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Abstract 

Background:  Body mass index (BMI) has been found to be associated with a decreased risk of non-small cell lung 
cancer (NSCLC); however, the effect of BMI trajectories and potential interactions with genetic variants on NSCLC risk 
remain unknown.

Methods:  Cox proportional hazards regression model was applied to assess the association between BMI trajectory 
and NSCLC risk in a cohort of 138,110 participants from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer 
Screening Trial. One-sample Mendelian randomization (MR) analysis was further used to access the causality between 
BMI trajectories and NSCLC risk. Additionally, polygenic risk score (PRS) and genome-wide interaction analysis (GWIA) 
were used to evaluate the multiplicative interaction between BMI trajectories and genetic variants in NSCLC risk.

Results:  Compared with individuals maintaining a stable normal BMI (n = 47,982, 34.74%), BMI trajectories from nor-
mal to overweight (n = 64,498, 46.70%), from normal to obese (n = 21,259, 15.39%), and from overweight to obese (n 
= 4,371, 3.16%) were associated with a decreased risk of NSCLC (hazard ratio [HR] for trend = 0.78, P < 2×10−16). An 
MR study using BMI trajectory associated with genetic variants revealed no significant association between BMI trajec-
tories and NSCLC risk. Further analysis of PRS showed that a higher GWAS-identified PRS (PRSGWAS) was associated with 
an increased risk of NSCLC, while the interaction between BMI trajectories and PRSGWAS with the NSCLC risk was not 
significant (PsPRS= 0.863 and PwPRS= 0.704). In GWIA analysis, four independent susceptibility loci (P < 1×10−6) were 
found to be associated with BMI trajectories on NSCLC risk, including rs79297227 (12q14.1, located in SLC16A7, Pinterac-

tion = 1.01×10−7), rs2336652 (3p22.3, near CLASP2, Pinteraction = 3.92×10−7), rs16018 (19p13.2, in CACNA1A, Pinteraction 
= 3.92×10−7), and rs4726760 (7q34, near BRAF, Pinteraction = 9.19×10−7). Functional annotation demonstrated that 
these loci may be involved in the development of NSCLC by regulating cell growth, differentiation, and inflammation.
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Background
Lung cancer is one of the most common cancers and 
a leading cause of cancer-related death worldwide 
[1, 2]. In 2018, there were 2.09 million new cases and 
1.76 million deaths of lung cancer worldwide, account-
ing for 11.6% and 18.4% of all cancer cases and deaths, 
respectively [3]. In particular, non-small cell lung can-
cer (NSCLC), the most common type of lung cancer, 
accounts for approximately 85% of all lung cancer cases 
[4]. Due to the increasing burden of NSCLC, it is nec-
essary to identify more potential risk factors associated 
with NSCLC so as to develop individualized prevention 
strategies.

Obesity, usually defined as body mass index (BMI) ≥ 
30 kg/m2, is becoming an increasingly common global 
health problem [5]. The global prevalence of obesity in 
adults increased steadily between 1975 and 2016, from 3 
to 11% in men and 6 to 15% in women [6]. Several epide-
miological studies have demonstrated that a higher BMI 
is associated with a lower risk of NSCLC in European 
and Asian populations [2, 7], which was also confirmed 
by a recent meta-analyses with a sample size of 7,310,130 
participants [8]. However, most of these studies only used 
BMI at a single time point instead of considering the role 
of longitudinal BMI trajectories across the life course. In 
addition, a number of studies have shown that BMI tra-
jectory from normal weight to obesity was associated 
with the risk of multiple cancers, including prostate, 
colorectal, oesophageal, gastric cardia adenocarcinoma, 
and even lung cancer [9–11].

