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Abstract 

Background:  Congenital long QT syndrome (LQTS) is a rare heart disease caused by various underlying mutations. 
Most general cardiologists do not routinely see patients with congenital LQTS and may not always recognize the 
accompanying ECG features. In addition, a proportion of disease carriers do not display obvious abnormalities on their 
ECG. Combined, this can cause underdiagnosing of this potentially life-threatening disease.

Methods:  This study presents 1D convolutional neural network models trained to identify genotype positive LQTS 
patients from electrocardiogram as input. The deep learning (DL) models were trained with a large 10-s 12-lead 
ECGs dataset provided by Amsterdam UMC and externally validated with a dataset provided by University Hospital 
Leuven. The Amsterdam dataset included ECGs from 10000 controls, 172 LQTS1, 214 LQTS2, and 72 LQTS3 patients. 
The Leuven dataset included ECGs from 2200 controls, 32 LQTS1, and 80 LQTS2 patients. The performance of the DL 
models was compared with conventional QTc measurement and with that of an international expert in congenital 
LQTS (A.A.M.W). Lastly, an explainable artificial intelligence (AI) technique was used to better understand the predic-
tion models.

Results:  Overall, the best performing DL models, across 5-fold cross-validation, achieved on average a sensitivity of 
84 ± 2%, 90 ± 2% and 87 ± 6%, specificity of 96 ± 2%, 95 ± 1%, and 92 ± 4%, and AUC of 0.90 ± 0.01, 0.92 ± 0.02, 
and 0.89 ± 0.03, for LQTS 1, 2, and 3 respectively. The DL models were also shown to perform better than conven-
tional QTc measurements in detecting LQTS patients. Furthermore, the performances held up when the DL models 
were validated on a novel external cohort and outperformed the expert cardiologist in terms of specificity, while in 
terms of sensitivity, the DL models and the expert cardiologist in LQTS performed the same. Finally, the explainable 
AI technique identified the onset of the QRS complex as the most informative region to classify LQTS from non-LQTS 
patients, a feature previously not associated with this disease.

Conclusions:  This study suggests that DL models can potentially be used to aid cardiologists in diagnosing LQTS. 
Furthermore, explainable DL models can be used to possibly identify new features for LQTS on the ECG, thus increas-
ing our understanding of this syndrome.
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Background
Congenital long QT syndrome (LQTS) is an inherited 
heart rhythm disorder characterized by a prolonged 
QT interval and abnormal T wave morphology on the 
electrocardiogram (ECG). QT prolongation predis-
poses those affected to life-threatening arrhythmias. 
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These arrhythmias can lead to sudden loss of conscious-
ness (syncope) and cardiac arrest and potentially cause 
sudden cardiac death. Although genetic heterogene-
ity is observed in LQTS, KCNQ1 (LQTS1) and KCNH2 
(LQTS2), both encoding potassium channel proteins, and 
SCN5A (LQTS3), encoding a sodium channel protein, 
are the most common genes responsible for LQTS [1, 2].

LQTS is rare, with an estimated prevalence of 1:2000 
among whites [3]. The diagnosis of LQTS is mainly based 
on the measurement of the QT interval corrected for 
heart rate (QTc) [1, 4]. Prolongation of the QT interval is 
the hallmark of LQTS, but it is not always present in car-
riers of a disease-causing mutation. In fact, many studies 
have shown that a substantial number of genotype posi-
tive LQTS patients have a baseline QT interval within 
normal limits (concealed LQTS). This makes it diffi-
cult, in particular, for a general cardiologist to diagnose 
LQTS, causing significant underdiagnosis of this disease 
[5–7]. Given that the degree of QT prolongation is asso-
ciated with increased arrhythmic risk, concealed LQTS 
patients are still at risk of developing possibly lethal car-
diac arrhythmias [5, 6]. Furthermore, specific medication 
can induce QT prolongation in these patients, increasing 
their risk of developing malignant arrhythmia and should 
therefore be avoided [2]. Over the years, the identifica-
tion of additional ECG features, such as abnormal T wave 
morphology and the use of provocative testing strate-
gies, helped unmask concealed LQTS patients [8–10]. 
However, this increased physician and public awareness 
of warning signs suggestive of LQTS also led to overdi-
agnosis of this disease. It has been shown that erroneous 
QTc calculation, mainly by non-arrhythmia specialists, 
is one of the primary reasons for individuals being mis-
diagnosed as having LQTS. Miscalculation of the QTc, 
misinterpretation of the normal distribution of QTc val-
ues, and misinterpretation of symptoms appear respon-
sible for most of the diagnostic miscues [11]. Therefore, a 
more sensitive and reliable tool, able to aid cardiologists 
in diagnosing congenital LQTS on the ECG, could help 
improve the detection and early of this disease, making 
early intervention possible, hopefully preventing sudden 
cardiac death, for example, by reducing exposure to QT 
prolonging medication.

