to
explore whether the maternal PRS influences offspring adi-
posity via mechanisms other than intrauterine or pericon-
ceptional exposure to increased maternal BMI (horizontal
pleiotropy). We first tested for associations of the PRS with
other potential risk factors for the offspring outcomes [85].
We would expect that the risk of pleiotropic bias might de-
crease as fewer SNPs are included in the IV. We therefore
repeated MR analyses with IVs calculated from a single
BMI-associated SNP (rs9939609 at the FTO locus, the locus
at which there is currently the strongest evidence for associ-
ation with BMI [61]), as well as the three PRS calculated
from only strongly BMI-associated (GWS) SNPs, as de-
scribed above. Furthermore, most of the SNPs included in
the lassosum BMI PRS had small effect sizes, and the con-
sequences of this for the extent of horizontal pleiotropic ef-
fects are unclear [72], so we explored how MR estimates
varied with varying SNP effect size distributions. We also
tested for evidence of between-SNP MR estimate hetero-
geneity (Cochran’s Q test) and used MR Egger regression
[74] to investigate horizontal pleiotropy, for the analyses
based on GWS SNPs. Finally, to investigate collider bias
and bias due to assortative mating, we examined the associ-
ation between the maternal and paternal lassosum BMI
PRS, in the subset of ALSPAC participants with paternal
genotype data available (N = 1325).

Other sensitivity analyses
We explored departure from linearity of the MV and
MR associations by examining augmented partial re-
sidual plots with overlaid linear regression lines and
nonparametric loess smoothers [86]. The residuals from
several models involving adolescent BMI and FMI vari-
ables were somewhat positively skewed so we repeated
MV and MR analyses using the natural log of the rele-
vant variables. We examined whether results differed for
BW, BMI and ponderal index (weight [kg] / length [m]3)
at birth (in ALSPAC only as birth length was not avail-
able in BiB). Finally, we tested for interaction by off-
spring sex for the MV and MR models. We carried out
statistical analyses in R version 3.5.1 [87], and Stata ver-
sion 13.1 (StataCorp, College Station, TX, USA).

Results
Participant characteristics
Table 1 shows the participant characteristics. The preva-
lence of maternal obesity (maternal BMI ≥ 30) was 5.5%
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(95% confidence interval [CI]: 4.9%, 6.1%) in ALSPAC
and markedly higher in BiB South Asians (20.5% [95%
CI: 18.9%, 22.2%]) and BiB White Europeans (26.0%
[95% CI: 24.1%, 28.0%]). The samples for our analyses
were smaller than those for the full cohorts at birth due
to missing data, particularly for the MV associations.
Despite this there were not large differences in the dis-
tributions of BW, maternal BMI or offspring sex be-
tween the baseline samples and those from which we
calculated the MV estimates (Additional file 1: Supple-
mentary information S16). Furthermore, when we fitted
MV models one and two on a larger sample (retaining
individuals with missing paternal BMI), there were not
large differences in the primary MV results (Additional
file 1: Supplementary information S17).

Associations of genetic IVs with maternal BMI and
offspring genotype
As we included more SNPs in the IV the R2 for maternal
BMI increased markedly, from < 1% for the FTO IV to
~ 3–7% for the lassosum IV (Table 2). First-stage F-sta-
tistics were > 75 for all lassosum MR models (Additional
file 1: Supplementary information S19). The lassosum
maternal non-transmitted allele BMI PRS was not corre-
lated with the offspring’s PRS (results available from the
authors on request).

Associations of maternal BMI with confounders/outcome
risk factors
There was strong evidence in all three samples for asso-
ciations between maternal BMI and several other poten-
tial risk factors for the offspring outcomes, including
parental occupation, educational attainment, maternal

parity and paternal BMI (results are summarised in
Table 2, and full regression results including the direc-
tion of associations are given in Additional file 1: Sup-
plementary information S20–S23).

