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GWAS in people of Middle Eastern descent 
reveals a locus protective of kidney function—a 
cross-sectional study
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Abstract 

Background:  Type 2 diabetes is one of the leading causes of chronic kidney failure, which increases globally and 
represents a significant threat to public health. People from the Middle East represent one of the largest immigrant 
groups in Europe today. Despite poor glucose regulation and high risk for early-onset insulin-deficient type 2 diabe‑
tes, they have better kidney function and lower rates of all-cause and cardiovascular-specific mortality compared with 
people of European ancestry. Here, we assessed the genetic basis of estimated glomerular filtration rate (eGFR) and 
other metabolic traits in people of Iraqi ancestry living in southern Sweden.

Methods:  Genome-wide association study (GWAS) analyses were performed in 1201 Iraqi-born residents of the city 
of Malmö for eGFR and ten other metabolic traits using linear mixed-models to account for family structure.

Results:  The strongest association signal was detected for eGFR in CST9 (rs13037490; P value = 2.4 × 10−13), a locus 
previously associated with cystatin C-based eGFR; importantly, the effect (major) allele here contrasts the effect 
(minor) allele in other populations, suggesting favorable selection at this locus. Additional novel genome-wide sig‑
nificant loci for eGFR (ERBB4), fasting glucose (CAMTA1, NDUFA10, TRIO, WWC1, TRAPPC9, SH3GL2, ABCC11), quantitative 
insulin-sensitivity check index (METTL16), and HbA1C (CAMTA1, ME1, PAK1, RORA) were identified.

Conclusions:  The genetic effects discovered here may help explain why people from the Middle East have bet‑
ter kidney function than those of European descent. Genetic predisposition to preserved kidney function may also 
underlie the observed survival benefits in Middle Eastern immigrants with type 2 diabetes.

Keywords:  Genome-wide study, Chronic kidney disease, Estimated glomerular filtration rate, Middle East, Type 2 
diabetes
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Background
Chronic kidney disease (CKD) is a leading public health 
problem, affecting more than 13% of the world’s popu-
lation [1]. Along with aging, obesity, and hypertension, 
type 2 diabetes (T2D) is one of the leading causes of CKD 

[2], with 1:10 deaths in people with diabetes attributed to 
kidney failure [3].

CKD is caused by a gradual loss of kidney func-
tion characterized by diminished glomerular filtration 
rate (GFR) and/or other markers of kidney damage [4]. 
Variants in genes like UMOD, GPX1, GSTO1, GSTO2, 
SHROOM3, and MGP have been associated with sus-
ceptibility to CKD [5]. The prevalence of CKD varies 
between ethnicities, with African Americans at particu-
larly high risk [6, 7].
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The city of Malmö is multicultural, hosting people from 
approximately 180 countries. Every third citizen is born 
abroad, with the largest immigrant group born in Iraq 
and representing 3.4% of the total population [8]. The 
MEDIM cohort (the impact of Migration and Ethnic-
ity on Diabetes in Malmö) is a population-based cohort 
comprised of people aged 30 to 75 years, born in either 
Iraq or Sweden, and resident in Malmö. Data from the 
MEDIM study has revealed that Iraqi migrants in Malmö 
are at twice the risk of T2D [9] and have younger age of 
disease onset compared with the Swedish born popula-
tion, with high burden of diabetes family history, and 
poorer glycemic control and insulin sensitivity [10]. Para-
doxically, despite the poorer metabolic health profile, 
Iraqi migrants present with better kidney function and 
lower blood pressure than their Swedish counterparts 
[11], rendering this a particularly interesting cohort for 
genetic studies of these traits.

In the last decade, GWAS has improved the under-
standing of the genetic architecture of polygenic diseases 
such as CKD and T2D [12]. However, these studies were 
performed predominantly in European ancestry popu-
lations, which may limit generalizability of findings to 
other ethnicities, underscoring the need for greater eth-
nic diversity in GWAS [13]. Regardless of trait, no pub-
lished GWAS has been performed in cohorts of Iraqi 
ancestry.

The purpose of this study was to undertake GWAS of 
eGFR and 10 additional diabetes-related traits in immi-
grants of Iraqi ancestry from the MEDIM cohort.

Methods
Study participants and phenotyping
The phenotyping process has been described in detail 
previously [9, 14]. Briefly, after signing informed con-
sent, participants aged 30 to 75 years were randomly 
selected from the Malmö census register. Individuals 
with severe physical or mental illness were excluded. 
The final cohort included here comprised 1201 men 
and women born in Iraq with complete GWAS data (see 
Additional file 1: Fig S1).

