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Abstract 

Background:  Forecasting healthcare demand is essential in epidemic settings, both to inform situational awareness 
and facilitate resource planning. Ideally, forecasts should be robust across time and locations. During the COVID-19 
pandemic in England, it is an ongoing concern that demand for hospital care for COVID-19 patients in England will 
exceed available resources.

Methods:  We made weekly forecasts of daily COVID-19 hospital admissions for National Health Service (NHS) Trusts 
in England between August 2020 and April 2021 using three disease-agnostic forecasting models: a mean ensemble 
of autoregressive time series models, a linear regression model with 7-day-lagged local cases as a predictor, and a 
scaled convolution of local cases and a delay distribution. We compared their point and probabilistic accuracy to a 
mean-ensemble of them all and to a simple baseline model of no change from the last day of admissions. We meas-
ured predictive performance using the weighted interval score (WIS) and considered how this changed in different 
scenarios (the length of the predictive horizon, the date on which the forecast was made, and by location), as well as 
how much admissions forecasts improved when future cases were known.

Results:  All models outperformed the baseline in the majority of scenarios. Forecasting accuracy varied by forecast 
date and location, depending on the trajectory of the outbreak, and all individual models had instances where they 
were the top- or bottom-ranked model. Forecasts produced by the mean-ensemble were both the most accurate and 
most consistently accurate forecasts amongst all the models considered. Forecasting accuracy was improved when 
using future observed, rather than forecast, cases, especially at longer forecast horizons.

Conclusions:  Assuming no change in current admissions is rarely better than including at least a trend. Using 
confirmed COVID-19 cases as a predictor can improve admissions forecasts in some scenarios, but this is variable and 
depends on the ability to make consistently good case forecasts. However, ensemble forecasts can make forecasts 
that make consistently more accurate forecasts across time and locations. Given minimal requirements on data and 
computation, our admissions forecasting ensemble could be used to anticipate healthcare needs in future epidemic 
or pandemic settings.
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Background
The sheer volume of SARS-CoV-2 reported cases in Eng-
land combined with a substantial case-hospitalisation 
rate amongst high-risk groups [1, 2] has resulted in an 
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extremely high demand for hospital care in England. As 
such, it is an ongoing concern that demand for hospi-
tal care will exceed available resources. This worst-case 
scenario has seen patients with COVID-19 receiving 
lower-quality care [3], as well as cancellations of planned 
surgeries or routine services; in the UK, the National 
Health Service (NHS) faced a substantial backlog of 
patient care throughout the COVID-19 pandemic [4].

Forecasting healthcare requirements during an epi-
demic are critical for planning and resource allocation 
[5–7], and short-term forecasts of COVID-19 hospital 
activity have been widely used during the COVID-19 
pandemic to support public health policy (e.g. [8–11]). 
Whilst national or regional forecasts provide a big-
picture summary of the expected trajectory of COVID-
19 activity, they can mask spatial heterogeneity that 
arises through localised interventions or demographic 
heterogeneity in the risk of exposure or severity [12]. 
Small-scale forecasts have been used to support local 
COVID-19 responses (e.g. in Austin, TX, USA [9]), 
as well as to forecast non-COVID-19 or more general 
healthcare demands at the hospital level [13,14]. Fore-
casts of hospital admissions are also an essential step to 
forecasting bed or intensive care unit (ICU) demand (e.g. 
[11, 13, 14]).

In theory, future admissions are a function of recent 
cases in the community, the proportion of cases that 
require and seek health care (the case hospitalisation 
rate (CHR)), and the delay from symptom onset to hos-
pital admission. However, forecasting admissions from 
community cases is challenging as both the CHR and 
admission delay can vary over time. The CHR depends 
on testing effort and strategy (how many symptomatic 
and asymptomatic cases are identified), the age distribu-
tion of cases [1], and the prevalence of other COVID-19 
risk factors amongst cases [12]. Retrospective studies of 
COVID-19 patients reported a mean delay from symp-
tom onset to hospital admission to be 4.6 days in the UK 
[15] and 5.7 days in Belgium [16], but this varies by age 
and place of residence (e.g. care-home residents have 
a longer average admissions delay than non-residents) 
[16]. Forecasting studies have found that cases are pre-
dictive of admissions with a lag of only 4–7 days [10, 14]. 
Given the short estimated delay between cases and future 
admissions, to make short-term forecasts of admissions 
therefore also requires forecasts of cases. Whilst some 
studies consider mobility and meteorological predictors 
with longer lags [14], they lack a direct mechanistic rela-
tionship with admissions and may have only a limited 
benefit. Besides structural challenges, models are subject 
to constraints of data availability in real-time and at the 
relevant spatial scale (by hospital or Trust (a small group 

of hospitals) for admissions, and local authority level for 
cases and other predictors).

Models need to be sufficiently flexible to capture a 
potentially wide range of epidemic behaviour across 
locations and time, but at the same time should produce 
results sufficiently rapidly to be updated in a reason-
able amount of time. Autoregressive time series models 
are widely used in other forecasting tasks (e.g. [17, 18]), 
including in healthcare settings [19], and scale easily to a 
large number of locations; however, since forecasts are, in 
the simplest case, based solely on past admissions, they 
may not perform well when cases (and admissions) are 
changing quickly. Predictors can be incorporated into 
generalised linear models (GLMs) with uncorrelated [19] 
or correlated errors [14]; for lagged predictors, the lag (or 
lags) usually needs to be predetermined. Alternatively, 
admissions can be modelled as a scaled convolution of 
cases and a delay distribution; this method can also be 
used to forecast deaths from cases or admissions (e.g. 
[20]). The forecasting performance of both GLMs and 
convolution models beyond the shortest forecast hori-
zon will be affected by the quality of the case forecasts (or 
any other predictors), which may vary over time or across 
locations.