Associations of maternal BMI PRS with confounders/
outcome risk factors
Genetic IVs based on fewer SNPs (i.e. < 100 SNPs) were
generally not associated with the outcome risk factors.
In ALSPAC however, there was strong evidence for as-
sociation of the lassosum IV (based on 80,939 SNPs)
with parental occupation, parental educational attain-
ment, parental age, maternal smoking and paternal BMI.
These associations were mostly present for BiB White
Europeans but absent for BiB South Asians.

Confounder adjusted MV regression
In confounder adjusted MV regression models, maternal
BMI was positively associated with all offspring out-
comes (Fig. 1, Additional file 1: Supplementary informa-
tion S24; meta-analysis heterogeneity statistics are given
in Additional file 1: Supplementary information S14). Es-
timates for the SD scale increase in offspring outcomes
associated with a 1 SD higher age-adjusted maternal
BMI ranged from 0.07 (95% CI: 0.04, 0.10) for 4-year
BMI to 0.32 (95% CI: 0.29, 0.36) for 15-year BMI, and
MV estimates for 10–18-year FMI were similar to those
for 15-year BMI. Adjustment for potential confounders
had a negligible impact on the estimates, aside from a
small attenuation on adjustment for paternal BMI for
outcomes after birth. Results were similar when we refit-
ted MV models one and two on larger samples without
excluding individuals with missing paternal BMI data

Table 1 Characteristics of the mothers and offspring in ALSPAC and BiB

ALSPAC BiB (WE) BiB (SA)

Mean SD N Female
offspring (%)

Mean SD N Female
offspring (%)

Mean SD N Female
offspring (%)

Maternal BMI (kg/m2) 23.0 3.8 26.9 6.0 25.8 5.5

Maternal age (years) 29.3 4.5 27.4 6.0 28.8 5.0

Birth weight (z score) 0.10 0.95 5085 50.5 − 0.05 0.97 1992 47.9 − 0.56 0.92 2262 47.9

Gestational age (weeks) 39.6 1.7 39.4 1.6 39.1 1.5

1-year weight for length percentilea 0.64 0.27 4838 50.6 0.61 0.28 1798 47.8 0.48 0.30 2023 48.1

Age at measurement (years) 0.9 0.2 0.8 0.3 0.8 0.3

4-year BMI (z score) 0.46 1.05 4670 50.2 0.50 0.97 1339 48.6 0.10 1.21 1566 48.5

Age at measurement (years) 4.1 0.7 4.5 0.7 4.5 0.7

10-year BMI (z score) 0.26 1.12 4476 51.3

Age at measurement (years) 9.9 0.5

15-year BMI (z score) 0.30 1.11 4112 51.7

Age at measurement (years) 15.0 0.8

SA South Asians, WE White Europeans, SD standard deviation, z score: sex- and gestational age-adjusted standard deviation score (UK-WHO Growth Reference
[88]). aSex-adjusted percentile calculated using the WHO Child Growth Standards [89]. All z scores and percentiles were calculated via the zanthro Stata package
[90]. Data for absolute values (as opposed to z scores) are presented in Additional file 1: Supplementary information S18
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(Additional file 1: Supplementary information S17). Add-
itional adjustment for gestational age at birth or 20 gen-
etic PCs had a negligible effect (Additional file 1:
Supplementary information S25, S26), and there was not
a large difference when BMI or ponderal index at birth
was substituted for BW in ALSPAC (Additional file 1:
Supplementary information S27).

MR results
For BW the MR estimate for the lassosum PRS for all
three samples meta-analysed was 0.14 (0.05, 0.23), which
was similar to the MV estimate (Pdifference (MV vs. MR) =
0.84) (Fig. 1). The corresponding lassosum MR estimates

for 1-year BMI and 4-year BMI were − 0.02 (− 0.11,
0.07) and 0.01 (− 0.08, 0.10) respectively, and there was
moderate to strong evidence for an MR-MV difference
(Pdifference = 0.10 and 1.3e−3 respectively). The MR esti-
mates for 10- and 15-year BMI in ALSPAC (0.10 [−
0.01, 0.21] and 0.13 [0.01, 0.24] respectively) were also
smaller than the MV estimates (Pdifference = 1.4e−4 and
1.0e−3 respectively). Results for adolescent FMI (Fig. 2)
were similar to those for adolescent BMI: MR estimates
ranged between 0.09 and 0.19, and there was strong evi-
dence that the MR estimates were smaller than the MV
estimates, with Pdifference ranging between 0.05 and 4.7e
−4). We did not observe strong evidence for non-