Assessments were undertaken from February 1, 2010, 
through December 31, 2012. Participants were invited 
to a health exam and were told not to eat or drink any-
thing besides water and not to utilize tobacco from 10 pm 
the day preceding testing; they were also asked to record 
their current medication. A standard physical checkup 
was performed prior to sample collection. Clinical vari-
ables such as waist circumference, height, weight, body 
mass index (BMI), systolic blood pressure (SBP), and 
diastolic blood pressure (DBP) were assessed. DNA for 
genotyping was extracted from buffy coat. Blood samples 
were collected when participants were fasting and during 

a 75-g oral glucose tolerance test (OGTT) from which 
insulin sensitivity index (ISI), corrected insulin response 
(CIR), and oral disposition index (DIO) were calculated 
[15]. Blood glucose, homeostasis model assessment of β 
cell function (HOMA-β), glycated hemoglobin (HbA1C), 
quantitative insulin sensitivity check index (QUICKI), 
and estimated glomerular filtration rate (eGFR) were 
assessed in fasting samples. eGFR was calculated based 
on the mean of eGFR creatinine and eGFR cystatin C. 
A detailed overview of how eGFR was calculated is pro-
vided elsewhere [11]. QUICKI and HOMA-β were com-
puted as follows:

where FG and FI denotes fasting glucose (mmol/L) and 
fasting insulin (mIE/L) respectively.

Statistics
Genotyping and quality control
Genotyping was performed at the Swedish National 
Genomics Infrastructure - SciLifeLab (Uppsala, Sweden) 
using the Infinium assay (Illumina, USA), and data were 
analyzed using GenomeStudio 2.0.3 (Illumina, USA) [16]. 
The genome build used for genotype curation was 37 
(GRCh37). A total of 759,993 SNP markers were analyzed 
with a genotyping call rate of 99.26%.

Phenotype data were log-transformed to approximate 
a normal distribution. SNPs and individuals with low 
genotype calls were excluded using a threshold of 0.02. 
Sex discrepancy was checked based on X chromosome 
heterozygosity, and, where necessary, sex was determined 
using genotype. SNPs with a minor allele frequency 
(MAF) < 0.01 were removed owing to insufficient sam-
ples size, as were SNPs deviating from Hardy-Weinberg 
equilibrium (p value < 1 × 10−6). Individuals with a het-
erozygosity rate deviating more than 3 SD from the sam-
ple mean were also excluded. Duplicate individuals and 
cryptic relatedness among samples were checked using 
PLINK’s π-hat pairwise identity by descent (IBD) esti-
mate, calculated as follows:

where P represented probability
A threshold of π-hat > 0.2 was used to classify pairs as 

being related. Duplicate individuals (22 individuals) with 
a π-hat = 1 were removed. A total of 1201 individuals and 
482 959 SNPs survived quality control (Additional file 1: 
Fig S1).

Population stratification was checked using the mul-
tidimensional scaling (MDS) approach. To check for 

QUICKI = 1/[log(FI)+ log(FG)]

HOMA− β = 20× FI/FG − 3.5,

π − hat = P (IBD = 2)+ 0.5× P (IBD = 1)
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possible outliers, an MDS plot was generated anchored to 
the 1000 Genomes dataset of known ethnic background. 
The first seven MEDIM MDS were retained and used as 
covariates for the association analysis. The standard qual-
ity control steps mentioned above and control for popu-
lation stratification was performed using PLINK version 
1.9 (an open-source whole genome association analy-
sis toolset), and R-version 4.1.0 was used for generating 
plots.

Imputation
The quality-controlled genotype data was prepared 
for imputation using the Haplotype Reference Con-
sortium (HRC) preparation checking tool. Imputation 
was performed via Michigan Imputation Server (www.​
imput​ation​server.​sph.​umich.​edu) executed by mini-
mac4 algorithm and European HRC panel. Phasing 
was implemented by Eagle v2.4. Following imputation, 
SNPs were filtered based on imputation info (R2 ≥ 0.3) 
and MAF > 0.01.

