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A healthy dietary metabolic signature 
is associated with a lower risk for type 2 
diabetes and coronary artery disease
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Abstract 

Background:  The global burden of cardiovascular disease and type 2 diabetes could be decreased by improving 
dietary factors, but identification of groups suitable for interventional approaches can be difficult. Reporting of dietary 
intake is prone to errors, and measuring of metabolites has shown promise in determining habitual dietary intake. 
Our aim is to create a metabolic signature that is associated with healthy eating and test if it associates with type 2 
diabetes and coronary artery disease risk.

Methods:  Using plasma metabolite data consisting of 111 metabolites, partial least square (PLS) regression was used 
to identify a metabolic signature associated with a health conscious food pattern in the Malmö Offspring Study (MOS, 
n = 1538). The metabolic signature’s association with dietary intake was validated in the Malmö Diet and Cancer study 
(MDC, n = 2521). The associations between the diet-associated metabolic signature and incident type 2 diabetes and 
coronary artery disease (CAD) were tested using Cox regression in MDC and logistic regression in Malmö Preventive 
Project (MPP, n = 1083). Modelling was conducted unadjusted (model 1), adjusted for potential confounders (model 
2) and additionally for potential mediators (model 3).

Results:  The metabolic signature was associated with lower risk for type 2 diabetes in both MDC (hazard ratio: 0.58, 
95% CI 0.52–0.66, per 1 SD increment of the metabolic signature) and MPP (odds ratio: 0.54, 95% CI 0.44–0.65 per 1 
SD increment of the metabolic signature) in model 2. The results were attenuated but remained significant in model 
3 in both MDC (hazard ratio 0.73, 95% CI 0.63–0.83) and MPP (odds ratio 0.70, 95% CI 0.55–0.88). The diet-associated 
metabolic signature was also inversely associated with lower risk of CAD in both MDC and MPP in model 1, but the 
association was non-significant in model 3.

Conclusions:  In this proof-of-concept study, we identified a healthy diet-associated metabolic signature, which 
was inversely associated with future risk for type 2 diabetes and coronary artery disease in two different cohorts. The 
association with diabetes was independent of traditional risk factors and might illustrate an effect of health conscious 
dietary intake on cardiometabolic health.
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Background
Cardiovascular disease is the leading cause of death 
worldwide and 1 in every 11 adults has type 2 diabetes 
globally which has detrimental effect on quality of life 
and life expectancy among millions of people annually [1, 
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2]. There is increasing evidence that many cases of type 
2 diabetes and cardiovascular disease could be prevented 
by maintaining a healthy diet [2, 3]. The current evidence 
is suggesting that a healthy diet is low in red meat, pro-
cessed meat, refined grains and sugar-sweetened bever-
ages and rich in whole grains, fruits, vegetables, nuts and 
legumes [2, 3].

The interaction between health and dietary intake is 
complex. Recently, the use of dietary patterns has become 
increasingly common in nutritional epidemiology as a 
tool to distinguish between different dietary habits and 
to assess the health effect of food intake [4, 5]. Several 
data-driven methods have shown adherence to health-
conscious dietary patterns to be associated with a lower 
risk for type 2 diabetes and cardiovascular disease [4–6]. 
The health conscious/prudent dietary patterns often have 
a similar composition as the diets that are currently being 
recommended for type 2 diabetes and cardiovascular dis-
ease prevention [4–6].

The use of metabolite measurement in nutrition 
research is common as food or food component intake 
biomarkers provide an objective assessment of dietary 
intake unaffected by the inherent difficulties of dietary 
intake reporting [7, 8]. We have previously investigated 
the relationship between a data-driven healthy dietary 
pattern and single metabolites and found several dietary 
pattern associated metabolites to be associated with 
future risk for cardiovascular disease [9].

Metabolite patterns rather than single metabolites 
might better reflect the overall adherence to dietary pat-
terns [7, 10]. Dietary pattern associated biomarkers also 
have the potential to not only capture the intake of nutri-
ents, but also individual variation in the microbiota- and 
endogenous metabolism of food [11]. Several studies 
have shown promising results using multivariate metabo-
lomics modelling to discriminate participants based on 
their dietary intake [12–14].