Table 2 Associations of maternal BMI with outcome risk factors, and of the genetic IVs (maternal non-transmitted alleles) with
maternal BMI and outcome risk factors

N SNPs R2maternal

BMI

Correlation with outcome risk factorsa

Parental
occupation

Maternal
education

Paternal
education

Maternal
smoking

Parity Paternal
BMI

Maternal
age

Paternal
age

ALSPAC

N 5157 4807 4826 4572 4891 5042 3766 5157 3593

Maternal BMIb 0.11*** − 0.12*** − 0.11*** − 0.01 0.06** 0.16*** 0.00c − 0.01c

Genetic IV

FTO 1 0.36% 0.03* − 0.01 − 0.01 0.00 0.02 − 0.01 − 0.01 0.00

Speliotes 31 0.89% 0.02 0.00 − 0.03* − 0.01 0.02 0.01 0.00 0.01

Locke 87 1.02% 0.03 − 0.01 − 0.04* − 0.01 0.03* 0.01 0.00 0.00

Yengo 497 2.37% 0.04* − 0.04* − 0.05** 0.02 0.03 0.01 − 0.02 − 0.01

Lassosum 80939 6.61% 0.08*** − 0.07*** − 0.08*** 0.07*** 0.02 0.03* − 0.08*** − 0.06**

BiB (SA)

N 2267 1689 2259 2258 2262 2215 475 2267 583

Maternal BMIb − 0.10** − 0.08** − 0.03 0.01 0.15*** 0.12* − 0.02c 0.02c

Genetic IV

FTO 1 0.77% − 0.01 − 0.01 0.00 − 0.03 0.00 0.00 0.02 0.06

Speliotes 29 1.71% − 0.01 0.01 0.01 − 0.04 0.00 − 0.01 0.00 − 0.05

Locke 82 1.33% − 0.04 0.02 0.03 − 0.05* − 0.01 − 0.06 0.00 0.02

Yengo 446 1.64% − 0.04 − 0.04* 0.01 0.01 0.01 − 0.03 − 0.02 − 0.03

Lassosum 79101 3.46% − 0.01 − 0.02 − 0.02 0.01 − 0.02 − 0.04 − 0.04 − 0.06

BiB (WE)

N 2000 1587 2000 1999 1999 1951 639 2000 788

Maternal BMIb − 0.09** − 0.07* 0.01 0.01 0.11*** 0.22*** 0.00c 0.04c

Genetic IV

FTO 1 0.56% 0.03 0.02 − 0.01 0.00 0.00 0.03 0.00 − 0.02

Speliotes 31 0.92% 0.05 0.01 0.03 − 0.03 0.00 0.02 0.00 − 0.01

Locke 86 1.16% 0.03 0.00 0.04 − 0.01 − 0.01 0.04 − 0.02 − 0.02

Yengo 453 1.78% − 0.01 0.00 0.05* 0.01 0.00 0.00 − 0.03 0.00

Lassosum 79101 5.21% − 0.08* − 0.05* 0.04 0.07* 0.04 0.03 − 0.07* 0.01
aPearson correlation coefficients are presented here to give an indication of the direction and magnitude of associations; full regression results are presented in
Additional file 1: Supplementary information S16–S19, * P < 0.05, ** P < 0.001, *** P < 1e−5. bAge-standardised z-scores for maternal BMI, as per the primary
analyses. cMaternal BMI is not correlated with maternal or paternal age because it was age-standardised. SA South Asians, WE White Europeans, R2 proportion of
maternal BMI variance explained by the IV (maternal non-transmitted allele scores), FTO rs9939609 at the FTO locus, Speliotes, Locke, Yengo PRS calculated from
SNPs that reached genome-wide significance in the BMI GWAS with the indicated first author, Lassosum PRS calculated by the lassosum method
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Fig. 1 Mean difference in offspring BW and BMI (SD) per 1SD increase in maternal BMI, from MR (lassosum) and confounder adjusted
multivariable regression (MV) models. Confounder adjusted multivariable regression (MV) estimates are from model three (see the “Methods”
section). N, number of participants. The number of SNPs used for the MR analyses is provided separately by cohort in Table 1. P, P-value for the
null hypothesis that the effect equals zero; Pdif, P-value for the null hypothesis that MR effect equals the MV effect