Association analysis
The associations between the 7,743,666 genotyped and 
imputed SNPs and the 11 quantitative traits were ana-
lyzed using linear mixed models. The 11 traits were 
fasting glucose, HOMA-β, HbA1C, BMI, CIR, ISI, DIO, 
QUICKI, SBP, DBP, and eGFR. Age, sex, and the first 
seven MDS principal components were included as 
covariates. The association analyses were conducted 
using BOLT-LMM software [17]. By default, BOLT-LMM 
assumes a Bayesian mixture-of-normal prior for the ran-
dom effect attributed to SNPs other than the one being 
tested. This random effect reflects the polygene back-
ground and environmental effect that could affect the 
calculation of genetic association. Example of these ran-
dom effects could be cryptic relatedness or population 
structure.

A conventional genome-wide significance threshold 
of P < 5.0 × 10− 8 was used. After the association analy-
sis, significant SNPs were clumped to determine the lead 
representative SNP within a 250-kb LD block. Clump-
ing was done using the integrative web-based platform, 
FUMA (https://​fuma.​ctglab.​nl/) [18]. The variant effect 
for the lead SNP was predicted using Ensembl Variant 
Effect Predictor (VEP) [19]. Results from this analysis 
were cross-referenced with the NHGRI-EBI GWAS Cata-
log to identify previously reported signals [20].

Replicates
Not applicable

Key resources
The following RRIDs tools and dataset were utilized in 
the GWAS:

Functional Mapping and Annotation of Genome 
Wide Association Studies, RRID:SCR_017521
PLINK, RRID:SCR_001757
R Project for Statistical Computing, RRID:SCR_001905
Michigan Imputation Server, RRID:SCR_017579
GWAS: Catalog of Published Genome-Wide Asso-
ciation Studies, RRID:SCR_012745
1000 Genomes: A Deep Catalog of Human Genetic 
Variation, RRID:SCR_006828
SAMtools/BCFtools, RRID:SCR_005227

Results
A European reference panel was used for imputation 
owing to the unavailability of Arab-ancestry haplotype 
reference panels. Of the available ancestral reference 
panels, the MEDIM cohort aligns most closely with the 
European-ancestry reference panel (Additional  file  1: 
Fig S2).

In analyses assessing the degree of relatedness 
among MEDIM participants, 431 individual pairs with 
a π-hat value > 0.2 were found. Out of these individu-
als, 22 pairs were identified as duplicate individuals. 
For each duplicate pair, the observation with the lowest 
genotyping call rate was removed. In a histogram, the 
number of related MEDIM participants is presented 
(Additional file 1: Fig S3).

The mean age of the MEDIM cohort was 46.2 years, 
and the majority was male (60.5%). The average eGFR in 
the study population was 89.8 ml/min per 1.73m2. The 
characteristics of study participants are shown in Addi-
tional file 2: Table S1.

After performing the GWAS analyses, 19 loci were 
significantly (P value < 5 × 10− 8) associated with fast-
ing glucose, HbA1c, QUICKI, and eGFR (see Fig. 1 and 
Additional  file  1: Fig S15-S32). The list of lead SNP is 
given in Table 1. eGFR had the most genome-wide signif-
icant SNP associations, with 107 significant SNPs within 
chromosome 20 (see Fig.  2), all showing an increasing 
effect of the minor allele on eGFR. The strongest asso-
ciation among these variants was seen for rs13037490 
(P value = 2.4 × 10−13, see Fig.  2), a 3′ UTR variant 
localizing to CST9 in a previously reported locus [21]. 
For the same trait, we found an additional independent 
genome-wide significant variant (P value = 4.6 × 10−08), 
an intronic variant in ERBB4 (see Additional file 1: Fig. 
S26). Nominal (1 × 10−7 > P < 0.05) signals for four traits 
(fasting glucose, ISI, CIR, and HOMA-B) in MEDIM 

http://www.imputationserver.sph.umich.edu
http://www.imputationserver.sph.umich.edu
https://fuma.ctglab.nl/
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Fig. 1  Manhattan plots for the association of SNPs with A fasting glucose, B HbA1C, C eGFR, and D QUICKI. Graph displays −log10 P values (y-axis) 
against chromosomal location (x-axis). The red line indicates genome-wide significance threshold (P value = 5 × 10− 8)



Page 5 of 10Mohamed et al. BMC Medicine           (2022) 20:76 	

were listed as “highly ranked” variants in GWAS Cata-
log, suggesting that these signals are likely to be false 
negative in MEDIM owing to insufficient statistical 
power (see Additional file 2: Table S2). Quantile–quan-
tile (Q-Q) plots illustrating significantly associated traits 
are shown in Additional file 1: Fig S33 for eGFR, HbA1c, 
fasting glucose, and QUICKI.