Our aim in this study is two-fold. First, we seek to use 
multivariate methodology to create a metabolic signature 
of a health conscious dietary pattern and test its validity 
in different cohorts. We will then investigate the associa-
tion of the diet associated metabolic signature with coro-
nary artery disease and type 2 diabetes in two separate 
cohorts. This approach may pave the way for the identi-
fication of individuals with unhealthy eating habits and a 
higher risk for cardiovascular disease and type 2 diabetes 
with a single plasma sample.

Methods
Cohort descriptions
We conducted this study using data from three differ-
ent Swedish cohorts: the Malmö Offspring Study (MOS) 
[15], the Malmö Diet and Cancer study (MDC) [16] and 

the Malmö Preventive Project (MPP) [17]. As described 
below, a diet associated metabolic signature was gen-
erated and internally validated in MOS and further 
externally validated in MDC. The associations with the 
metabolic signature and future type 2 diabetes and CAD 
were tested in both MDC and MPP.

MOS is an ongoing cohort study that was launched 
in 2013 to map risk factors for chronic diseases [15]. In 
our study, the study sample consisted of 1538 individu-
als with overlapping data on metabolomics and adher-
ence to a previously derived data-driven healthy food 
pattern [18].

MDC is a population-based prospective cohort study 
consisting of 28 098 individuals who attended baseline 
examination between 1991 and 1996 [16]. We had pre-
viously included a random sample of 3833 participants 
from the MDC cardiovascular cohort [9], and out of 
these, 2684 had information on adherence to a previously 
derived data-driven healthy food pattern [6]. After exclu-
sion of participants with prevalent coronary artery dis-
ease (CAD) (n = 0) or prevalent type 1 or type 2 diabetes 
(n = 138), missing data on alcohol intake (n = 1) or smok-
ing status (n = 7), or unknown vital status due to emigra-
tion (n = 17), 2521 individuals remained and were used in 
the statistical analyses.

MPP is another population-based prospective cohort, 
with 33,346 individuals enrolled between 1974 and 1992. 
Between 2002 and 2006, all participants still alive were 
invited to a re-examination, which serves as baseline in 
this study. Among a random sample of 5386 individuals 
out of the 18,240 that attended re-examination, we have 
previously created a nested case-control study design 
[17]. Among the 5386 individuals, 1406 were excluded 
due to prevalent type 2 diabetes, CAD or because of 
incomplete data on CAD risk factors or missing plasma 
samples. Out of the remaining 3980 individuals, 382 
developed CAD before December 31, 2013, and 203 
developed type 2 diabetes. In total, 35 individuals devel-
oped both type 2 diabetes and CAD. The remaining 3361 
individuals qualified as controls due to them not develop-
ing CAD or type 2 diabetes during follow-up. Due to high 
analytical demand, 498 were randomly included in the 
analyses as controls, resulting in a baseline study sample 
of 1083 individuals. The median follow-up time for type 2 
diabetes was 6.3 years and for CAD 7.2 years.

Covariate collection
At the baseline examination of respective cohort, covari-
ate collection was done primarily through question-
naires combined with a visit to a research nurse whom 
conducted standardised anthropometrics analyses and 
blood sampling. BMI was calculated using the weight 
and height measured at the baseline visit. Supine blood 
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pressure (mm Hg) was measured once after 10 min rest. 
The usage of anti-hypertensive medicine was identified 
through a questionnaire where participants listed their 
daily medications.