Fig. 2 Mean difference in offspring FMI (SD) per 1SD increase in maternal BMI, from MR (lassosum) and confounder adjusted multivariable
regression (MV) models. Confounder adjusted multivariable regression (MV) estimates are from model three (see the “Methods” section). N,
number of participants. The number of SNPs used for the MR analyses is provided separately by cohort in Table 1. P, P-value for the null
hypothesis that the effect equals zero; Pdif, P-value for the null hypothesis that MR effect equals the MV effect
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linearity or interaction by sex for either the MV or MR
models (results available from the authors), and results
were similar when we (i) substituted BMI or ponderal
index at birth for BW (Additional file 1: Supplementary
information S28), (ii) natural log transformed skewed
variables (results available from the authors), (iii) re-
moved cryptic relatedness from the sample (results avail-
able from the authors) and (iv) used linear mixed
models to adjust for population structure (Additional file
1: Supplementary information S29). In linear regression
models (as opposed to two-stage least squares regres-
sion), there was strong to moderate evidence that the
lassosum maternal non-transmitted allele BMI PRS was
associated with offspring BW and adolescent adiposity
(Additional file 1: Supplementary information S30, S31).

MR estimates for IVs with fewer SNPs
When we replaced the lassosum PRS with alternative
IVs calculated from fewer SNPs, our MR estimates var-
ied in a manner that was specific to the offspring out-
come (Figs. 3 and 4). For BW, including fewer SNPs in
the IV did not result in large differences in the MR esti-
mates, although the precision reduced markedly as we
used fewer SNPs. For 1- and 4-year BMI, MR estimates
increased as we used fewer SNPs, whereas for 10-year
BMI they largely remained stable and for 15-year BMI
they decreased. The patterns for adolescent FMI were
similar to those for adolescent BMI. For outcomes apart
from BW and 1-year BMI, including more SNPs in the
IV generally resulted in stronger evidence that MR esti-
mates differed from MV estimates (i.e. smaller Pdif).

MR estimates for SNPs with differing effect size
distributions, between-SNP heterogeneity and MR Egger
results
For the majority of outcomes (particularly in adoles-
cence), there was moderate to strong statistical evidence
that SNPs with smaller effect sizes gave larger (more
positive) MR estimates (P = 4.0e−3, 2.6e−2, 1.8e−2 and
4.7e−4 for 15-year BMI, 14-year FMI, 16-year FMI and
18-year FMI respectively), and this was not driven by
weak instrument bias (Additional file 1: Supplementary
information S32). When using only large-effect (GWS)
SNPs, in general (and in light of the 40 statistical tests
carried out), there was not strong statistical evidence for
between-SNP MR estimate heterogeneity (all Cochran’s
Q test P-values ≥0.017), nor was there strong evidence
that the MR-Egger intercept differed from zero (all MR-
Egger intercept P-values ≥0.023) (Additional file 1: Sup-
plementary information S33).

Parental phenotypic and PRS correlations
In ALSPAC, there was strong evidence for correlation
between maternal and paternal BMI (Pearson’s r: 0.22,

95% CI: 0.16, 0.28, P = 7.9e−14), but no evidence for
correlation between maternal non-transmitted allele and
paternal lassosum BMI PRS (r: 0.02, 95% CI: −0.04, 0.07,
P = 0.55). For comparison, a maternal lassosum BMI
PRS that was calculated from both transmitted and non-
transmitted alleles was slightly more strongly correlated
with the paternal PRS (r: 0.04, 95% CI: −0.01, 0.10, P =
0.14).