Previous studies using machine learning (ML) and deep 
learning (DL) methods have shown to improve the diag-
nosis of LQTS [12, 13]. These earlier studies presented 
high performing DL models; however, most studies were 
validated on the same population on which the DL mod-
els were trained, so the lack of external validation pos-
sibly limits the generalizability of the models in separate 
populations [13].

In this study, we evaluated if a DL algorithm can detect 
carriers of disease-causing mutations in LQTS. Instead 

of using the assessment of a LQTS expert, the genotype 
was used as the gold standard to train our DL models. 
To further assess the strength of our DL models, we vali-
dated the performance of the latter twice, using 5-fold 
cross-validation and with an external dataset. We then 
compared the performance of the DL models with con-
ventional QTc measurements and with an expert cardi-
ologist. Furthermore, we aimed to open the ‘black box’ 
of our DL models by using an explainable AI technique 
which can help us get more insight into what part of the 
ECG is most informative for the DL models.

Methods
Figure  1A summarizes the strategy we implemented to 
carry out this study.

Briefly, ECGs were collected, preprocessed, filtered, 
and used to train the DL models. In total, for each LQTS 
type, three separate training approaches were used, with 
each approach using a different type of input data. Fig-
ure 1B shows the developed 1DCNN architecture. For a 
more detailed version of the latter, see Additional file 1: 
Fig. S1. A binary classification was carried out for each 
class of LQTS type (i.e., LQTS1 = 1 versus control = 0, 
LQTS2 = 1 versus control = 0, LQTS3 = 1 versus con-
trol = 0). A 5-fold cross-validation procedure was used 
to train, validate, and test the performance of the DL 
models on the Amsterdam data (Fig. 1C). Subsequently, 
the performance of the DL models was evaluated only 
for LQTS and control patients whose QTc is within the 
overlapping QTc region. Furthermore, an explainable AI 
technique was used to better understand the prediction 
models. Finally, the models were validated on an external 
dataset (Leuven data), and the performances were com-
pared with those of a cardiologist with expertise in LQTS 
(Fig. 1A).

A more detailed description of each phase is reported 
below.

ECG acquisition—Amsterdam data
We collected ECGs from patients who were stored in the 
ECG database (MUSE v8, GE Healthcare) of the Amster-
dam University Medical Centers (UMC), location Aca-
demic Medical Center, during the period from 1998 up 
to and including 2018, consisting of almost 1.5 million 
ECGs from almost 300,000 unique patients.

ECG signal preprocessing and filtering
From this database, we extracted all ECGs from patients 
(age ≥ 16 years old) known to have a genetic variant with 
a class 4 or 5 classifications (according to ACMG guide-
lines) [14] in the KCNQ1 gene (LQTS1), in the KCNH2 
gene (LQTS2) or in the SCN5A gene (LQTS3). These 
data were obtained from the LQTS database generated 
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by Lahrouchi et al. [15] and the clinical genetics database 
of the Amsterdam UMC. ECGs were excluded if they 
were made on the emergency ward or during hospitaliza-
tion on a clinical ward due to the fact that acute cardiac 
pathology could influence the ECG. ECGs from a total 

of 172 LQTS1, 214 LQTS2, and 72 LQTS3 patients were 
collected.

As a control group, instead of using ECGs of geno-
type negative controls, which would be of limited num-
ber, we decided to feed the DL models with more data. 

Fig. 1  Study design for LQTS ECG classification. A Schematic representation of the implemented pipeline. B Proposed 1DCNN architecture. C 
Strategy used to train, validate, and test the DL models
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First, we selected from the MUSE database ECGs from 
patients who underwent general, non-cardiovascular 
pre-operative screening at the outpatient clinic. Then, 
we randomly selected 10000 ECGs labeled as ‘normal’ by 
the ECG machine’s algorithm [16] to filter out ECGs with 
major abnormalities caused by other diseases and ECGs 
with artifacts acquired during the ECG signal acquisition. 
See Additional file 1: Methods for more details [16–19]. 
Given the estimated prevalence of LQTS syndrome being 
1:2000 [3], we estimated that of the 10000 controls whose 
ECGs were used in this study, 9995 of them (99%) would 
be negative for LQTS mutations. The collected patient 
ECGs were then base64 decoded and resampled at the 
same sample frequency (i.e., 250 Hz). Furthermore, a QTc 
as calculated by the ECG machine’s algorithm [16] (auto-
matically measured QTc) was obtained for each ECG and 
used for further analysis.

Development of DL architecture
We implemented a 1-dimensional convolutional neural 
network (1DCNN) architecture comprising 5 Conv1D 
layers, 5 Conv1D layers. Each Conv1D layer is followed 
by a batch normalization layer [20] to adjust and scale the 
input, MaxPooling1D layers, and a dropout layer [21] to 
prevent overfitting during the learning phase. There is 
a flatten and 1 dense layer. The classification training is 
carried out using binary-cross-entropy loss function and 
ADAM optimizer. For more details about the DL archi-
tecture, see Additional file 1: Fig. S1.