In MDC, physical activity was assessed using a ques-
tionnaire including 17 different activities adapted from 
the Minnesota Leisure Time Physical Activity Ques-
tionnaire and split into three equally big groups: low, 
medium and high [6]. In MPP, physical activity was clas-
sified according to four different categories in a question-
naire as previously described [19]. The highest group had 
only two participants so they were moved into the “high” 
activity group so that three groups remained. Participants 
with missing data on physical activity were imputed into 
the largest middle group. Smoking status was defined as 
smoking or non-smoking using self-reporting. Ex-smok-
ers were defined as non-smokers. The total consumption 
of alcohol was in MDC defined by a four-category varia-
ble created by combining information from the question-
naire and the 7 day menu book as previously described 
[6]. After the above described exclusion in MDC, com-
bined with the imputation of physical activity in MPP, 
there were no missing values for the covariates.

Baseline blood samples were drawn for analysis of 
blood lipids (total and HDL-cholesterol and triglycerides) 
and blood glucose according to standard procedures at 
the Department of Clinical Chemistry, Malmö Univer-
sity Hospital. LDL-cholesterol concentration was cal-
culated according to Friedewald formula. An aliquot of 
plasma samples were collected in citrate-coated vials in 
MDC and EDTA-coated vials in MPP and MOS and fro-
zen to − 80° until extraction for metabolomics analysis as 
described below.

Follow‑up data
Endpoints were retrieved by linking the ten digit Swed-
ish personal identification number with three registers: 
the Swedish Hospital Discharge Register, the Swed-
ish Cause of Death Register, and the Swedish Coro-
nary Angiography and Angioplasty Registry (SCAAR) 
as previously described [9]. These registers have been 
previously described and validated for classifications 
of outcomes [20]. CAD was defined as coronary artery 
revascularization, fatal or non-fatal myocardial infarc-
tion or death due to ischemic heart disease. Myocardial 
infarction was defined on the basis of the International 
Classification of Diseases (ICD) 9 code 410 or ICD-10 
code I21. Death attributable to ischemic heart disease 
was defined as ICD-9 codes 412 and 414, or ICD-10 
codes I22, I23, or I25. Coronary artery bypass surgery 
was identified from the national Swedish classification 
systems of surgical procedures and defined as proce-
dure codes 3065, 3066, 3068, 3080, 3092, 3105, 3127, or 

3158 in the Op6 system or as procedure code FN in the 
KKÅ97 system. Percutaneous coronary intervention was 
identified from SCAAR [21].

Incident diabetes cases were retrieved from six dif-
ferent national and regional diabetes registers as 
described elsewhere [22]. Prevalent diabetes mellitus 
at baseline was defined as a fasting whole blood glu-
cose ≥ 6.1 mmol/L (corresponding to a plasma glucose 
of ≥ 7.0 mmol/L) or a history of physician diagnosis of 
diabetes mellitus or being on antidiabetic medication or 
having been registered in any of the six different national 
and regional diabetes registers.

The date of last follow-up was 2016-12-31 in MDC and 
2013-12-31 for MPP.

Health conscious food patterns
In this study, we utilised two published data-driven die-
tary patterns, a health-conscious food pattern from MOS 
[18] and a health-conscious food pattern from MDC 
[6] which both were created using principal component 
analysis to reduce food groups to dietary patterns. In 
MDC, the dietary data was collected using a modified 
diet history method that combined a 7-day menu book, a 
food frequency questionnaire and a 45-min interview [23, 
24]. In MOS, the diet was assessed using the 4-day online 
food record Riksmaten2010, developed by the Swedish 
National Food Agency and a short food frequency ques-
tionnaire [25, 26]. The food patterns consisted of similar 
loadings in MOS and MDC (Additional file  1: Supple-
mentary method).

Metabolomics analysis
Profiling of plasma metabolites was performed using 
LC-MS using a UPLC-QTOF-MS System (Agilent Tech-
nologies 1290 LC, 6550 MS, Santa Clara, CA, USA) and 
has been described elsewhere [27]. Briefly, over-night 
fasted plasma samples were extracted and subsequently 
separated on an Acquity UPLC BEH Amide column (1.7 
μm, 2.1 × 100 mm; Waters Corporation, Milford, MA, 
USA).