Discussion
We applied a Mendelian randomisation (MR) approach
using PRS calculated from maternal non-transmitted al-
leles, to explore the causality of associations between
maternal pre-/early-pregnancy BMI and offspring birth
weight (BW) and child/adolescent adiposity. For the as-
sociation between maternal BMI and offspring BW, our
MR and confounder adjusted multivariable regression
(MV) estimates were similar. In contrast, for offspring
adiposity outcomes beyond 1 year of age (including BMI
and DXA-determined FMI), the MR estimates were
weaker than the MV estimates. These results markedly
strengthen the evidence that confounder adjusted obser-
vational associations between maternal BMI and off-
spring adolescent adiposity are subject to residual
confounding. We found no strong evidence for a causal
effect of maternal BMI on offspring adiposity beyond
birth, although based on the present results we cannot
rule out a small to moderate causal effect.
Our data build on two previous MR studies which in-

vestigated associations between maternal BMI and off-
spring child/adolescent adiposity [14, 23], and a
methodological paper which presented a limited investi-
gation of adiposity outcomes as an empirical example
[24]. Although the previous studies provided no strong
evidence for a causal effect, they were limited by wide
confidence intervals and/or potential biases (see the
“Strengths and limitations” section). The present study
overcame these limitations by using more powerful PRS
and a maternal non-transmitted allele score approach.
For the association between maternal BMI and offspring
BW, our MR and MV estimates were highly concordant,
in agreement with previous MR studies that supported a
causal effect of greater maternal BMI on greater off-
spring BW [26, 27]. We have previously shown that gen-
etic confounding (i.e. confounding due to direct effects
of maternal alleles inherited by the offspring) is unlikely
to explain the association of maternal BMI with BW, but
may potentially be important for the association with
adolescent BMI [40]. The present results are consistent
with this, as well as with the balance of evidence from
negative paternal exposure control studies [12–18] and
within sibship analyses [19, 20], which suggests that fa-
milial confounding is an important explanation of the
maternal BMI-offspring child/adolescent adiposity

Bond et al. BMC Medicine           (2022) 20:34 Page 9 of 16



association. Studies that examined the effect of extreme
maternal obesity using a pre- and post-bariatric surgery
design [91–94] have small sample sizes and have not
been entirely consistent, therefore do not provide strong
evidence against this conclusion.
Although we found no strong evidence for a causal effect

in late childhood/adolescence, we cannot rule out a small
to moderate causal effect, due to the imprecision of our
MR estimates. Indeed, the primary lassosum MR estimates

were greater than zero for 15-year BMI and 14–18-year
FMI. We do not interpret these as unbiased estimates for
the causal effect of maternal BMI, because of the possibility
of pleiotropic bias (see below). These results do suggest
however that some maternal exposure(s) that are correlated
with the maternal BMI PRS have a causal effect on off-
spring child/adolescent adiposity, although our analyses are
unable to distinguish whether this is a pre or postnatal ef-
fect. Plausible mechanisms include intrauterine effects such

Fig. 3 Mean difference in offspring BW and BMI (SD) per 1SD increase in maternal BMI, from MR models using different SNP sets and confounder
adjusted multivariable regression (MV) models. Confounder adjusted multivariable regression (MV) estimates are from model three (see the
“Methods” section). N, number of participants. The number of SNPs used for the MR analyses is provided separately by cohort in Table 1. P, P-
value for the null hypothesis that the effect equals zero; Pdif, P-value for the null hypothesis that MR effect equals the MV effect; FTO, rs9939609 at
the FTO locus; Speliotes, Locke, Yengo, GWS SNPs from the GWAS with the indicated first author; Lassosum, PRS calculated by the lassosum
method. Colours denote outcomes
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as fetal overnutrition [1] and postnatal effects such as ma-
ternal influence on offspring eating behaviour [95], but
other mechanisms have been hypothesised, including peri-
conceptional effects (such as altered oocyte structure or
function [3]). In linear regression analyses, we found mod-
erate to strong evidence for associations between the ma-
ternal non-transmitted allele BMI PRS and offspring
adolescent adiposity (including BMI and DXA-determined
FMI). These observed maternal genetic effects merit further