One way to attempt improving the robustness of fore-
casts is to combine them into an ensemble forecast, 
whereby predictions from several different models are 
combined into a single forecast. This reduces reliance on 
a single forecasting model and, given a minimum qual-
ity of the constituent models, the average performance of 
ensembles is generally comparable, if not better than, its 
best constituent models [8, 21]. Ensemble methods have 
been widely used in real-time during the COVID-19 pan-
demic to leverage the contributions of multiple modelling 
groups to a single forecasting task [8, 22, 23], as well as 
previously during outbreaks of influenza [18, 24], Ebola 
virus disease [25], dengue [26], and Zika [27].

In this paper, we make and evaluate weekly forecasts of 
daily hospital admissions at the level of NHS Trusts dur-
ing the period August 2020–April 2021, including two 
national lockdowns and the introduction and spread of 
the Alpha SARS-CoV-2 variant. We assess the forecasting 
performance of three individual forecasting models and 
an ensemble of these models and compare their perfor-
mance to a naive baseline model that assumes no future 
change from current admissions. Forecasts are made 
using publicly available data on hospital admissions (by 
Trust) and COVID-19 cases (by upper-tier local author-
ity (UTLA), a geographic region of England). For fore-
casting models that use forecast COVID-19 cases as a 
predictor, we consider the value of making perfect case 
forecasts.

https://paperpile.com/c/GJQbZP/8f8gO+wgHF9
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Methods
Data
The majority of hospitalised COVID-19 cases in Eng-
land are treated at hospitals run by the NHS. NHS Hos-
pital Trusts are organisational units of NHS England, 
each comprising a small number of hospitals (typically 
between one and three) and providing care to a small 
geographical region or for a specialised function [28].

A confirmed COVID-19 hospital patient is any patient 
admitted who has recently (in the last 14 days) tested pos-
itive for COVID-19 following a polymerase chain reac-
tion (PCR) test, including both new admissions with a 
known test result and inpatient tests. Data on daily Trust-
level COVID-19 hospital activity, including COVID-19 
hospital admissions, COVID-19 and non-COVID-19 bed 
occupancy, are published weekly by NHS England and 
were accessed via the covid19.nhs.data R package [29].

A confirmed COVID-19 case in England is defined as 
an individual with at least one confirmed positive test 
from a PCR, rapid lateral flow tests or loop-mediated iso-
thermal amplification (LAMP) test. Positive rapid lateral 
flow test results can be confirmed with PCR tests taken 
within 72 hours; if the PCR test results are negative, these 
are not reported as cases. Aggregated data by UTLA are 
published daily on the UK Government dashboard and 
reported totals include both pillar 1 (tests in healthcare 
settings and for health and care workers) and pillar 2 
(community) tests. These data were accessed via the cov-
idregionaldata R package [30].

In England, small-scale COVID-19 cases and hospital 
admissions are reported on different scales: by UTLA and 
by Trust, respectively. To use UTLA-level cases to make 
forecasts of Trust-level hospital admissions, we needed 
to estimate cases at the Trust level too. We used a many-
to-many mapping between UTLAs and NHS Trusts that 
is based on COVID-19 hospital admissions line list data 
for England. For each Trust-UTLA pair (t,u), the map-
ping reports the proportion pt,u of all COVID-19 hospi-
tal admissions from UTLA u that were admitted to trust 
t. This proportion is based on all COVID-19 hospital 
admissions in England that were discharged by 30 Sep-
tember 2020 and is constant (i.e. does not change over 
time). For details of how this mapping was constructed, 
see Additional file 1: Section 1. This mapping is available 
in the R package covid19.nhs.data [29].

We estimate the community pressure of COVID-19 
cases on Trust t as the expected number of COVID-19 
cases associated with Trust t defined by the Trust-UTLA 
mapping (rounded to the nearest integer value):

∑

u

(

pt,u ∗ cases in UTLA u
)

Trust characteristics
We estimated Trust size as the average total beds avail-
able (sum of occupied COVID-19 or non-COVID-19 
beds, plus unoccupied beds) from 17 November 2020 
to 30 April 2021 (data on non-COVID bed occupancy 
was not available before 17 November). We calculated 
total admissions as the sum of all admissions between 01 
August 2020 and 30 April 2021 (inclusive). We defined 
the size of the Trust-UTLA mapping for a Trust as the 
number of UTLAs matched to each Trust in the proba-
bilistic Trust-UTLA mapping. We measured this with 
and without a 10% minimum threshold on the proportion 
of admissions from a UTLA to a Trust, thereby excluding 
relatively uncommon Trust-UTLA pairs.

To better understand the heterogeneity in Trust-level 
admissions, we grouped Trusts based on the similar-
ity of their weekly hospital admissions time series. We 
calculated the pairwise Pearson correlation coefficient 
between Trusts, excluding Trusts with less than 1000 
admissions between August 2020 and April 2021. We 
then used the complete-linkage clustering algorithm to 
divide Trusts into seven groups, matching the seven NHS 
regions in England. In short, the complete-linkage algo-
rithm initially assigns each Trust to its own cluster, then 
at each step combines the two most similar clusters (as 
determined by the pairwise correlation), until the desired 
number of clusters is reached [31]; this is implemented in 
the hclust algorithm in stats 4.1.1.