Training and validation of the models
We trained the models using three approaches: (i) the 
First ECG approach, which uses the first acquired 12 
lead ECG of each patient (i.e., a total of 172, 214 and 72 
ECGs were used for LQTS 1, 2 and 3 respectively), (ii) 
the All ECG approach, which uses all acquired 12 leads 
ECGs of each patient (i.e., a total of 748, 1122 and 636 
ECGs were used for LQTS 1, 2, and 3 respectively, for 
more details see Additional file  1: Fig. S2), and (iii) an 
additional approach called the Single Lead First ECG 
approach, for which a model is trained for each separate 
ECG lead, instead of using all the 12 leads together. For 
all the approaches, the DL model architecture stays con-
stant, only the input data changes.

The models required a three-dimensional input format-
ted as follows: [patient, time steps, features]. In detail, 
for each patient, we used 12 leads (12 features) or a sin-
gle lead at the time (1 feature) where each lead had 2500 
amplitude values (timesteps). To train and test the DL 
models, we used a 5-fold cross-validation technique. In 
detail, the dataset was split into 5 folds of equal size, and 
each fold (which contained 20% of the ECGs of the initial 
dataset) was used as a test set once, while the other folds 

were temporarily combined to form a training set. The 
training set was further split into a training (80%) and 
validation set (20%) for hyperparameter optimization. 
Performance metrics on the test set were then calculated 
and stored. The process was repeated for the number of 
folds that have been generated. In each iteration, a new 
model was trained and tested. At the end of the 5-fold 
cross-validation run, the collected metrics of the 5 gener-
ated DL models were summarized with the mean and the 
standard deviation. The following metrics were collected: 
sensitivity, specificity, and area under the curve receiver 
operator characteristic (AUC-ROC). We deemed the best 
performing model the one with the highest AUC of the 
5-fold cross-validation run. To address the class imbal-
ance, we oversampled the minority class (LQTS) so that 
the same proportions of control and LQTS patients were 
present in the training set. The test set was not modi-
fied and remained unbalanced. To note that a patient is 
identifiable by a unique ID number and only the first or 
all ECGs available of a patient would appear exclusively 
in the training or testing set. We trained the models for 
50 epochs, using a batch size of 32. A value of 0.5 was 
chosen as the best threshold for ECG classification. This 
implied that ECGs with probability scores above 0.5 were 
classified as LQTS, while ECGs with probability scores 
below 0.5 were classified as controls.

Prediction model interpretation
To better understand the prediction models, we used the 
guided Grad-CAM [22] technique on 1DCNN model to 
build a ponderated activation map according to gradi-
ent’s importance. If an activation map has a large gradi-
ent, it means the activated region has a large impact on 
the decision. In detail, to build a ponderated map, we 
retrieved the gradients with respect to the activation 
maps from the first convolutional layer of our models. 
The best performing DL models for LQTS 1, 2, and 3 
of the 5-fold cross-validation and trained using 12-lead 
ECGs (first acquired or all ECGs) were used. The activa-
tion maps were built considering all leads in the ECGs. 
We then set to zero the gradients associated with a nega-
tive value of the activation maps, calculated the average 
gradient (weight) associated with each filter, and then 
multiplied each filter by its corresponding weight and 
summed up all the filters to get the final map. The val-
ues of ponderated activation map were then normalized 
between 0 and 1. To retrieve the values from the ponder-
ated map corresponding to the different ECG regions (P 
waves, QRS complexes, and the S segments with the T 
waves), we used lead I as a reference. In detail, we over-
laid lead I with the ponderated map and retrieved the 
corresponding values (see next paragraph to see how to 
identify the different ECG regions). Finally, from each 
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range, we took the max values and calculated the average 
of the max values (called score Grad-CAM from now on) 
for each wave type.

Identification of ECG region (P wave, QRS complex, S 
segment, and T wave)
We used the heartbeat detection algorithm implemented 
in Python py-ecg-detectors 1.0.2 [23] to identify the R 
peaks in each ECG recording. Before the detector could 
be used, the class had to be initialized with the sampling 
rate of the ECG recording. We initialized it to 250 hertz 
and used the Engelse and Zeelenberg algorithm to detect 
the R peaks using lead I as a reference. The output of the 
detector is an array with the index of the corresponding 
R peaks. We then retrieved the P wave from the R peak 
with the following formula: index R peak − 50, index R 
peak − 11. This interval corresponds to 49 amplitude val-
ues, which are 0.16 s in our ECG recording. For the QRS 
complex, we used the following formula: index R peak 
− 10, index R peak + 15. This interval corresponds to 25 
amplitude values which are 0.10 sec in our ECG record-
ing. Finally, we used the following formula for the S seg-
ment and the T wave: index R peak + 16, index R peak 
+ 95. This interval corresponds to 80 amplitude values, 
which are 0.32 sec in our ECG recording.