investigation in other datasets, particularly as previous stud-
ies have not found evidence for parental genetic effects on
BMI in childhood [96] or adulthood [97].
In ALSPAC and BiB White Europeans, we observed

associations between the maternal BMI PRS and poten-
tial confounders, including parental occupation, educa-
tion, age and maternal smoking. These results invite
careful consideration of which of the ever-increasing
number of GWS associated BMI SNPs are likely (in

Fig. 4 Mean difference in offspring FMI (SD) per 1SD increase in maternal BMI, from MR models using different SNP sets and confounder
adjusted multivariable regression (MV) models. Confounder adjusted multivariable regression (MV) estimates are from model three (see the
“Methods” section). N, number of participants. The number of SNPs used for the MR analyses is provided separately by cohort in Table 1. P, P-
value for the null hypothesis that the effect equals zero; Pdif, P-value for the null hypothesis that MR effect equals the MV effect; FTO, rs9939609 at
the FTO locus; Speliotes, Locke, Yengo, GWS SNPs from the GWAS with the indicated first author; Lassosum, PRS calculated by the lassosum
method. Colours denote outcomes
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combinations) to be the most valid instruments for MR
studies, having taken account of all IV assumptions.

Strengths and limitations
Our study has several key strengths. We studied two pro-
spective birth cohorts with maternal and offspring genome-
wide genotype data, maternal BMI measurements and off-
spring adiposity outcomes available, allowing us to conduct
mother-offspring MR analyses. We used state-of-the-art
methods to calculate a powerful PRS from around 80,000
SNPs. This yielded a substantial increase in statistical power
over previous MR studies, which analysed similar ALSPAC
datasets to ours, but employed either a single SNP in the
FTO gene [14] or allele scores calculated from up to 97
SNPs [23, 24] (similar to the “Speliotes” and “Locke” IVs in
the present analysis). Our primary lassosum PRS explained
3–7% of maternal BMI variance, compared to ~ 1.5% for
the strongest IVs used previously (power calculations are
given in Additional file 1: Supplementary information S34).
Another strength over previous work is our use of ma-

ternal non-transmitted allele PRS, thereby avoiding the
need to control for genetic inheritance by adjusting for
offspring genotype. A previous methodological paper
made use of this approach [24], but conducted a much
more limited analysis of a far smaller subset of adiposity
outcomes than that which we have explored here. Con-
trolling for offspring genotype may be suboptimal for
two distinct reasons: (i) it may introduce collider bias if
paternal genotype influences the offspring outcome in-
dependently of offspring genotype (i.e. if paternal genetic
effects exist) [24, 35] and (ii) if the investigator adjusts
for a weighted allele score, this may introduce bias by in-
adequately blocking the genetic inheritance path (Per-
sonal communication, Wang G, Warrington N, Evans
DM, 2020). Because these two biases may be in opposite
directions, the net direction of any bias affecting the lar-
gest previous study [23] is uncertain. We acknowledge
that our primary MR estimates may be affected by pleio-
tropic bias due to the large number of SNPs, many of
which had small effect sizes, that we used to calculate
the PRS. This possibility is also suggested by the associa-
tions that we observed between the lassosum BMI PRS
and several potential confounders of the maternal BMI-
offspring adiposity association. However, sensitivity ana-
lyses suggested that for most outcomes, pleiotropic bias
is likely to be away from zero, which would weaken the
apparent evidence for an MR-MV difference (Additional
file 1: Supplementary information S32, S33). Thus, our
primary MR results are conservative, in that they may
overstate the size of the causal effect (which we hypothe-
sised to be zero). The fact that for 10-and 15-year BMI,
using more SNPs yielded increased precision and stron-
ger evidence for an MR-MV difference (Fig. 2), despite