Although environmental risk factors (e.g. BMI) are the 
main risk factors for NSCLC [12], genetic susceptibil-
ity is also an important contributor [13]. The heritabil-
ity of lung cancer in European and Asian populations is 
estimated to be 12–21% [14, 15]. Previous genome-wide 
association studies (GWAS) identified more than 80 sus-
ceptibility variants associated with lung cancer in Euro-
pean and Asian populations, mainly NSCLC, as it is the 
main type of lung cancer; however, these variants could 
only explain a small proportion of the overall genetic 
variance [16, 17]. Interestingly, there is accumulating 
evidence that gene-environment interactions may be 
responsible for the missing heritability of cancer and act 
together with environmental risk factors in the pathogen-
esis of cancer [18, 19].

However, it remained unclear whether there was evi-
dence to support the joint association between BMI tra-
jectories and genetic variants on NSCLC incidence. In 
this study, we comprehensively investigated the relation-
ship between BMI trajectories and NSCLC risk in the 
Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer 
Screening Trial. In addition, we applied a genome-wide 
interaction analysis to further assess the effect of differ-
ent BMI trajectories in participants stratified according 
to genetic variants on NSCLC risk, which can provide 
novel insights into the pathophysiology of NSCLC.

Methods
Study population
The PLCO Cancer Screening Trial is a population-based 
cohort study aimed to evaluate the accuracy and reliabil-
ity of screening methods for prostate, lung, colorectal, 
and ovarian cancer, which randomly recruited 154,897 
individuals aged 49–78 years from 10 centres in the USA 
between 1993 and 2001 [20]. Exclusion criteria included 
(i) personal history of cancer prior to trial entry (n = 
11,803); (ii) individuals with missing BMI at any age (n = 
3,504) or BMI < 15 or > 50 kg/m2 (n = 361); (iii) individu-
als failing to return or complete the baseline question-
naire (n = 669); (iv) individuals at enrolment with age < 
50 years (n = 2); and (v) individuals with small cell lung 
cancer (n = 448). Ultimately, a total of 138,110 partici-
pants were retained for analysis. No included individu-
als had been diagnosed with lung cancer at the time of 
voluntarily joining the study. The diagnosis of NSCLC 
was histologically confirmed via medical record reviews, 
the National Death Index (for completeness), and self-
reported annual questionnaires during follow-up [21]. 
This study was approved by the ethics committees of the 
PLCO consortium providers (PLCO-424). Additional 
information for the study subjects is presented in the 
Additional file 1: Appendix S1 [22].

BMI and BMI trajectories ascertainment
Height (m) and body weight (kg) at age 20, 50, and 
enrolment were collected from self-recorded question-
naires completed by the participants in the PLCO study 
(https://​cdas.​cancer.​gov/​datas​ets/​plco/​90/). BMI at each 
age period was calculated using the formula body weight 
(kg)/height (m2). Individuals were classified according 

Conclusions:  Our study has shown an association between BMI trajectories, genetic factors, and NSCLC risk. Interest-
ingly, four novel genetic loci were identified to interact with BMI trajectories on NSCLC risk, providing more support 
for the aetiology research of NSCLC.

Trial registration:  http://​www.​clini​caltr​ials.​gov, NCT01​696968.
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to their BMI in each age period according to the World 
Health Organization 2000 criteria: underweight (<18.5 
kg/m2), normal weight (18.5–24.9 kg/m2), overweight 
(25.0–29.9 kg/m2), and obesity (>30 kg/m2) [23]. To 
assess the relationship between pre-diagnostic BMI 
changes, defined as BMI from the age of 20 or 50 to the 
entry, and the risk of NSCLC at age 20, 50, and entry, 
latent class growth model (LCGM) was used to identify 
longitudinal patterns of BMI change at three-time points 
during adulthood [24]. Specifically, the LCGM here was 
fitted using linear and quadratic polynomials with three 
to five trajectory categories (individuals per trajectory 
≥ 1%), and the model with the highest number of fitting 
categories was selected using the Bayesian Information 
Criterion (BIC) method and the average posterior prob-
ability (AvePP) of each trajectory [25]. Detailed informa-
tion for the calculation of BMI trajectories is provided in 
the Additional file 1: Appendix S1 [26, 27].