QRS complex comparison
The QRS complexes from lead I were identified using the 
strategy mentioned in the above paragraph. In detail, the 
first 2 and the last 2 R peaks identified by the algorithm 
were excluded from the analysis keeping approximately 
10 R peaks per patient. From these, we retrieved the cor-
responding 10 QRS complexes and calculated the median 
QRS complex per patient. Finally, the median QRS com-
plex of control patients was compared to the median 
QRS complex of the LQTS patients.

External validation set—Leuven data
The external validation dataset was collected from the 
University Hospital Leuven, Belgium. They were col-
lected following the same criteria as presented for the 
Amsterdam data. The dataset included 32 genotype-
positive LQTS1, 80 genotype-positive LQTS2, and 2280 
ECGs control patients.

Evaluation by an expert cardiologist
A subset of control ECGs (n = 150 X 2), LQTS1 (n = 30), 
and LQTS2 (n = 30) ECGs were randomly extracted from 
the Leuven data and were visually evaluated by a cardi-
ologist with expertise in electrophysiology and LQTS 
(A.A.M.W.). The expert classified the ECGs in LQTS1/2 
or non-LQTS. The expert did this by measuring the QTc 
and assessed if there were any morphological T-wave 

abnormalities present associated with either LQTS1 or 
2. If the QTc was normal and in the absence of T-wave 
abnormalities, the ECG was classified as non-LQTS by 
the expert.

Statistical analysis
We used a two-sided paired sample t-test to compare 
the scores Grad-CAM corresponding to different ECG 
regions. The scipy.stats.ttest_rel() function in python was 
used for this purpose. We then corrected the p-value for 
multiple testing. We used the Wilcoxon signed-rank test 
to compare the performances of the models.

Results
Data collection
The Amsterdam data included ECGs from a total of 
172 LQTS1, 214 LQTS2, 71 LQTS3, and 10,000 control 
patients. For an overview of all baseline characteristics 
of the selected patients, see Additional file  1: Table  S1. 
Overall, the LQTS group had, as expected, a significantly 
higher mean QTc compared to controls (452 ± 35 ms 
compared to 411 ± 17 ms, respectively; p < 0.0001). The 
proportion of cases with prolonged QTc is 51%, 39%, 
and 43% for LQTS1, LQTS2, and LQTS3, respectively. 
The proportion of controls with prolonged QTc is 0.01%. 
Thresholds used to define prolonged QTc were as follows: 
≥ 450 ms for males, QTc ≥ 460 ms for females. Each ECG 
consisted of 10 sec for each of 12 leads. Data was col-
lected with a sampling frequency of either 250 or 500hz, 
and all data was downsampled to 250 hz. Finally, for an 
overview of the different types of genetic variants for 
each LQTS type and an overview of the specific genetic 
variants prevalent in the Amsterdam data, see Additional 
file 1: Table S2-3.

Performance of first ECG and all ECG models 
on Amsterdam data—internal validation
All three of the approaches (First ECG, All ECG, and 
Single Lead First ECG) were used to develop the DL 
models. Table 1 shows the average results of 5-fold cross-
validation obtained for the First ECG models. Using this 
approach, the models achieved an average AUC of 0.88, 
0.89, and 0.79 for LQTS 1, 2, and 3, respectively. Prob-
ability scores from which the predictions were derived 
are shown in Additional file 1: Fig. S3. For the All ECG 
approach, the DL models achieved an average AUC of 
0.90, 0.92, and 0.89 for LQTS1, 2, and 3, respectively. 
Probability scores from which the predictions were 
derived are shown in Additional file  1: Fig. S4. When 
comparing the performance of the First ECG models to 
the All ECG models, in addition to performing better 
(in particular for LQTS3, AUC p-value < 0.05), the All 
ECG models also showed a decreased standard deviation 
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(SD) of the performance statistics especially for sensitiv-
ity. This suggests that the models performed similarly on 
5-fold cross-validation and were better able to general-
ize. No sex-specific differences in the DL model’s perfor-
mance were found.

Furthermore, when comparing sensitivity of the First 
ECG models with that diagnosing LQTS using auto-
matic QTc measurement (Additional file 1: Table S1), the 
DL models performed better: 51% versus 79% for LQTS 
1, 39% versus 89% for LQTS 2, and 43% versus 67% for 
LQTS 3. This improvement was even greater in com-
parison to the All ECG models. To validate the accuracy 
of the automatically measured QTc, we performed the 
same analysis; however, this time, we manually meas-
ured the QTc (only for LQTS patients) and then identi-
fied the proportion of LQTS patients with prolonged 
QTc (Additional file  1: Table  S1). The DL models again 
outperformed the QTc measurement in detecting LQTS 
patients. For more details about automatically and manu-
ally measured QTc, see Additional file 1: Methods.