We identified metabolites by matching the measured 
mass-over charge ratio (m/z) and chromatographic reten-
tion times with an in-house metabolite library consist-
ing of 111 metabolites that were measurable on all three 
cohorts (Additional file 1: Table S1). Out of 111 metabo-
lites, 25 of them, mostly consisting of acylcarnitines had 
putative identities based on their fragmentation spectra 
and the rest had confirmed identities (Additional file  1: 
Table  S1). Metabolite peak areas were integrated using 
Agilent Profinder B.06.00 (Agilent Technologies, Santa 
Clara, CA, USA). The normalisation process of metabo-
lite levels is described in the supplementary method 
(Additional file 1: Supplementary method) [28].
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Statistical analyses
All statistical analyses were done using R (version 4.0.4). 
To create a metabolic signature for health-conscious 
eating in MOS, partial least square (PLS) regression 
was applied with metabolite data as X and the health-
conscious food pattern in MOS as Y using the package 
mixOmics (version 6.14.0) [29]. The model was trained 
in 80% randomly selected participants from MOS. The 
number of principal components included in the model 
was determined by calculating the Q2 (predicted varia-
tion) and R2 (explained variation) values using ten-fold 
cross validation and a threshold of Q2 > 0.0975 [30]. This 
resulted in only one principal component, named the 
metabolic signature. The results were validated in the 
remaining 20% using Pearson correlation after calculat-
ing the metabolic signature using the “Predict” function 
in mixOmics. We tested correlations between the meta-
bolic signature and intake of food groups in MOS with 
Pearson correlation. The “Predict” function in mixOmics 
was further used to calculate the metabolic signature in 
MDC and MPP. The correlation between the metabolic 
signature and the health-conscious food pattern in MDC 
was tested using Pearson correlation as well as partial 
Pearson correlation adjusted for sex, age and body mass 
index (BMI).

To test the associations between the metabolic signa-
ture and type 2 diabetes and CAD, together referred to 
as cardiometabolic disease, prospective data was used 
in both MPP and MDC. First, we constructed Kaplan–
Meier curves in MDC for type 2 diabetes and CAD 
separately with participants split into quintiles of the 
metabolic signature. Differences in risk in the Kaplan–
Meier analysis between quintiles were evaluated using 
the log rank test.

To further explore the phenotype of the metabolic 
signature, baseline characteristics were summarised 
by quintile of the metabolic signature in both MPP and 
MDC. The differences were tested using ANOVA for 
continuous variables and chi-square test for categorical 
variables.

For the remainder of the logistic and proportional 
hazard regression analyses, the metabolic signature was 
added as a mean centred and unit variance scaled con-
tinuous variable.

In MDC, Cox proportional hazards regression was 
used to create three models associating the metabolic 
signature with CAD and type 2 diabetes separately. 
Model 1 was unadjusted; model 2 was adjusted for the 
potential confounders smoking, age, sex, alcohol intake 
and physical activity. Model 3 was additionally adjusted 
for the potential mediators LDL cholesterol, HDL cho-
lesterol, glucose, triglycerides, BMI, systolic blood pres-
sure and treatment of anti-hypertensive medicine. Model 

2 was to be considered the main analyses while model 3 
further included adjustments for the above-mentioned 
potential mediators as previously known risk factors for 
cardiometabolic disease. Smoking status, sex, alcohol 
intake and physical activity were adjusted for as categori-
cal variables and the remaining covariates were adjusted 
for as continuous variables. The proportional hazard 
assumption was tested using the “coxzph” function in 
the “Survival” package [31]. Years to event or to last fol-
low-up was used as the underlying time variable in the 
Cox regressions. The association between the metabolic 
signature and CAD in MDC was also tested with logis-
tic regression. As MPP had a nested case-control design 
as previously described, we used logistic regressions to 
test the association between the metabolic signature 
and future disease. We created three models for CAD 
and three models for type 2 diabetes that were adjusted 
for the same variables as Cox regression models 1-3 
except for alcohol intake, which was not included in the 
MPP models as MPP has no baseline estimate of alcohol 
intake. Analyses were considered significant if the p value 
was below 0.05.