Forecasting models
We made weekly forecasts of daily hospital admissions 
from 04 October 2020 to 25 April 2021 (n = 30 forecast 
dates). We fitted each of the forecasting models (defined 
below) independently to each Trust’s unsmoothed and 
unadjusted Trust-level daily data (past admissions and, 
where relevant, past estimated cases) on a 6-week rolling 
window, and made forecasts of future admissions for 1- 
through 14-day-ahead horizons. We used a rolling, rather 
than increasing, window on which to fit the models as the 
local trend in admissions and relationship between cases 
and admissions was considered likely to change over time. 
We summarised forecasts as point and predictive quan-
tiles for 1- through 14-day ahead horizons. For models 
using cases as a predictor of future hospital admissions, 
we used forecasts of daily UTLA-level COVID-19 cases 
that were produced and published daily [32].

Hospital admissions forecasting models
The motivation for a baseline model is to give a minimum 
performance threshold that any good model should rea-
sonably exceed. Our baseline model comprised a point 
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(median) forecast equal to the last observed data point 
for all forecast horizons and Gaussian uncertainty, with 
standard deviation at horizon h equal to σ̂

√
h , where σ̂ is 

the standard deviation of the differences of the series [17].
In addition, we used three individual forecasting meth-

ods, plus two unweighted ensembles of these three 
models. The first of the three individual models was a 
mean-ensemble of three autoregressive time series mod-
els (autoregressive integrated moving average (ARIMA), 
exponential smoothing (ETS) and the baseline defined 
above) that use only past observed admissions data to fore-
cast future admissions. The second model was a regression 
model with correlated (ARIMA) errors, with Trust-level 
cases lagged by d days as a predictor. This model uses past 
observed admissions and past estimated Trust-level cases 
(estimated via the Trust-UTLA mapping) for forecast 
horizon h ≤ d, plus forecast Trust-level cases (again, esti-
mated via the Trust-UTLA mapping) for h > d, where the 
optimal value for d is chosen by optimising for forecast-
ing performance. The third and final individual model is a 
convolution of estimated Trust-level cases with the delay 
from report to admission. This model uses past observed 
admissions and past and future Trust-level cases. None 
of the models includes a day-of-the-week effect, as it was 
determined a priori that this was not a consistent feature 
of the Trust-level data. Further details of the three indi-
vidual forecasting models can be found in Additional file 1: 
Section 2 [33–37] (Tables S1 - S4 and Fig. S1).

We constructed an unweighted mean-ensemble from 
the three individual models. The ensemble quantile fore-
cast was made by taking the mean of the quantile fore-
casts of the individual models at each time point; for 
example, the mean-ensemble point forecast for a 7-day 
horizon was the mean of the three individual point fore-
casts for a 7-day horizon, and the mean-ensemble 90% 
quantile forecast was the mean of the three individual 
90% quantile forecasts.

Case forecasting models
The ARIMA regression model and convolution model 
used COVID-19 cases as a predictor of future hospital 
admissions, and so we also used forecasts of this quantity. 
We used daily forecasts of COVID-19 cases by UTLA (n 
= 174) via estimates and forecasts of the time-varying 
effective reproduction number, Rt, accounting for uncer-
tainty in the delay distributions and day-of-the-week 
effect, produced and published daily [32]; a summary of 
this approach, henceforth called Rt case forecast, is given 
in Additional file 1:Section 3 [38, 39] and full details are 
given in [40].

The Rt case forecasts were occasionally missing due to 
computational issues or deemed highly improbable due 
to model errors. As the case forecasts are used as pre-
dictors in some of the admissions forecasting models, 
this could lead to highly improbable (particularly exces-
sively large) admissions forecasts. To address this, we 
set three criteria by which the Rt case forecasts would 
be replaced by an ARIMA + ETS mean-ensemble time 
series forecast. We did not expect that this time series 
ensemble would produce better forecasts than the Rt 
model in all scenarios, but rather that they would be 
better than missing or implausible forecasts. The three 
criteria were:

1.	 The Rt case forecast was missing for the UTLA, or
2.	 The upper bound of the Rt case forecast 90% predic-

tion interval exceeded the estimated population size 
of the UTLA [41], or

3.	 There was at least one case reported on the forecast 
date, and the upper bound of the Rt case forecast 90% 
prediction interval exceeded 1000 times the number 
of cases reported on the forecast date.

We estimated Trust-level case forecasts from the 
UTLA-level case forecasts using the Trust-UTLA 
mapping.

Forecast evaluation
Evaluation metrics
We evaluated forecasts against future observed admis-
sions using a number of different metrics that assessed 
different aspects of point and probabilistic accuracy.

Calibration  Calibration assesses the ability of the 
models to correctly quantify predictive uncertainty. We 
assessed the calibration of the forecasting models by cal-
culating the empirical coverage: for a forecast horizon, h, 
and prediction interval width, 1 − 𝛼, the empirical cover-
age of a model is calculated as the proportion of forecast 
targets (across all forecast dates and locations) for which 
the prediction interval contained the true value; a well-
calibrated model has empirical coverage equal to the 
width of the nominal prediction interval. We calculated 
the empirical coverage for the 50% and 90% prediction 
intervals.

Sharpness  Sharpness measures the ability of models 
to make forecasts with narrow (sharp) prediction inter-
vals. We measured sharpness as the weighted sum of the 
width of the 50% and 90% prediction intervals:
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Point forecast error  We measured point forecast accu-
racy with the absolute error (AE) of the median fore-
cast, which is simply the absolute difference between 
the median forecast, m, and the true observed value, y: 
∣m − y∣.

Probabilistic forecast error  We measured probabilistic 
forecast accuracy with the weighted interval score (WIS). 
The WIS is a proper scoring rule, that is, a rule for which 
a forecaster is incentivised to give their honest forecast to 
obtain the best score [42]. The WIS comprises a weighted 
sum of interval scores for quantile forecasts of increasing 
widths; in this way, the full forecast distribution is sum-
marised in a single value.