Furthermore, to evaluate model confidence in patients 
with normal QTc compared to patients with prolonged 
QTc, probability scores were extracted for the First ECG 
models. Overall, the results showed that the DL models 
identified a high proportion of LQTS ECGs with high 
confidence in both groups. More in detail, an average of 
87% of all LQTS ECGs with prolonged QTc and an aver-
age of 71% of all LQTS ECGs with normal QTc had a 
probability score ≥ 0.70.

Performance of single Lead first ECG models 
on Amsterdam data
Aside from the two approaches using all 12 leads 
together, the Single Lead First ECG approach was also 
used to train and test the models. Interestingly, for LQTS 
1, 2, and 3, the performance of all the models using a 

single lead approximated the performance when using 
the First ECG approach. For the performance of all these 
Single Lead First ECG models, see Additional file  1: 
Tables S4-6.

Performance of DL models for patients 
within the overlapping QTc range
One of the problems in diagnosing LQTS relates to the 
overlap in the QTc values between LQTS mutation car-
riers and healthy controls. In our study cohort, we found 
approximately 40% overlap between the QTc value dis-
tribution of the two populations (Additional file  1: Fig. 
S5). The overlapping region was defined as the region 
between the lower limit of QTc values distribution of 
the LQTS patients ranging to the upper limit of the QTc 
value distribution of the controls. We wanted to evalu-
ate how the First ECG and All ECG models performed 
in classifying patients within the overlapping QTc region. 
In detail, we restricted the analysis to only those control 
and LQTS patients whose QTc values were within the 
10th–90th percentile of the overlapping QTc region. QTc 
ranges analyzed are 398-475 ms, 403–477 ms, and 403–
475 ms for LQTS 1, 2, and 3, respectively. Predictions of 
the First ECG and All ECG models were then retrieved, 
and the corresponding performance metrics recalcu-
lated (Additional file  1: Table  S7). Overall, no statistical 
differences were found compared to the performance 
of the DL models, which included all LQTS and control 
patients.

Identification of ECG features importance
To investigate how informative each ECG region was, we 
used an explainable AI technique and retrieved a score 
Grad-CAM for each wave type (see Methods for more 
details). Only a subset of our study cohort was used for 
this analysis. In detail, 100 control patients of the test-
ing fold correctly classified (probability score ≤ 0.05) 
by the best performing First ECG models of the 5-fold 
cross-validation were used. The results of this analysis 
showed that the most relevant region of the ECG used by 
the First ECG models to distinguish control and LQTS 1 
or 2 patients corresponds to the QRS complex (adjusted 
p-values < 0.001). On the contrary, the score Grad-CAM 
of the T wave showed high variability, as well as of the 
P wave. For LQTS3, the QRS complex and the T wave 
seemed both relevant compared to P wave, with the QRS 
being the most relevant region (adjusted p-value < 0.001) 
(Fig. 2, left). A more detailed analysis of the QRS complex 
showed that the first half (i.e., onset) of the QRS complex 
was more relevant than the second half for ECG classi-
fication for LQTS 1, 2 and 3 (adjusted p-value < 0.001) 
(Fig. 2, right).

Table 1  Model performances on Amsterdam data

The mean of the collected metrics and the corresponding standard deviation 
(SD) of the 5-fold cross-validation is reported. First ECG approach: the DL models 
were trained using the first acquired 12-lead ECGs. All ECG approach: the DL 
models were trained using all acquired 12-lead ECGs (not only the first acquired) 
per patient

Training Type Internal validation (Amsterdam data)

Sensitivity ± SD Specificity ± SD AUC ± SD

First ECG 
approach 
(Amsterdam 
data)

LQTS1 79 ± 9% 96 ± 1% 0.88 ± 0.04

LQTS2 89 ± 7% 90 ± 3% 0.89 ± 0.03

LQTS3 67 ± 18% 90 ± 9% 0.79 ± 0.05

All ECG 
approach 
(Amsterdam 
data)

LQTS1 84 ± 2% 96 ± 2% 0.90 ± 0.02

LQTS2 90 ± 2% 95 ± 1% 0.92 ± 0.01

LQTS3 87 ± 6% 92 ± 4% 0.89 ± 0.03
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To better visualize the difference, we retrieved the QRS 
complexes from lead I from the same control patients 
analyzed above and the LQTS 1, 2 and 3 patients and cal-
culated the median QRS complex for each patient (Fig. 3, 
left). The median QRS complex from all the control and 
all LQTS ECGs was then calculated (Fig.  3, right). We 

found a lower amplitude of the median QRS complex 
in all 3 types of LQTS patients compared to the control 
group (delta = 0.17-0-25 mV).