Results
The baseline characteristics of the study participants 
in MOS, MDC and MPP can be found in (Table 1). The 
participants in MPP were older and had a higher pro-
portion of men than in MDC and MOS and had higher 
fasting glucose and BMI. Out of the 2521 participants in 
the MDC cohort, 322 participants developed type 2 dia-
betes and 303 CAD during a median follow-up time of 
25.1 years.

We created a metabolic signature for the health-con-
scious food pattern trained on metabolite data in 80% 
of participants in MOS using partial least square regres-
sion. Using tenfold cross-validation resulted in a model 
with one component, as the second component had a 
Q2 (predicted variation) value of 0.076, which was lower 
than the predefined cut-off 0.0975. This indicates that the 
predictive power does not increase by using 2 compo-
nents instead of 1. The single retained component had a 
moderate Q2 value of 0.29 and a moderate R2 (explained 
variation) value of 0.28 in the training set in MOS. The 
unadjusted correlation between the metabolic signature 
and the health conscious dietary pattern was strong in 
the validation subset of MOS (ρ = 0.52, 95% CI 0.44–0.60, 
p = < 0.0001) (Fig.  1B). The R2 in the validation subset 
was 0.27. The metabolite beta carotene contributed the 
most to the model component as positive loading fol-
lowed by C4:OH-acylcarnitine, ergothioneine, homo-
stachydrine, C13:0-acylcarnitine and acetylornithine 
(Fig.  1A). The metabolites that contributed the most as 
negative loadings in the model component were proline, 
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Table 1  Baseline study characteristics

Values are displayed as mean (SD) or percentages

BMI Body mass index, LDL LDL cholesterol, HDL HDL cholesterol, TG Triglycerides, CAD Coronary artery disease
a The MPP cohorts had 880 participants included in the CAD nested case control study and 701 included in the type 2 diabetes nested case control study

Malmö Offspring Study (MOS)
mean (SD) or %

Malmö Diet and Cancer (MDC)
mean (SD) or %

Malmö 
Preventive 
Project (MPP)
mean (SD) or %

Participants (n) 1538 2521 880/701a

Dietary data Yes Yes No

Age (years) 40.4 (13.9) 57.4 (6.0) 69.5 (6.1)

Sex (% female) 54.2% 59.5% 28.6%

LDL (mmol L−1) 3.13 (0.93) 4.13 (0.96) 3.78 (0.98)

HDL (mmol L−1) 1.64 (0.48) 1.42 (0.37) 1.36 (0.41)

TG (mmol L−1) 1.09 (0.67) 1.23 (0.57) 1.24 (0.63)

Glucose (mmol L−1) 5.49 (1.00) 4.90 (0.43) 5.55 (0.59)

BMI (kg m−2) 25.6 (4.5) 25.3 (3.7) 27.1 (4.3)

Systolic blood pressure (mm Hg) 117.6 (15.6) 140.6 (18.5) 146.4 (21.5)

Current smoker 32.8% 28.1% 21.4%

Anti-hypertensive treatment 8.7% 11.3% 39.9%

Fig. 1  Metabolic signature model. A The 25 metabolites with the strongest influence on the component in the metabolic signature. B Association 
with the metabolic signature and health-conscious food pattern in the validation cohort in MOS. C Association with the metabolic signature and 
the health conscious food pattern in MDC. DMGV, dimethylguanidino valerate
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dimethylguanidino valerate (DMGV) and isoleucine 
(Fig. 1A). The complete model loadings can be found in 
the supplementary material (Additional file 1: Table S1).

The metabolic signature correlated with food groups 
that contributed to the loadings in the health-conscious 
food pattern in MOS (Additional file 1: Fig. S1). The larg-
est correlations were with fruit and berries (ρ = 0.34), 
non-legume-vegetables (ρ = 0.25), tea (ρ = 0.23), legumes 
(ρ = 0.20) and nuts and seeds (ρ = 0.18). The largest nega-
tive correlations were with low fibre bread (ρ = − 0.28), 
sugar sweetened beverages (ρ = − 0.26), red non-pro-
cessed meat (ρ = − 0.25) and processed meat (ρ = − 0.19).