Several steps were undertaken to characterize the 
functional basis of rs13037490 (CST9) and rs73985808 
(ERBB4). We began by examining variants within the LD 
block (r2 > 0.8, determined from the 1000 Genomes Pro-
ject - inter​natio​nalge​nome.​org) within which rs13037490 
and rs73985808 reside, using HaploReg V4.1 software 
(Haplo​Reg v4.​1 (broad​insti​tute.​org). Here, the func-
tional basis of linked SNPs and small indels is ascertained 
using (i) annotations from Roadmap Epigenomics and 
ENCODE projects, (ii) sequence conservation across 
mammals, (iii) effect of SNPs on regulatory motifs, and 
(iv) the effect of index SNPs on gene transcription. Vari-
ants in high LD with rs13037490 are characterized by 
a variety of functional properties, with no clearly dis-
cernible pattern of causality. Thus, to narrow the search 
space further, we used CAUSALdb Index (http://​www.​
mulin​lab.​org) to identify a 95% credible causal set, which 
revealed five likely causal variants, all in high LD with 
our index SNP rs13037490 (Additional  file  2, Table  S3). 
Because rs13037490 was in LD with this credible set but 
did not rank above these five variants (13th rank), it is 

likely that rs13037490 is not causal in and of itself but is 
a strong tag for the causal locus. However, the functional 
annotation suggests that the causal effects are likely to be 
primarily in testis and blood, with no clear indication of 
kidney-specific effects. For rs73985808, there was little 
evidence of function, other than that rs73985808 disrupts 
the binding motifs for FOXL1, FOXP1, and PAX-4. We 
also explored the possibility of using the MEDIM data 
for direct annotations using GARFIELD (https://​www.​
ebi.​ac.​uk/​birney-​srv/​GARFI​ELD/), but determined from 
the low estimates of certainty that the MEDIM dataset 
is likely to be underpowered for this purpose (data not 
shown), and elected not to proceed with further analyses 
of this nature.

Discussion
This is one of the first analyses investigating genetic vari-
ants associated with kidney function and T2D in a Mid-
dle Eastern ancestry cohort and the first GWAS to be 
reported for any trait in a cohort of Iraqi ancestry. We 
identified a genome-wide significant signal at CST9 for 
eGFR, which has also been detected in other ethnicities 
[21, 22]. CST9 encodes a secreted protein believed to 
play a role in hematopoietic differentiation and inflam-
mation. Variation at CST9 has also previously been 
linked with cystatin C [23]. In European-ancestry popu-
lations, CST9 variants rs1158167 (P value = 8.5 × 10−09) 
and rs214523146 (P value = 1.1 × 10−05) [24] have also 

Table 1  Lead SNPs (with genome-wide significant signals) associated with FG, HbA1C, QUICKI, and eGFR

a Position is according to Build 37 (GRCh37/hg19)