The same results were obtained when using the best 
performing DL models trained on all acquired 12-lead 
ECGs (All ECG approach) (data not shown).

Fig. 2  Identification of ECG features importance. Box plots showing the score Grad-CAM corresponding to the P wave, QRS complex, and the S 
segment with the T wave calculated for 100 control ECGs correctly classified by the best performing DL models developed for A LQTS1, B LQTS2, 
and C LQTS3 ECG classification. *** Adjusted p-values ≤.001
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Performances of the model on Leuven data—external 
validation
The Leuven data included ECGs from 32 LQTS1, 80 
LQTS2, and 2200 control patients. For an overview 
of all baseline characteristics, see Additional file  1: 
Table  S8. We validated the First ECG and All ECG 
models on this dataset and found that the performances 
held up with this novel external cohort (Table  2). The 
First ECG models achieved an average AUC of 0.86 and 
0.87 for LQTS 1 and 2, respectively. The All ECG mod-
els achieved an average AUC of 0.90 and 0.89 for LQTS 
type 1 and 2, respectively. A comparison of the DL 
model’s performances showed a significant improve-
ment for the models trained on all available 12-lead 
ECGs for LQTS1 (AUC p-value < 0.05).

For an overview of the different types of genetic 
variants for each LQTS type and an overview of the 

specific genetic variants prevalent in the Leuven data, 

Fig. 3  QRS complex comparison. The median QRS complex of 100 control ECGs (black lines) was retrieved and compared to the median QRS 
complex of the corresponding LQTS1/2/3 ECGs (green lines) analyzed by the best performing DL models (left). The median QRS complex from the 
control ECGs and LQTS ECGs was then calculated (right). On the x-axis data points from the waveform are shown; 25 data points correspond to 
0.10 s or 100 ms

Table 2  Model performances on Leuven data

The whole set of LQTS1 (n = 32), LQTS2 (n = 80), and controls (n = 2280) from 
the Leuven dataset was used to validate our DL models, which were trained on 
the Amsterdam data using the only the first acquired 12-lead ECGs (i.e., First ECG 
approach) (top) or all acquired 12-lead ECGs (i.e., ALL ECG approach) (bottom). 
The mean and standard deviation (SD) of the collected metrics is reported

Training Type External validation (Leuven data)

Sensitivity ± SD Specificity ± SD AUC ± SD

First ECG 
approach 
(Amsterdam 
data)

LQTS1 80 ± 2% 94 ± 2% 0.86 ± 0.01

LQTS2 92 ± 3% 81 ± 6% 0.87 ± 0.02

All ECG 
approach 
(Amsterdam 
data)

LQTS1 87 ± 4% 93 ± 3% 0.90 ± 0.01

LQTS2 90 ± 4% 88 ± 3% 0.89 ± 0.01



Page 9 of 12Aufiero et al. BMC Medicine          (2022) 20:162 	

see Additional file  1: Table  S9-10. The most prevalent 
variants and distribution of variant types are different 
in both Amsterdam (Additional file 1: Table S2-3) and 
Leuven datasets (Additional file 1: Table S9-10), mean-
ing the models generalize well, also in a population 
with different LQTS associated genetic variants.

Performance comparison—DL model versus. Cardiologist
A subset of 30 LQTS1, 30 LQTS2, and 300 control ECGs 
(i.e., 150 × 2), which were randomly selected from the 
Leuven dataset, were blindly assessed by the expert car-
diologist. The same set was also analyzed by the First 
ECG and All ECG models. The results are presented in 
Table 3. Overall, our best performing models (trained on 
all acquired 12-lead ECGs) outperformed the cardiologist 
in terms of specificity. In terms of sensitivity, the cardi-
ologist and the models performed the same.

Discussion
This study presents DL models trained to identify 
genotype positive LQTS patients from ECG. The DL 
models showed robust performances that achieved 
approximately an AUC of 0.90 and optimal generalization 
properties when tested on an unseen cohort. Further-
more, the DL models also showed to outperform in terms 
of sensitivity conventional QTc measurement, thus show-
ing the potential to identify concealed LQTS patients. 
Interestingly, we found that the DL models are looking at 
additional ECG features, particularly at the onset of the 
QRS complex, rather than only at the QT interval, for 
ECG classification. Therefore, we potentially identified a 
new electrocardiographic region that can contribute to 
the improvement of LQTS diagnosis.

In detail, we developed 1DCNN binary classification 
models trained with a large 10-s 12-lead ECGs dataset 

provided by Amsterdam UMC composed of 10000 con-
trols and 458 genetically proven LQTS patients. The use 
of ECGs of genetically proven LQTS is one of the major 
strengths of this study. Using the genotype as the gold 
standard, our models can possibly identify LQTS patients 
whose ECGs do not show any apparent phenotype as 
judged by a human expert and, therefore, in a normal 
circumstance, could remain undiagnosed. This approach 
allows models to outperform the expert, adding to the 
cardiologist’s evaluation rather than being trained by it.