The metabolic signature trained in MOS was used to 
extrapolate a metabolic signature in MDC and MPP using 
metabolite levels. The predicted metabolic signature cor-
related moderately with the health-conscious dietary pat-
tern in MDC (ρ = 0.20, 95% CI 0.16–0.24, p = < 0.0001) 
(Fig.  1C). Adjusting the correlation model for BMI, sex 
and age did not affect the correlation coefficient (ρ = 0.20, 
95% CI 0.18–0.22, p = < 0.0001). In MDC, MPP and MOS 
respectively, individuals in quartile 1 of the metabolic sig-
nature were more predominantly male, had lower fasting 
HDL cholesterol, higher fasting glucose higher BMI and 
higher systolic blood pressure (Additional file  1: Tables 
S2-S4). The mean BMI of participants in MDC of quintile 
1 of the metabolic signature was 26.8 compared to 23.8 in 
quintile 5. In MPP, quintile 1 of the metabolic signature 
had a mean BMI of 29.0 compared to the mean BMI of 
25.0 in quintile 5. The numerically greatest attenuation by 
“one-by-one” risk factor adjustments stemmed from BMI 
(Additional file 1: Table S5).

In Kaplan–Meier analyses in MDC with participants 
split into quintiles according to the metabolic signature, 
lower quintile was associated with an increased risk for 
both type 2 diabetes and CAD (log rank test p < 0.0001) 
(Fig. 2).

The metabolic signature was associated with a lower 
risk of type 2 diabetes and CAD in unadjusted models 
in both MDC and MPP (Table  2). The association with 
type 2 diabetes was still significant in both MDC (hazard 
ratio (HR) = 0.73 per 1 SD increment of the metabolic 
signature, 95% CI 0.63–0.83, p = 3E−6) and MPP (odds 
ratio (OR) = 0.70 per 1 SD increment of the metabolic 
signature, 95% CI 0.55–0.88, p = 0.003) in model 3. The 
proportional hazard assumption was met for the Cox 
regression model (Additional file 1: Fig. S2).

The association with CAD remained significant in 
MDC in model 2 (HR = 0.87 per 1 SD increment of the 
metabolic signature, 95% CI 0.77–0.99, p = 0.03), and in 
MPP, the association was slightly attenuated (OR = 0.86 
per 1 SD increment of the metabolic signature, 95% CI 
0.74–1.00, p = 0.06) and no longer statistically signifi-
cant. The Cox regression model for CAD in MDC did 

not completely fulfil the proportional hazard assump-
tion (Additional file 1: Fig. S3). Associations between the 
metabolic signature and CAD were thus further analysed 
with logistic regression, which yielded similar results as 
the Cox regressions, with model 2 showing no statisti-
cally significant association (Additional file 1: Table S6).

The associations with CAD were no longer significant 
in model 3 in both MDC and MPP (Table 2, Additional 
file 1: Table S6).

Discussion
Key findings
We here identify a metabolite-based signature as a surro-
gate for a healthy dietary pattern and test its association 
with future risk for type 2 diabetes and CAD in two inde-
pendent populations. The metabolic signature was signif-
icantly inversely associated with both type 2 diabetes and 
CAD in two separate cohorts with baseline sampling up 
to a decade apart. The association between the metabolic 
signature and type 2 diabetes remained strongly signifi-
cant after adjustments for several known risk factors.

Data‑driven dietary patterns associated biomarkers
There is an increasing amount of attention given to die-
tary biomarkers as a tool to assess dietary intake, evalu-
ate compliance to a dietary pattern and to identify and 
evaluate relationships between dietary patterns and dis-
ease [32]. Many studies combining dietary patterns and 
metabolomics have utilised the methodology to show 
adherence to pre-determined dietary patterns [12–14, 
33, 34]. Several studies have shown that data-driven “pru-
dent” or “health conscious” dietary patterns reflect the 
highest degree of explained variation in dietary intake [4, 
5]. Creating biomarkers for data-driven patterns rather 
than pre-determined pattern might capture the existing 
variation in dietary intake in the population. The down-
side of using data-driven patterns is that external repro-
ducibility is more difficult.