Genotyping
The PLCO GWAS data were deposited in the database of 
Genotypes and Phenotypes (dbGaP, phs001286.v1.p1 and 
phs000336.v1.p1), including a total of 14,497 participants 
genotyped using Illumina Hap240, Hap300, and Hap550 
[28, 29]. The use of the PLCO genetic datasets was 
approved by both the Internal Review Board of Nanjing 
Medical University and the dbGaP database administra-
tion (#21708 and #21643). Basic information on genotyp-
ing and imputation for PLCO GWAS data is shown in the 
Additional file 1: Appendix S1 [30–32]. Additional qual-
ity control procedures for individuals and single nucleo-
tide polymorphisms (SNPs) levels are presented in the 
Additional file  1: Appendix S1. Ultimately, 13,365 indi-
viduals remained in the genetic analysis (Additional file 1: 
Table S1).

Analysis of the interaction between the GWAS‑based 
polygenic risk score (PRS) and BMI trajectories
Based on 81 previously reported GWAS SNPs associated 
with lung cancer in European and Asian populations [16, 
17], and a strict quality control process, including (i) 
SNPs located within autosomal chromosomes; (ii) minor 
allele frequency (MAF) ≥ 0.05; (iii) call rate ≥ 95%; (iv) 
P-value for Hardy-Weinberg Equilibrium (HWE) among 
non-NSCLC individuals ≥ 1.0×10−6; (v) imputation 
INFO > 0.3; and (vi) a risk effect consistent with previous 
results, we identified 19 independent [linkage disequilib-
rium (LD), r2 < 0.5] GWAS-identified SNPs (Additional 
file 1: Table S2) to construct the simple-count PRS (sPRS) 
and weighted PRS (wPRS) [16, 17, 33]. The sPRS is equal 
to the number of risk alleles, which can be estimated as 

sPRS =

I∑

i=1

Gi , where Gi (i.e. 0, 1, or 2) denotes the num-

ber of risk alleles of ith SNP. The wPRS was calculated 

using the formula: wPRS =

I∑

i=1

βiGi , where βi is the per 

allele ORs derived from previous studies [16, 17, 33]. 
Additional information on the analysis of the interaction 
between the PRSGWAS and BMI trajectory is presented in 
the Additional file 1: Appendix S1.

Genome‑wide interaction analysis (GWIA)
GWIA was performed to test for the gene-environment 
interactions between genome-wide SNPs and BMI trajec-
tories. The interaction was modelled by determining the 
multiplicative product of SNP genotype and BMI trajec-
tories in the Cox proportional hazard regression model, 
adjusting for age, sex, race, family history of lung can-
cer, education, smoking status, personal history of dia-
betes, current marital status, study centre, and the first 
10 principal components. For GWIA, the P-value of the 
interaction term < 1.0×10−6 was considered statistically 
significant [34]. Similar to the construction of PRSGWAS, 
the GWIA-based sPRS (sPRSGWIA) or wPRS (wPRSGWIA) 
was also calculated to evaluate the cumulative interaction 
effects with BMI trajectories, separately.

Functional annotation
Functional annotation was conducted to explore the 
potential molecular roles of the GWIA-identified loci 
by (i) pinpointing the most likely candidate genes at the 
identified loci by identifying cis-expression quantitative 
trait loci (cis-eQTL) within no more than 1 Mb of each 
investigated SNP in the Genotype-Tissue Expression 
project (version 7.0, http://​www.​gtexp​ortal.​org/​home/) 
database from multiple relevant tissues [35, 36] and (ii) 
using the Encyclopedia of DNA Elements [37], HaploReg 
(version 4.1) [38], and RegulomeDB (http://​www.​regul​
omedb.​org/) to further assess the regulatory potential for 
variants of interest.