The interval score [43] of the central 100(1-α)% predic-
tive interval of forecast F is given by

where lα and uα are the lower and upper bounds of 
the central 100*(1-α)% interval forecast, y is the true 
observed value, and 1{·} is the indicator function (equal 
to 1 when the expression inside is true, and 0 other-
wise). The first term measures sharpness, and penalises 
wider interval forecasts; the second term penalises fore-
casts for overprediction (if the true value, y, lies below 
the lower bound lα); finally, the third term penalises for 
underprediction.

Given the point forecast and K interval forecasts of width 
1 − αk, k = 1, …, K, the WIS is then calculated as

where the standard choice is w0 = 1/2 and wk =
αk
2  

for k = 1, …, [43]. In our evaluation, we used K = 2 and 
α1 = 0.5, α2 = 0.1, corresponding to the central 50% and 
90% prediction intervals, respectively.

To summarise and compare forecast performance in 
different scenarios (see “Forecast comparison” sec-
tion below), we either report the mean value (sharpness 
and AE), or an adjusted value that does not scale with 
the number of admissions (WIS). The latter allows us 
to compare a model’s performance over forecast dates 
or between Trusts (both of which vary in the number 
of admissions). Instead of reporting the mean WIS, we 

sharpness =
∑K

k=1
wk

(

u
�k

− l
�k

)
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report two adjusted WIS values: the relative WIS (rWIS) 
and the scaled WIS (sWIS), defined as follows using the 
notation and naming of [21].

First, the pairwise-relative WIS, θA, B, for models A and B 
is defined as

where the mean WIS is the mean in the scenario of inter-
est (e.g. to evaluate models’ overall performance at a 
7-day horizon, the mean is taken over all forecast dates 
and Trusts).

The rWIS for model A, θA, is then defined as the geomet-
ric mean of the pairwise-relative WIS θA,Bi , i = 1, . . . ,M , 
excluding the baseline model. If model A has a smaller 
relative WIS than model B, then forecasts generated by 
model A are better than those generated by model B.

The sWIS, θA
∗, is simply the rWIS normalised by the 

rWIS for the baseline model:

By this definition, the sWIS of the baseline model is 
always 1, and if θx

∗ < 1 then forecasts produced by model 
x are better than the baseline, and worse if θx

∗ > 1.

Forecast evaluation was implemented using the R pack-
age scoringutils 0.1.7.2 [44].

Forecast comparison
We evaluated forecasts made across 7701 forecast targets, 
a combination of forecast horizon (7 or 14 days), forecast 
date (30 total) and Trust (129 until 24 January 2021; then 
128 until 14 March 2021; then 127 until the end of April 
2021). To fully evaluate model performance, we evaluated 
forecast performance in the following scenarios:

1.	 Overall:

a.	 By forecast horizon;
b.	 By target;

2.	 By forecast date, split by forecast horizon;
3.	 By Trust, split by forecast horizon.

In scenario 1a, we report empirical coverage by fore-
cast horizon, mean sharpness, mean AE and rWIS. In 
scenario 1b, we simply report the distribution of model 

θA,B = (mean WIS of model A)/(mean WIS of model B)

θA
∗ = θA/θbaseline
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rankings over all 7701 targets as determined by the 
rWIS. In scenarios 2 and 3, we report the mean AE and 
rWIS by forecast date and Trust, respectively. In all sce-
narios, we choose to report rWIS over the sWIS so that 
the performance of the baseline model, and how that 
changes across horizons/dates/locations, can be explic-
itly included.

Value of perfect knowledge of future COVID‑19 cases
For models that use forecasted COVID-19 cases to 
forecast hospital admissions, forecast performance is 
affected by both the structure of the admissions forecast-
ing model and the quality of the case forecasts (which 
are made independently of the admissions forecasts and 
do not form part of this study). Models that use forecast 
cases to forecast admissions are the ARIMA regression 
for forecast horizon h > 7, and the convolution model 
and mean-ensemble for all forecast horizons. To evaluate 
the performance of the admissions models only, we con-
ducted a retrospective study where the relevant models 
(noted above) used future observed, rather than forecast, 
COVID-19 cases to forecast hospital admissions; this 
represents a best-case scenario for these models, as using 
future observed cases throughout is equivalent to making 
a perfect case forecast with no uncertainty.

These retrospective forecasts were scored using the 
same metrics and scenarios as the real-time forecasts. We 
also directly compare each model’s performance using 
observed vs. forecast future COVID-19 cases, where we 
report the sWIS only.

Analysis code
Analyses in this paper use the following packages devel-
oped by the authors during the COVID-19 pandemic: 
covidregionaldata (version 0.9.2) [30], covid19.nhs.data 
(0.1.0) [29], EpiNow2 (1.3.3.8) [20], EpiSoon (0.3.0) [36] 
and scoringutils (0.1.7.2) [44]. Fully reproducible code 
is available at https://​github.​com/​epifo​recas​ts/​covid​19-​
hospi​tal-​activ​ity.