By combining dietary patterns and metabolomics 
data, it has previously been shown that a Mediterra-
nean diet metabolic signature was associated with a 
lower risk of cardiovascular disease [35] and metab-
olites associated with pre-defined healthy dietary 
indexes have been shown to be associated with a lower 
risk for type 2 diabetes, albeit the associations were not 
independent of potential mediators [12]. Prospective 
cohort studies utilising biomarkers associated to data-
driven dietary patterns are scarcer. To our knowledge, 
a previous publication from our group is the first and 
only to evaluate data-driven dietary pattern biomarkers 
association with future disease risk [9]. We discovered 
metabolites associated with a health conscious dietary 
pattern and a lower risk for cardiometabolic disease 
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[9]. Here, by using multivariate metabolites modelling, 
we look to better assess the overall adherence to health 
conscious dietary patterns as well as the relationship 
between dietary intake and disease outcome [7]. We 
also test the relationship between the metabolite mod-
elling and future cardiometabolic disease in a cohort 

without dietary data to show the potential of such a 
model.

Internal and external validation
The cross validation in the training set of MOS and the 
correlation analysis in the validation set in MOS yielded 

Fig. 2  Kaplan–Meier curves. Individuals in MDC split into five quintiles depending on metabolic signature levels. p, p value calculated using log 
rank test
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almost identical results, which indicates that the model 
was not over-fitted. The moderate correlation between 
the predicted metabolic signature and the health con-
scious food pattern in MDC was expected as the food 
pattern was constructed with a different dietary sam-
pling method, had slightly different loadings, and the 
plasma was collected more than two decades apart. The 
metabolic signature in MOS correlated with food groups 
that were part of the health conscious food pattern [18]. 
Similarities in the two published health-conscious food 
patterns in MDC and MOS and the prediction capacity 
of the metabolic signature suggests that structure of the 
health-conscious food pattern has remained similar in 
Sweden over time [6, 18]. It also further supports the case 
that the metabolic signature reflects healthy eating.

Dietary metabolites in model loadings
In the model loadings, the top six metabolites all contrib-
uted positively. Beta-carotene, ergothioneine and acety-
lornithine have all been associated with vegetable intake 
[34, 36, 37]. Homostachydrine (pipecolic acid betaine), 
is known to be associated with whole grain intake [34] 
while C4:0:OH-acylcarnitine (hydroxybutyrylcarnitine) 
has been shown to be associated with fasting in healthy 
men [38].

The top negative loadings were proline, dimethylguani-
dino valerate (DMGV) and isoleucine. Rather than spe-
cific dietary markers, these metabolites have been shown 
to represent a state of poor cardiometabolic health 

associated with an increased risk for type 2 diabetes and 
CAD [17, 39–41].

The metabolite signature associates with CAD and type 2 
diabetes
The metabolic signature of the healthy dietary pattern 
was associated with lower risk for CAD and type 2 diabe-
tes in the two separate cohorts MPP and MDC. Individu-
als with low metabolic signature had a worse risk profile 
for cardiometabolic disease. However, the association 
between the metabolic signature and lower risk for type 
2 diabetes remained significant in both cohorts even after 
adjustment for known risk factors. Our model has the 
potential to identify groups with a higher risk for type 2 
diabetes and that increased risk might be due to a poor 
diet. With further development, similar methods could 
be used in the future in a clinical setting to assess dietary 
intake and its contribution to type 2 diabetes risk using 
a single plasma sample. Here, we calculate the metabolic 
signature and assess future risk for type 2 diabetes and 
CAD in cohorts without incorporating dietary data as a 
proof of concept.