the potential pleiotropic bias away from zero, illustrates
the benefit of our approach.
We also conducted extensive sensitivity analyses to ex-

plore other potential biases in our results. When we
used a linear mixed model (LMM) to adjust for popula-
tion structure, the results were similar to our primary es-
timates. We did not remove cryptic relatedness for our
primary analyses, in order to maximise the sample size
and because the LMM controls for bias due to cryptic
relatedness [71]. However, results were similar when we
removed cryptic relatedness at a level corresponding to
first cousins. Finally, we found no strong evidence that
maternal and paternal lassosum BMI PRS were corre-
lated, suggesting that our results are not importantly
biased due to assortative mating.
We acknowledge several limitations of our study. First,

although the results in BiB and ALSPAC were similar,
replication in other cohorts with suitable data, and in
particular with adolescent adiposity measures (which we
could only examine in ALSPAC) would be valuable. A
previous study meta-analysed data from ALSPAC and
the Generation R cohort using 32 maternal SNPs [23],
but we were unable to extend our approach to Gener-
ation R due to the unavailability of maternal genome-
wide SNP data. Additional file 1: Supplementary infor-
mation S35 compares the present analysis to previous
analyses of ALSPAC data. We have only studied UK par-
ticipants. However, the similarity of findings between
White European and South Asian BiB participants, and
between BiB (a cohort with high levels of deprivation
born during the obesity epidemic) and ALSPAC (more
affluent than the UK average) suggest that our findings
may be generalisable to other populations. Second, BMI
(especially self-reported BMI) is an imperfect proxy
measure for adiposity. However, it has been shown pre-
viously in ALSPAC that self-reported pre-pregnancy
BMI is strongly correlated with BMI measured in early
pregnancy [23], and that any misreporting does not
markedly differ by mean weight [98]. There is also evi-
dence that the correlation with directly measured adi-
posity is strong for child and adult BMI [99, 100] and
moderate for neonatal weight [101]; furthermore, our re-
sults were similar for DXA derived FMI. Third, we as-
sumed that causal relationships between exposures and
outcomes were linear. Although our data provided no
evidence for non-linearity, a slight plateauing of the ob-
servational association between maternal BMI and off-
spring child/adolescent BMI at higher maternal BMI
levels was previously observed in a large meta-analysis
[6]. MR estimates such as ours, which assume linearity,
nevertheless approximate the population-averaged causal
effect (which is the average effect resulting from a unit
increase in the exposure for all individuals in the popula-
tion, regardless of their initial exposure level) [102].
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However, given the shape of the observational associ-
ation [6], it is plausible that our MR estimates overstate
the true causal effect for mothers with overweight/obes-
ity. Finally, the samples used for some of our analyses
(particularly for MV models) were smaller than the full
samples at baseline due to missing data and loss to
follow-up, raising the possibility that our results are af-
fected by selection bias. However, the distributions of
maternal BMI, BW and offspring sex were similar for
the samples used for our analyses and the samples at
baseline, and MV results were similar when we refitted
models on larger samples without excluding individuals
with missing paternal BMI data. It therefore seems un-
likely that selection bias would be of sufficient magni-
tude to alter our conclusions.

Conclusion
We explored the causality of associations between maternal
pre-/early-pregnancy BMI and offspring BW and child/ado-
lescent adiposity (measured by BMI and DXA-determined
FMI), using an MR approach with PRS calculated from ma-
ternal non-transmitted alleles. This approach yielded nar-
rower confidence intervals compared with previous studies
and avoided sources of bias that may have affected previous
work. We found no strong evidence for a causal effect of
maternal BMI on offspring adiposity beyond birth, but
strong evidence that confounder adjusted observational as-
sociations between maternal BMI and adolescent adiposity
are affected by residual confounding. Although we cannot
rule out a small or moderate causal effect on child/adoles-
cent adiposity, the present study suggests that higher ma-
ternal pre-/early-pregnancy BMI is not a key driver of
greater adiposity in the next generation. Thus, our results
support interventions that target the whole population for
reducing overweight and obesity, rather than a specific
focus on women of reproductive age.
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