Results
COVID‑19 hospital activity August 2020–January 2021
National and regional context
The number of COVID-19 hospital admissions in Eng-
land was very low at the start of August 2020: during 
the week 03–09 August 2020, national daily admissions 
ranged between 49 and 78. From early September 
onwards, admissions began to increase (Fig.  1A), pre-
dominantly in the Midlands and North of England (Addi-
tional file  1: Fig. S2). In response to rising cases and 
admissions, the UK Government introduced a three-tier 
system of restrictions throughout England on 14 Octo-
ber 2020; by the end of October all major northern cities 

(including Manchester and Liverpool) were under the 
strictest Tier 3 measures, and the majority of the rest of 
the North of England, plus the Midlands, London and 
parts of Essex were in Tier 2. A national lockdown was 
introduced from 05 November– 02 December 2020 and 
during this time admissions fell or plateaued in all NHS 
regions (Additional file 1: Fig. S2). At the end of lockdown 
(03 December 2020), the majority of local authorities in 
England re-entered Tier 3, but hospital admissions con-
tinued to increase: national daily admissions increased 
from 1178 on 02 December 2020, to 1437 1 week later (09 
December 2020), and to 1880 2 weeks later (16 Decem-
ber 2020)—already exceeding the early-autumn peak 
of 1620 daily admissions. On 19 December 2020 local 
authorities in the East and South East of England and all 
London boroughs entered into yet stricter Tier 4 restric-
tions, and on 06 January 2021, England was placed under 
the third national lockdown. National daily admissions 
peaked at 3895 on 12 January 2021 and subsequently 
declined throughout January–April 2021. By the end of 
April, average national daily admissions were fewer than 
100 (during the week 19– 25 April 2021, median = 97, 
interquartile range (IQR) = 28).

Mass vaccination for COVID-19 in England began on 
08 December 2020. The rollout was prioritised by age 
and risk. The initial rollout was amongst care home resi-
dents, their carers and individuals aged 80 years and over, 
then subsequently to all aged 70 years and over and the 
clinically extremely vulnerable individuals (from 18 Janu-
ary 2021) and then all aged 65 years and over and adults 
with high-risk underlying health conditions (15 February 
2021). By 30 April 2020, 63% and 27% of adults aged 16 
and over had received the first and second dose of the 
vaccine, respectively [46].

Trust‑level characteristics and hospital admissions
Focusing only on national or regional hospital admissions 
masks heterogeneity in the trajectory of local-level hospi-
tal admissions (Fig. 1). Trusts varied in the daily or weekly 
number of patients admitted, as well as in the occurrence 
and timing of peaks in admissions (Fig. 1B, C). Clusters 
of Trusts, defined by the pairwise correlation between 
admissions, clearly show some spatial clustering (reflect-
ing the geographical spread of COVID-19 in England 
at the time) but are not constrained by the NHS region 
boundaries (Additional file  1: Fig. S3C). Instead, clus-
ters are defined by the occurrence and timing of peaks 
in admissions (Additional file  1: Fig. S3D): for example, 
cluster 1 includes Trusts in London and the South East 
of England that had little or no peak in November 2020, 
whilst clusters 5–7 comprise Trusts in the North of Eng-
land where admissions increased earlier and there are 
two distinct peaks in admissions in November 2020 and 

https://github.com/epiforecasts/covid19-hospital-activity
https://github.com/epiforecasts/covid19-hospital-activity
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January 2021 (Additional file  1: Fig. S3C-D). The vari-
ation in Trust-level dynamics could be driven by Trust 
capacity, local COVID-19 case incidence and demogra-
phy (such as age), pre-existing immunity, and local and/
or national restrictions.

Trust-level cases are estimated using the Trust-UTLA 
mapping. The accuracy of this mapping for a given 
Trust depends on a number of factors, including the 
spatial distribution of cases until 30 September 2020; 
total admissions to the Trust until 30 September 2020; 
and the size of the Trust-UTLA mapping. Trusts admit 
COVID-19 patients from relatively few UTLAs (median 
= 3, IQR = 2; Additional file 1: Fig. S3A), with a small 
minority of Trusts (typically in London or other large 
cities such as Birmingham and Manchester) admitting 
patients from more than 10 UTLAs. Trusts admit the 
majority of their COVID-19 patients from only 1-2 

UTLAs (excluding UTLAs contributing less than 10% 
of admissions: median = 2, IQR = 1.8).

Estimated total bed capacity and total admissions 
vary significantly (estimated capacity: median = 579, 
IQR = 417; total admissions: median = 1839, IQR = 
1313), and, unsurprisingly, the two are highly corre-
lated (Pearson’s correlation coefficient r = 0.85) (Addi-
tional file 1: Fig. S3B).

Forecast evaluation
Additional file  1: Fig. S4 shows examples of forecasts 
made for Manchester University NHS Foundation Trust 
for the three individual models (time series ensemble, 
ARIMA regression with 7-day lagged cases as a predic-
tor, and the case-convolution), plus the mean-ensemble 
of these, and the baseline model of no change.

Fig. 1  Summary of COVID-19 hospital admissions in England during August 2020– April 2021. A Daily COVID-19 hospital admissions for England. 
B Weekly COVID-19 hospital admissions by NHS Trust (identified by 3-letter code) for the top 40 Trusts by total COVID-19 hospital admissions 
during August 2020–April 2021. C Daily COVID-19 hospital admissions for top-five Trusts by total COVID-19 hospital admissions. In all panels, the 
dashed lines denote the date of the first (04 October 2020) and last (25 April 2021) forecast date. Data published by NHS England [45]
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Calibration and sharpness
The empirical coverage of models was generally lower than 
the nominal coverage of the prediction intervals (Fig. 2A 
and Table S5); the only exception to this is the 50% predic-
tion interval of the time series ensemble, which has empir-
ical coverage of 53% and 54% for a 7- and 14-day horizon, 
respectively. The ARIMA model has the worst coverage for 
all forecast horizons as a result of producing overly sharp 
(narrow) forecasts (sharpness at a 14-day horizon of 0.97, 
compared to 2.85 for the baseline and 1.57 for the mean-
ensemble; Table S5). Although its constituent models are 
not particularly well-calibrated, the mean-ensemble still 
has comparatively good empirical coverage: for a 14-day 
horizon, it has empirical coverage of 0.46 and 0.76 for the 
50% and 90% prediction intervals, respectively.