Trait Lead SNPs Gene/nearest gene Chr Positiona Effect allele Beta SE P value

eGFR rs73985808 ERBB4 2 212565932 A − 0.08 0.01 4.6 × 10−08

eGFR rs13037490 CST9 20 23583725 C 0.08 0.01 2.4 × 10−13

FG rs11120828 CAMTA1 1 7122846 A 0.14 0.02 1.6 × 10−10

FG rs76150693 2 228526473 G 0.33 0.042 4.4 × 10−08

FG rs79451541 NDUFA10 2 240929777 A 1.03 0.18 1.2 × 10−08

FG rs74591871 3 20241645 A 0.196 0.036 4.9 × 10−08

FG rs78223279 TRIO 5 14397518 A 0.68 0.19 8.3 × 10−09

FG rs115873798 WWC1 5 167759448 G 0.25 0.04 3.4 × 10−08

FG rs73231408 8 24930722 T 0.75 0.12 2.2 × 10−08

FG rs147360587 TRAPPC9 8 141360595 C 0.23 0.04 5.6 × 10−09

FG rs143653828 SH3GL2 9 17580151 T 0.31 0.05 5.4 × 10−11

FG rs77023105 12 30658931 G 0.33 0.06 3.2 × 10−08

FG rs72802149 ABCC11 16 48197315 T 0.6 0.1 2.7 × 10−09

HbA1C rs11120828 CAMTA1 1 7122846 A 0.16 0.02 4.4 × 10−11

HbA1C rs77145902 2 121862595 T 0.28 0.05 1.9 × 10−08

HbA1C rs117580692 ME1 6 83955807 A 1.45 0.25 2.4 × 10−08

HbA1C rs72941612 PAK1 11 77059870 T 0.32 0.05 9.1 × 10−09

HbA1C rs146006303 RORA 15 61137932 C 1.13 0.16 9.7 × 10−12

QUICKI rs184544915 METTL16 17 2329349 C 0.49 0.08 6.3 × 10−09

https://www.internationalgenome.org/
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
http://www.mulinlab.org
http://www.mulinlab.org
https://www.ebi.ac.uk/birney-srv/GARFIELD/
https://www.ebi.ac.uk/birney-srv/GARFIELD/
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previously been associated with serum cystatin C lev-
els, as has rs1303830545 (P value = 2.2 × 10–88) [21] with 
eGFRcys.

A second key finding from this study concerns vari-
ants at ERBB4 and kidney function. ERBB4 is a member 
of the EGF receptor (EGFR) subfamily of receptor tyros-
ine kinases and plays a critical role developing epithelial 
ducts in the kidney [25]. A variant in ERBB4 has been 
previously associated with diabetic nephropathy [26], and 
ERBB4/Erbb4 has been shown to be differently expressed 
in human in vitro and in murine models of renal disease 
[25]. The negative beta for ERBB4 and eGFR shows that 
the minor allele is associated with lower eGFR (i.e., worse 
kidney function). Thus, the major allele (i.e., the majority 
of the MEDIM population) carries the protective allele. 
This contrasts observations in other ethnic groups, where 
the risk allele is the most prevalent (major) allele. It is for 
this reason that we conclude the Iraqi population may be 
genetically protected from chronic kidney disease. A pre-
vious study focusing on renal function and its association 

with blood pressure in MEDIM participants reported 
that this Iraqi cohort had better overall kidney function 
than native Swedes [11]. Elsewhere, a Swedish nation-
wide study of people with new onset T2D reported that 
first-generation non-Western immigrants, and Middle 
Eastern immigrants in particular, have lower rates of all-
cause and cause-specific mortality than ancestral Swedes 
with new onset diabetes [27]. The current analysis indi-
cates that the better kidney function in Iraqis compared 
with native Swedes may have a genetic basis, with ERBB4 
being a key locus.

The most obvious explanation for the signals 
observed here and not in large European ancestry 
GWAS cohorts is that the genetic architecture of these 
cohorts differs, at least at the index loci. A second 
explanation is that the genetic signals may be a con-
sequence of gene-environment interactions, early life 
environments (intrauterine and years 1–5 postpartum) 
being possible examples [28].

Fig. 2  Regional plot for rs13037490 on chromosome 20 associated with eGFR. The –log10-transformed P values are plotted against the genomic 
position. Dark purple encircled with black represents rs13037490; gray represents SNPs below the significance level; red circles represent significant 
SNPs; and circles with color ranging from different shades of red to blue indicates the range of pairwise r 2 value with the top lead SNP (rs13037490). 
A Regional plot, B zoomed in on A. Mapped genes, non-mapped protein coding genes, and non-mapped non-coding genes are represented by 
red, blue and dark gray respectively
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A limitation of this analysis is the lack of an Iraqi (or 
ethnically-proximal) replication cohort, which is not 
currently available. The importance of using a Middle 
Eastern cohort for replication studies can be observed 
when trying to replicate the strongest common vari-
ant signals for T2D. For example, rs7903146 and 
rs12255372, localizing to TCF7L2, have been widely 
replicated across many ethnic groups including Ameri-
can Indians [29], Japanese [30], South Asians [31, 32], 
Pakistanis [33], Afro-Caribbeans [32], and Europeans, 
but not in Middle Eastern cohorts [34]. Indeed, barely 
a handful of loci identified in European ancestry pop-
ulations for metabolic traits have been replicated in 
Middle Eastern cohorts [35–37]. The genetic discord-
ance between Middle Eastern and non-Middle Eastern 
cohorts, observed here for the ERBB4 signals, further 
underscores the importance of replication studies being 
performed in cohorts from the Middle East.

Nevertheless, in the absence of an ethnically proximal 
replication cohort, we looked up the strongest signals 
from the current analysis in GWAS Catalog (European 
ancestry cohorts) to determine if any published find-
ings exist that support those reported here. Although 
this process has its limitations, most notably that 
GWAS Catalog only includes genome-wide significant 
results and does not include data from Middle Eastern 
cohorts, some of our strongest findings correspond well 
with those reported there. We also used the Type 2 Dia-
betes Knowledge Portal [38] to determine if any of our 
strongest hits are associated with any sub-genome-wide 
significant signals in European-ancestry cohorts, which 
we also found some evidence of, suggesting that the 
Iraqi population, and the features of its genome, may 
be more powerful for genetic discovery than European 
ancestry cohorts, at least for kidney function traits.