After further adjustment in model 3, the associa-
tion between the metabolic signature and lower risk 
for CAD was not significant in neither MPP nor MDC, 
which implicates that the CAD-association is mediated 
or confounded by one of the factors in the model, or via 
an unmeasured factor closely associated with a variable 
in the model. The addition of dietary based metabolite 

Table 2  The association between the metabolic signature and future cardiometabolic disease risk in MDC and MPP

Results from Cox proportional hazard models in MDC and logistics regressions in MPP associating the metabolic signature with risk for type 2 diabetes and CAD. 
Model 2 is adjusted for smoking status, age, sex and physical activity and model 3 is adjusted for smoking status, age, sex, physical activity, LDL cholesterol, HDL 
cholesterol, glucose, triglycerides, body mass index, systolic blood pressure, and treatment of anti-hypertensive medicine. In MDC, model 2 and 3 was additionally 
adjusted for alcohol intake

The odds rations and hazard ratios are standardised to 1 SD increment of the metabolic signature

T2D Type 2 diabetes, CAD Coronary artery disease

Malmö Diet and Cancer (MDC) Model Person years at risk N cases Hazard ratio (HR) P

 Incident T2D 1 54508 322 0.58 (0.52–0.65) 2E− 22

 Incident T2D 2 54508 322 0.58 (0.52–0.66) 3E− 18

 Incident T2D 3 54508 322 0.73 (0.63–0.83) 3E− 06

 Incident CAD 1 55463 303 0.73 (0.65–0.82) 9E− 08

 Incident CAD 2 55463 303 0.87 (0.77–0.99) 0.03

 Incident CAD 3 55463 303 0.94 (0.82–1.07) 3

Malmö Preventive Project (MPP) Model N total N cases Odds ratio (OR) p

 Incident T2D 1 701 203 0.53 (0.44–0.63) 2E− 11

 Incident T2D 2 701 203 0.54 (0.44–0.65) 1E− 09

 Incident T2D 3 701 203 0.70 (0.55–0.88) 0.003

 Incident CAD 1 880 382 0.78 (0.68–0.89) 4E− 4

 Incident CAD 2 880 382 0.86 (0.74–1.00) 0.06

 Incident CAD 3 880 382 0.93 (0.78–1.11) 0.4
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modelling might provide more insight in type 2 diabe-
tes development than in CAD development.

Limitations
The reproducibility of our finding are a limitation of 
the study. We have used two different but similar health 
conscious food patterns to validate our results, but the 
structure of such a pattern might be different in other 
populations. The metabolic signature is also created 
from an in-house metabolite library that is unique for 
our lab. To make the results useful in a clinical set-
ting, the biomarker panel could be better optimised 
for dietary pattern biomarker discovery. The library of 
metabolites we are measuring focus on amino acids and 
intermediaries from their degradation pathways. By 
creating dietary specific biomarkers, perhaps by com-
bining several methods of measurement, prediction 
of healthy dietary intake using a single plasma sample 
could be refined.

Another limitation is that metabolite measurements 
are only conducted once per participants. Repeated 
plasma sampling could attenuate variation created by the 
irregular consumption of certain foods. As of now, the 
application of similar models would be limited to iden-
tify groups of individuals with lower adherence to healthy 
food patterns and higher risk of future cardiometabolic 
disease and individual assessments should be made with 
caution.

The nested case-control design in MPP made the appli-
cation of Cox regression models incorrect. Instead, logis-
tic regression models were used, which might reduce the 
accuracy of the results slightly due to the time variable 
not being taken into account. Decreasing the power of 
the prospective analyses increases the risk of false nega-
tive findings.

Conclusion
In this proof-of-concept study, we identify a metabolic 
signature as a surrogate for healthy eating that inversely 
associates with type 2 diabetes independently of a broad 
set of known risk factors in two independent cohorts. 
Moreover, the diet-associated metabolic signature was 
also inversely associated with CAD in both cohorts albeit 
not independently of known risk factors. We suggest an 
inverse association between the metabolic signature and 
cardiometabolic risk and speculate that a lower signature 
might stem from unhealthy eating habits.
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