Overall forecast accuracy
For a 7-day forecast horizon, the time series ensemble 
and ARIMA regression model use observed data only 

(hospital admissions, plus confirmed COVID-19 cases 
in the ARIMA regression model). Both models out-
performed the baseline (rWIS = 1.06 and 1.05, respec-
tively, compared to 1.26 for the baseline; Fig. 2B, Table 
S5). The convolution model uses a combination of true 
and forecast COVID-19 cases, yet was still the best-
performing individual model at this horizon (rWIS = 
1.00). However, the mean-ensemble clearly outper-
formed all models and made 29% less probabilistic 
error than the baseline model (sWIS = 0.90).

For a 14-day forecast horizon, only the time series 
ensemble uses exclusively observed data (hospital 
admissions); both the ARIMA regression model and 
the convolution model use forecast COVID-19 cases. 
Whilst the relative accuracy of all models decreased 
(sWIS increases) over a longer horizon (Table S5), 
the decline in performance was most substantial for 
the convolution model, which now performed worse 
than baseline (rWIS = 1.23 compared to 1.13 for the 

Fig. 2  Overall forecasting performance of forecasting models. A Empirical coverage of 50% and 90% prediction intervals for 1-14 days forecast 
horizon. The dashed line indicates the target coverage level (50% or 90%). B Relative weighted interval score (rWIS) by forecast horizon (7 and 14 
days). C Distribution of WIS rankings across all 7701 targets; for each target, rank 1 is assigned to the model with the lowest relative WIS (rWIS) and 
rank 5 to the model with the highest rWIS
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baseline). Despite the worse performance of one of its 
constituent models, the mean-ensemble still performed 
well, making 24% less probabilistic error than the base-
line model (rWIS = 0.86).

The relative WIS rankings over all 7701 individual 
targets showed some variability in forecasting perfor-
mance (Fig.  2C). Interestingly, all individual models 
(time series ensemble, ARIMA regression and case-
convolution) rank first more frequently than the mean-
ensemble (in 13%, 34% and 43% of targets, respectively, 
compared to 12% for the mean-ensemble). However, 
the mean-ensemble is the most consistent model: it 
ranks first or second in over half (57%) of targets, and 
first through third in over 90% of scenarios. In com-
parison, the individual models often rank fourth or 
fifth (last). The mean-ensemble also outperforms the 
baseline in 84% of scenarios, compared to 82% for the 
time series ensemble, and 75% for both the ARIMA 
regression and case-convolution models. There are 

also some targets (approximately 5%) where the base-
line outperforms all models (Fig. 2C).

Forecast accuracy by date
Probabilistic forecasting accuracy and model rankings 
varied by the date on which forecasts were made (Fig. 3 
and S5). For a 7-day horizon, the mean-ensemble was the 
only model to outperform the baseline model (as meas-
ured by rWIS) across all forecast dates (Fig. 3A). Moreo-
ver, the mean-ensemble was the first-ranked (best) model 
by this metric for 14/30 forecast dates, and was first- or 
second-ranked for 29/30 dates. The performance of the 
individual models was more variable. Whilst the time 
series ensemble outperformed the baseline for 29/30 
forecast dates, it was often only the third- or fourth-
ranked model (24/30 forecast dates). On the other hand, 
the convolution model was the top-ranked model for 
14/30 forecast dates, but performed particularly poorly 
on two dates (03 and 10 January 2021; Fig.  3A, B). For 

Fig. 3  Forecasting accuracy by forecast date (7-day forecast horizon). A Relative WIS (rWIS) of the forecasting models for the 30 forecasting dates. 
Lower rWIS values indicate better forecasts. B Mean absolute error of the forecasting models. The mean AE is calculated as the mean AE over all 
Trusts. C Mean daily Trust-level COVID-19 hospital admissions by week, for reference. All panels are for a 7-day forecast horizon; see Additional file 1: 
Fig. S5 for evaluation on a 14-day forecast horizon
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all models, the biggest improvement in forecasting per-
formance compared to the baseline was at times when 
hospital admissions were rapidly declining: mid-to-late 
November 2020 (improvement in rWIS of approximately 
30%) and from mid-January 2021 onwards (improvement 
of up to 49%) (Fig. 3A and Additional file 1: Fig. S5A).

There was less variation in model mean absolute 
error (MAE) by forecast date (Fig. 3B). As expected, the 
MAE for all models followed the general trend in hospi-
tal admissions (Fig. 3C), with the exception of forecasts 
made by the convolution model on 03 and 10 January 
2021; for these dates, high rWIS and MAE indicates both 
poor point and poor quantile forecasts.

For a 14-day horizon, each model performed worse 
than the baseline on at least one forecast date (Addi-
tional file  1: Fig. S5A). The decline in performance was 
especially clear for the convolution model: it only outper-
formed the baseline on 19/30 forecast dates, and whilst 
it was the top-ranked model on 12/30 dates, it was also 
the last-ranked model on 9/30 dates. In particular, the 
convolution model made noticeably poor forecasts on 
08 November, 13 and 27 December 2020, and 03 and 10 
January 2021, (Additional file 1: Fig. S5A-B).

Forecast accuracy by location
For a 7-day horizon, all models outperformed the base-
line for the majority of Trusts (Fig.  4A): the time series 
ensemble outperforms the baseline for 125/129 Trusts; 
the ARIMA regression model for 115/129 Trusts; the 
convolution model for 118/129 Trusts; and the mean-
ensemble for 128/129 Trusts. On average, the mean-
ensemble achieved the lowest and most consistent rWIS 
values (median rWIS = 0.92; IQR = 0.04), compared to 
median = 1.29, IQR = 0.18 for the baseline. Amongst 
the individual models, the convolution model had the 
best median performance (median rWIS = 0.99) but was 
also the least consistent (IQR = 0.16). The variability in 
rWIS scores was reflected in the WIS rankings (Fig. 4B): 
the mean-ensemble was best-performing for over half of 
Trusts (72/129) and first- or second-ranked for almost 
all Trusts (127/129). The convolution model ranked first 
through fourth with similar frequency (for 34, 40, 24 
and 23/129 Trusts, respectively). Similarly to evaluation 
by date, we saw less variation in MAE between models 
by Trust, and a higher MAE in models compared to the 
baseline more frequently than for the rWIS (Fig. 4C).