There are currently no publicly available imputation 
panels for people of Iraqi ancestry. When compar-
ing patterns of genetic variation in this Iraqi cohort 
with other ethnicities for whom reference panels are 
available, it was determined that the most proximal 
of these was the European ancestry panel. While this 
is unlikely to be adequate for imputation of rare vari-
ants, for common variant imputation, which is the 
focus of this paper, it yields acceptable predictions 
of missing variants. Regardless, the region where the 
strongest signals were detected in this study includes 
> 100 variants, the majority of which were directly 
genotyped. In this case, imputation has no bearing on 
the reliability of the signal, as the signal is primarily 
driven by non-imputed SNPs.

Even though the signals detected for the glycemic 
traits are not accompanied by replication studies, most 
of the mapped genes had literature evidence for their 

involvement in the pathogenesis of T2D or glucose 
metabolism. For instance, CAMTA1 was associated with 
T2D in a French population [39]. Several studies high-
light the involvement of CAMTA1 in the development 
of mature functional cells of islets as well as in regulat-
ing beta-cell insulin content and secretion. NDUFA10 
codes for the enzyme 42 kDa complex I and is involved 
in oxidative phosphorylation (OXPHOS) inside the mito-
chondria. This gene, along with other OXPHOS genes, 
was found to be downregulated in pancreatic islets of 
T2D patients and was implicated in the development of 
impaired glucose-stimulated insulin secretion [40, 41]. 
TRIO (Rho guanine nucleotide exchange factor), which 
was associated with fasting glucose, plays a role in cell 
migration and growth through the actin cytoskeleton’s 
reorganization. Dufurrena et  al. recently demonstrated 
TRIO’s active role in the regulation of glucose respon-
siveness and proinsulin secretion [42]. SH3GL2 (SH3 
Domain Containing GRB2 Like 2, Endophilin A1) is 
known for its active role in lipid binding and lipid tube 
assembly. In 2012, SH3GL2 was added to the list of a can-
didate genes for T2D, which might affect islet function 
[43]. ABCC11 codes for ABC proteins, which transport 
molecules across extra- and intra-cellular membranes, 
including glucose and other sugars. A variant in ABCC11 
(ATP binding cassette subfamily C member 11) gene was 
associated with fasting glucose in a meta-analysis of 13 
genome-wide association studies [44]. ME1 codes for 
the cytosolic malic enzyme of pancreatic β cells. ME1 
enzyme links the glycolytic and citric acid cycles. This 
gene is known to be highly expressed when dietary car-
bohydrate intake is elevated  and is believed to actively 
enhance insulin secretion [45]; although its role in insulin 
secretion is contested [46]. PAK1 encodes for p21 (RAC1) 
activated kinase 1 proteins, which is an effector that con-
nects the RhoGTPases to the cytoskeleton and nuclear 
signaling. PAK1 is involved in the second phase of glu-
cose-stimulated insulin secretion [47] and Islets from 
individuals with T2D have been found deficient in PAK1 
protein expression when compared with islets of indi-
viduals without diabetes [48, 49]. RORA is a member of a 
nuclear hormone receptor that regulates gene expression. 
This gene regulates the transcription of genes, which are 
crucial for regulation of glucose metabolism. RORA has 
been identified as a transcriptional activator of insulin 
[50] and may impact T2D risk through numerous path-
ways [51].

Although the sample size used here is small relative to 
many contemporary GWAS, it is evidentially adequately 
powered to detect signals across multiple traits and is 
similar in size to early GWAS cohorts. Nevertheless, the 
nature of the MEDIM cohort requires the use of special 
statistical methods to account for cryptic relatedness and 
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family structure, which may have diminished statistical 
power. Accordingly, it is likely that type 2 error (false-
negative rates) will be high in the current analysis, moti-
vating future studies in larger Iraqi cohorts.

Conclusion
This is the first GWAS to be reported within an Iraqi 
population. Despite its relatively small sample size, we 
identified novel variants associated with kidney func-
tion, glycemic control, and insulin action. The appar-
ent genetic protection from kidney dysfunction in this 
cohort may help explain why people from Iraqi appear 
to have better kidney function than people of Euro-
pean ancestry.
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