Overall, on the Amsterdam data, in particular with the 
All ECG models, robust performances were obtained in 
predicting all three types of LQTS with small variability 
across 5-fold cross-validation, suggesting that the mod-
els had good generalizability. Our best models, trained 
on all acquired 12-lead ECGs of each patient, achieved 
an average sensitivity for the LQTS 1, 2, and 3 of 84%, 
90%, and 87%, a specificity of 96%, 95%, and 92%, and an 
AUC of 0.90, 0.92 and 0.89 respectively. DL is a technique 
that performs best on voluminous data, and our results 
showed that by augmenting data and using more ECGs 
per patient (e.g., using all acquired 12-lead ECGs instead 
of only the first acquired 12-lead ECGs), we increased the 
training data for our models, which led to better results.

Further analysis using single-lead ECGs showed that 
the models built on single-lead information could also 
predict LQTS ECG with minimal reduction in perfor-
mance compared to the First ECG models. This result 
suggests that every single lead can harbor key features 
and that can potentially be used for LQTS diagnosis. The 
performances of the DL models were also tested on an 
external data set (Leuven data) to evaluate how general-
izable our models are to a separate patient population. 
The overall performances obtained on the Leuven data 
were comparable to the performances obtained on the 
Amsterdam data, confirming the ability of the developed 
DL model to detect genotype positive LQTS patients. 
Additionally, the current models have also shown to 
outperform an expert cardiologist in LQTS, in terms 
of specificity, while in terms of sensitivity the DL mod-
els and the expert cardiologist performed the same. In 
theory, this could mean that the outcome of DL models 
could mimic the evaluation of an international expert on 
the ECG diagnosis of LQTS and could be implemented in 
clinical care, for example, in the form of a clinical deci-
sion tool to aid general cardiologists in diagnosing LQTS 
on the ECG.

Besides the expert cardiologist, if we compare the 
performance of the DL models to earlier published 
approaches that aim to increase the performance of 
detecting genetic LQTS, the DL models reached almost 
similar diagnostic accuracy as the Brisk Standing Test 
(AUC 92%) [9], measuring QT-interval during exercise 

Table 3  Performance comparison DL model versus cardiologist 
on LQTS 1 and 2

A subset of 30 LQTS1, 30 LQTS2, and 300 controls (150 X 2) from the Leuven 
dataset was selected and used to validate our DL models, which were trained 
on the Amsterdam data using all acquired 12-lead ECGs (i.e., ALL ECG approach) 
per patient (top). The mean and standard deviation (SD) of the collected metrics 
is reported. The same subset was evaluated by an expert cardiologist in LQTS 
(bottom)

Training Type External validation (Leuven data)

Sensitivity ± SD Specificity ± SD AUC ± SD

All ECG 
approach 
(Amster-
dam data)

LQTS1 89 ± 4% 97 ± 3% 0.93 ± 0.02

LQTS2 91 ± 3% 87 ± 2% 0.89 ± 0.02

Expert 
cardiologist 
in LQTS

LQTS1 93% 90% 0.90

LQTS2 90% 80% 0.85
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(AUC 0.93) [8] and individualized QT interval measure-
ment with Holter (AUC 0.96) [24]. These methods, how-
ever, need additional testing compared to the DL models 
that only require a 12-lead resting ECG as input, thus 
making the latter possibly more time and cost-effective 
while reaching almost similar performance. Furthermore, 
these additional methods are usually not performed in 
cases with a normal QTc on the resting ECG or when 
they are mostly asymptomatic and may therefore remain 
undiagnosed. This would not be the case with our DL 
models because it only uses the resting ECG itself.

It is important to identify concealed LQTS mutation 
carriers because they might still be at risk for malignant 
arrhythmias under certain circumstances, such as the use 
of QT-prolonging drugs or in case they pass the mutation 
to their children, which can become severely sympto-
matic while remaining undiagnosed [25]. In this study, we 
showed that DL models could help identify LQTS muta-
tion carriers with normal QTc. A comparison between 
DL model’s performance and QTc measurements showed 
that the DL models outperformed the latter in pre-
dicting all three types of LQTS. In detail, the DL mod-
els identified a proportion of LQTS patients that were 
missed by the QTc measurement due to not passing the 
QTc threshold. Interestingly an average of 87% of LQTS 
patients with prolonged QTc and an average of 71% of 
patients with normal QTc were predicted with high con-
fidence (probability score ≥ 0.70). Finally, we analyzed 
the DL model’s performance in classifying control and 
LQTS patients whose QTc values were within the 10th–
90th percentile of the overlapping region of the QTc val-
ues distribution of the two populations and showed that 
the DL models were still able to distinguish controls from 
LQTS patients with an average AUC of 0.88 for the mod-
els trained on all acquired 12-lead ECGs.