For a 14-day horizon forecasting accuracy was lower 
(Additional file  1: Fig. S6): the convolution model was 
particularly badly affected, with a median rWIS equal to 
that of the baseline model (median rWIS = 1.12) and out-
performed the baseline for only 81/129 Trusts. Despite 
this, the mean-ensemble still performed well: the median 
rWIS was 0.87 (compared to 1.22 for the baseline), and 

it was the first- or second- ranked model for 91/129 of 
Trusts (Additional file 1: Fig. S6B).

Value of perfect knowledge of future COVID‑19 cases
Using future observed COVID-19 cases instead of future 
forecast cases affects the ARIMA regression model for a 
forecast horizon of more than 7 days, and the convolu-
tion model and mean-ensemble for all forecast horizons. 
Using future observed cases improved the sWIS by hori-
zon for all affected models (Table S6), especially for the 
convolution model at a 14-day forecast horizon, where 
the sWIS decreased by 38% from 1.09 (that is, worse than 
the baseline model) to 0.67.

When evaluated by forecast date we see a marked 
improvement in sWIS, but with some variability (Addi-
tional file  1: Fig. S7A and S7C). The 14-day forecasts 
made by the ARIMA regression model now outper-
formed the baseline (sWIS < 1) for 26/30 forecast dates 
(compared to 22/30 when using forecast future cases; 
Additional file  1: Fig. S7A), with the biggest improve-
ments on forecasts made 13 December 2020 (the start of 
the spread of the Alpha variant B.1.1.7: sWIS decreased 
by 26% from 1.33 to 0.99) and 03 January 2021 (just 
before the third national lockdown: sWIS decreased by 
30% from 1.23 to 0.86). The convolution model also saw 
notable improvements, especially for a 14-day forecast 
horizon (Additional file  1: Fig. S7C). However, for both 
models there were still forecast dates where they were 
outperformed by the baseline, indicating that this poor 
performance was not linked to the case forecasts, but to 
another aspect of the models.

We also saw an improvement in performance (on aver-
age) when we evaluated forecasts by Trust (Additional 
file  1: Fig. S7B and S7D). The 14-day-ahead forecasts 
made by the ARIMA regression model now outper-
formed the baseline model for 113/129 Trusts (com-
pared to 102/129 previously; Additional file 1: Fig. S7B). 
The convolution model now outperformed the baseline 
model for 123/129 Trusts for a 7-day horizon (compared 
to 116/129), and for 125/129 Trusts for a 14-day horizon 
(compared to only 81/129 previously; Additional file  1: 
Fig. S7D).

Models using future observed cases as a predictor of 
future admissions (ARIMA regression, convolution and 
mean-ensemble) clearly outperformed simple trend-
based models, especially at longer forecast horizons 
(Additional file  1: Figs. S8-9). The mean-ensemble per-
formed consistently well across horizons, forecast dates 
and Trusts, and rarely (if ever) performed worse than the 
baseline. Conversely, both the ARIMA regression and 
case-convolution still encountered scenarios where they 
performed worse than the baseline, warranting further 
investigation.
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Discussion
This paper systematically evaluates the probabilistic 
accuracy of individual and ensemble real-time forecasts 
of Trust-level COVID-19 hospital admissions in England 
between September 2020 and April 2021. Whilst other 
COVID-19 forecasting studies evaluate forecasts at the 
national or regional level [8, 21, 22], or for small number 
of local areas (e.g. the city of Austin, TX, USA [9]; the five 
health regions of New Mexico, USA [10]; or University 
College Hospital, London, UK [11], this work evaluates 
forecast performance over a large number of locations 
and forecast dates and explores the usage of aggregate 
case counts as a predictor of hospital admissions.

We found that all models outperformed the baseline 
model in almost all scenarios, that is, assuming no change 
in current admissions was rarely better than including at 

least a trend. Moreover, models that included cases as 
a predictor of future admissions generally made better 
forecasts than purely autoregressive models. However, 
the utility of cases as a predictor for admissions is limited 
by the quality of case forecasts: whilst perfect case fore-
casts can improve forecasts of admissions, real-time case 
forecasts are not perfect and can lead to worse forecasts 
of admissions than simple trend-based models. Unfor-
tunately, making accurate forecasts of COVID-19 cases 
in a rapidly-evolving epidemic is challenging [23, 47], 
especially in the face of changing local restrictions. The 
Rt-based case forecasting model used here assumes no 
change in future Rt, so cannot anticipate sudden changes 
in transmission, for example due to a change in policy 
such as lockdowns. Addressing this, and other limitations 
of the case forecasting model [40], may help to improve 

Fig. 4  Forecasting accuracy by location (7-day forecast horizon). A Relative WIS values of each model (y-axis) compared to the baseline model of 
no change (x-axis). Ticks on axes show the unilateral distribution of rWIS values. Dashed grey line shows y=x, for reference: a point below the line 
indicates that the model outperformed the baseline model by rWIS for that Trust. B Distribution of WIS rankings across all 129 NHS Trusts; rank 1 is 
assigned the model with the lowest relative WIS for a given scenario, and rank 5 to the highest relative WIS. C Mean absolute error of each model 
(y-axis) compared to the baseline model (x-axis). Ticks on axes show the unilateral distribution of MAE values. Dashed grey line shows y=x, for 
reference: a point below the line indicates that the model outperformed the baseline model by MAE for that Trust. All panels are for a 7-day forecast 
horizon; see Additional file 1: Fig. S6 for evaluation on a 14-day forecast horizon
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admissions forecasts, especially at key moments such as 
lockdown.