Overall, these findings suggest that the models use 
additional ECG features rather than only the QT interval 
for LQTS ECG classification.

Model explainability is one of the challenges in 
machine learning, especially for deep learning models, 
where algorithms usually operate as black boxes, and it 
is unclear how a certain decision is derived. Explaining 
the DL model decision and which features are the most 
salient in a model’s predictions is important to under-
stand the value and accuracy of the findings. To the best 
of our knowledge, no study has attempted to explain the 
prediction models and understand the decision made by 
the DL model for LQTS ECG classification. Therefore, 
we applied an explainable AI technique, a guided Grad-
CAM [22] approach adapted to work on our 1DCNN, 
and then calculated a score to localize the most impor-
tant region used by the DL models for ECG classification. 
Surprisingly, with this method, we found that the QRS 

complex, particularly the onset of the QRS complex, is 
the most relevant region for ECG classification. LQTS is 
a condition that has been associated with defects of the 
repolarization phase of the action potential and T-wave 
abnormalities [26]. Even though the T wave morphology 
is a known and most often used feature for LQTS diag-
nosis, it does not always emerge in our models. An expla-
nation might be that the model does not give so much 
weight to the T wave due to the large inter-individual 
variability of this part.

No studies as of yet have found low QRS amplitude 
or other (morphological) QRS features to be associated 
with LQTS 1, 2, or 3. Abnormalities at the onset of the 
QRS complex and the QRS complex, which are mainly 
associated with depolarization, are unexpected within 
the context of LQTS. The finding that our DL models 
derives much from the initial part of the QRS collides 
with the current concepts that translate how ion chan-
nel dysfunction leads to ECG abnormalities by changing 
individual action potentials. Our finding suggests that the 
initial myocardial depolarization of the tissue as a whole 
might be altered in carriers of a disease-causing LQTS 
mutation. To our current knowledge, mutations associ-
ated with LQTS1 and LQTS2 are thought to alter solely 
myocardial repolarization, and therefore, depolarization 
changes are hard to explain within the known patho-
physiology of these LQTS types. However, low R-wave 
amplitude or QRS voltages are seen in both ischemic and 
genetic cardiomyopathy, with genetic mutations in the 
phospholamban protein being known to cause lowering 
of QRS voltages over time, which is thought to predis-
pose myocardial fibrosis and dilation of the heart [27, 28]. 
However, to our best knowledge, this phenomenon is not 
known to occur in patients with LQTS and is difficult to 
understand. Other known causes for low QRS voltage are 
pericardial or pleural effusion, pulmonary emphysema, 
and obesity, among many others [29]. In the dataset we 
used as our control group, data regarding medical his-
tory, echocardiographic status, or body mass index were 
not available; therefore, it was not possible to evaluate 
if these factors could have influenced the QRS complex 
amplitude.

It is important to note that we could only look at the 
first convolutional layer of our DL models. Only the 
Grad-CAM scores from this first layer could be overlaid 
with the ECG and make the predictions interpretable. 
Deeper layers extract a combination of low-level features, 
which are finally used for LQTS classification. In our DL 
models, the presence of max pooling layers made it chal-
lenging to trace back the gradients from deeper layers to 
the ECG.

Furthermore, in this study, we only used ECGs that 
were labeled as normal by the ECG’s machine algorithm 
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as a control set. Although this allowed us to reduce the 
complexity for model explainability and focus more on 
what the DL models see as abnormal on the LQTS ECGs, 
the selection of these controls might limit the generaliza-
bility of the DL models on the general population. Future 
work includes training and testing the DL models on an 
unselected population of patients, which also include 
pediatric ECGs. LQTS is often diagnosed before the age 
of 16 years, and our DL models were only trained and 
tested on adult ECGs. Finally, our models were trained 
and validated on a dataset consisting of patients from 
mostly European ethnicity and ECG made with an ECG 
machine for one manufacturer only. When implement-
ing these models outside of our population, generaliz-
ability issues could occur and further external validation 
or retraining using data from other ethnicities and other 
ECG machines could be necessary.

Conclusions
In conclusion, this study showed that DL can improve 
diagnosis of LQTS and potentially serve as a very effec-
tive screening tool to identify genotype positive LQTS 
patients (with normal and prolonged QTc) and there-
fore help a general cardiologist predict which patient 
might need further workup without having to consult an 
expert, thus improving LQTS diagnosis. Furthermore, we 
took the first steps to understand what our DL models 
learned and used for LQTS ECG classification, revealing 
a potentially new electrocardiographic feature for LQTS 
diagnosis.

Tools that can automatically detect LQTS harboring 
disease-causing variants and identify ECG features asso-
ciated with this disease, as we present in this paper, could 
be of great clinical importance in aiding cardiologists in 
diagnosing LQTS and understanding the pathophysiol-
ogy of inherited heart disease general.
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