We found that the mean-ensemble model made the most 
accurate (as measured by median rWIS) and most consist-
ently accurate (as measured by rWIS IQR) forecasts across 
forecast horizons, forecast dates and Trusts, overcoming 
the variable performance of the individual models. This is 
consistent with other COVID-19 forecast evaluation stud-
ies [8, 14, 21, 23] and other diseases [25, 27, 48].

Besides informing situational awareness at a local 
level, more robust forecasts of hospital admissions can 
improve forecasts of bed or ICU needs [10, 11, 13, 14], 
although occupancy forecasts will also depend on patient 
demographics, patient pathways, ICU requirements and 
bed availability and length-of-stay distributions [11].

Our framework for forecasting local-level hospital 
admissions can be applied in other epidemic settings 
with minimal overheads or used as a baseline to assess 
other approaches. The models we used are disease-
agnostic and only use counts of reported cases and hos-
pital admissions to forecast future admissions. The only 
context-specific data is the Trust to local authority map-
ping, used to estimate community pressure of COVID-19 
cases on Trusts. In other contexts, this could be replaced 
with an analogous mapping (either based on admissions 
data for that disease and/or informed by knowledge of 
local healthcare-seeking behaviour in that setting), or a 
mapping based on mobility models of patient flows (e.g. 
[49, 50]). We also note that in other contexts, it may be 
appropriate to include seasonality in each of the forecast-
ing models.

We found that the prediction interval coverage of the 
ARIMA regression model was especially low, which 
inspires a number of areas for future work. One likely 
reason for this result is that this model uses only the 
median case forecast, ignoring uncertainty; future work 
could account for uncertainty of case forecasts (e.g. by 
using case forecast sample paths as the predictor) and 
evaluate how this changes the model’s performance. 
Other reasons for low coverage could be changes over 
time in the association between cases and admissions, 
that is, in the CHR or the delay to admission, both of 
which could occur when the case demographics change 
[1, 12]. Improvements here could allow the lag between 
cases and admissions to change over time, or to use mul-
tiple case predictors at different lags, e.g. distributed lag 
models [51]. However, we also note that these changes 
carry no guarantee of better forecasting performance: we 
showed that the case-convolution model (which effec-
tively includes the above adaptations) does not consist-
ently outperform the ARIMA regression model in its 
current format, especially at longer time horizons.

The mean-ensemble forecast could be further 
improved in a number of ways, providing many ave-
nues for future work. First, by improving the fore-
casting accuracy of the existing models, for example 
by improving the underlying case forecasts, includ-
ing additional or more detailed predictors of hospital 
admissions (e.g. age-stratified cases or mobility). We 
showed that perfect case forecasts only reduced the 
WIS of the mean-ensemble by approximately 15% for 
a 14-day horizon, suggesting efforts would be better 
spent on identifying better predictors or additional 
models to include in the ensemble (e.g. other statistical 
and machine learning models [14, 19], or mechanistic 
models [8]). Other ensemble methods could be consid-
ered, such as including a threshold for including mod-
els in the ensemble model pool, or making a weighted 
ensemble based on past performance [8]; however, 
more complex methods do not guarantee any substan-
tial improvement over a simple mean-ensemble [8, 
52], and typically require a history of forecast scores 
to implement. Finally, forecasts may be improved 
by using a time-varying Trust-UTLA mapping, or by 
using a mapping with a smaller geographical region 
(e.g. lower-tier local authorities).

Potential improvements trade off accuracy with 
data availability (such as availability in real-time; at 
a relevant spatial scale and/or across all target loca-
tions; whether the data is publicly available) and/or 
computational power (for additional or more complex 
forecasting models, or to make reasonable forecasts 
of additional predictors). During an outbreak, time 
required to develop and improve forecasting models 
is limited and in competition with other objectives. 
When forecasting local-level hospital admissions in 
epidemic settings, assuming no change in admissions is 
rarely better than including at least a trend component; 
including a lagged predictor, such as cases, can fur-
ther improve forecasting accuracy, but is dependent on 
making good case forecasts, especially for longer fore-
cast horizons. Using a mean-ensemble overcomes some 
of the variable performance of individual models and 
allows us to make more accurate and more consistently 
accurate forecasts across time and locations.

The models presented here have been used to pro-
duce an automated weekly report of hospital forecasts 
at the NHS Trust level [53] for consideration by policy 
makers in the UK. Given the minimal data and com-
putational requirements of the models evaluated here, 
this approach could be used to make early forecasts of 
local-level healthcare demand, and thus aid situational 
awareness and capacity planning, in future epidemic or 
pandemic settings.
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Conclusions
Assuming no change in current admissions is rarely 
better than including at least a trend. Using confirmed 
COVID-19 cases as a predictor can improve admis-
sions forecasts in some scenarios, but this is variable 
and depends on the ability to make consistently good 
case forecasts. However, ensemble forecasts can make 
consistently more accurate forecasts across time and 
locations. Given minimal requirements on data and com-
putation, our admissions forecasting ensemble could be 
used to anticipate healthcare needs in future epidemic or 
pandemic settings.
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nhs.data (0.1.0) [29], EpiNow2 (1.3.3.8) [20], EpiSoon (0.3.0) [36] and scoringutils 
(0.1.7.2) [44]. Fully reproducible code is available at https://​github.​com/​epifo​
recas​ts/​covid​19-​hospi​tal-​activ​ity.
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