Statistical analysis
Cox proportional hazards regression model was used 
to estimate the hazard ratio (HR) and 95% confidence 
intervals (CIs) between BMI trajectories and NSCLC 
risk with adjustments for age, sex, race, family history 
of lung cancer, education, smoking status, personal his-
tory of diabetes, current marital status, and study centre. 
The proportional hazard assumption was assessed by 
Schoenfeld residuals [39]. Further, continuous variables 
were adapted to conduct tests of linear trends. Individual 
follow-up time was defined as a period from entry until 
the time of NSCLC occurrence (diagnosis) or censoring 
defined as the exit of the study due to other causes or 
death, loss to follow-up, or the end of the study.

http://www.gtexportal.org/home/
http://www.regulomedb.org/
http://www.regulomedb.org/
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Interaction effects of PRSGWAS, PRSGWIA, or each 
GWIA-identified SNP with BMI trajectories were further 
investigated by adding multiplicative interaction terms 
in the Cox models with adjustment for the first 10 prin-
cipal components. A cumulative incidence function was 
estimated using Kaplan-Meier technique to quantify the 
risk of developing NSCLC over time, stratified by GWIA-
identified SNPs, and differences in the full time-to-event 
distributions between different BMI trajectory groups 
were compared by a log-rank test [40].

Subgroup analysis was performed to evaluate the het-
erogeneity of the association between BMI trajectories 
and NSCLC risk stratified by sex, smoking status, or his-
tological type. Further, several sensitivity analyses were 
performed to assess the reliability of the primary results. 
One-sample Mendelian randomization (MR) analysis 
was also performed to access the causality between BMI 
trajectories and NSCLC risk, including inverse-variance-
weighted (IVW), Mendelian randomization Egger (MR-
Egger), and simple median method. P values (two-sided) 
< 0.05 were deemed significant. All analyses were per-
formed using R 3.5.3 and PLINK 1.90 software. Addi-
tional information is presented in the Additional file  1: 
Appendix S1.

Results
There were 138,110 individuals in the prospective cohort 
study (Table  1). In total, 2641 NSCLC patients with a 
mean age of 64.34 years (SD = 5.20) were confirmed, 
including 2343 (88.72%) whites and 298 (11.28%) non-
whites (184 blacks, 32 Hispanics, 63 Asians, and 19 
others) populations. Compared with non-NSCLC indi-
viduals, NSCLC was more common among partici-
pants who were male (HR = 0.61, 95% CI: 0.56 to 0.66, 
P < 2×10−16), older (HR = 1.06, 95% CI: 1.05 to 1.07, P < 
2×10−16), non-Hispanic Blacks (HR = 1.58, 95% CI: 1.36 
to 1.84, P = 2.32×10−9), and current (HR = 24.22, 95% 
CI: 20.93 to 28.03, P < 2×10−16) or ever smoker (HR = 
6.94, 95% CI: 6.01 to 8.01, P < 2×10−16); had a family his-
tory of lung cancer (HR = 1.83, 95% CI: 1.66 to 2.03, P < 
2×10−16); had a low level of education (HR = 0.63, 95% 
CI: 0.58 to 0.69, P < 2×10−16); had a history of diabetes 
(HR = 1.25, 95% CI: 1.09 to 1.44, P = 0.001); and were 
divorced, separated, or widowed (HR = 1.41, 95% CI: 
1.30 to 1.54, P = 1.08×10−14).

No evidence of departure from the proportional hazard 
assumption in Cox models for NSCLC (P = 0.166) was 
found. Cox proportional hazards model showed that a 
higher BMI at 20 years, 50 years, and the time of enrol-
ment (baseline) were associated with a decreased risk of 
NSCLC (HR = 0.88, P = 0.001; HR = 0.70, P < 2×10−16; 
HR = 0.75, P < 2×10−16, respectively), and similar find-
ings were observed in categorical BMI (decreased risk 

in overweight and obesity, Additional file  1: Table  S3). 
Further, we identified four distinct BMI trajectories by 
the latent class growth model (Fig.  1). Compared with 
participants with a stable normal BMI in their adult-
hood (n = 47,982, 34.74%), the risk of NSCLC decreased 
in participants who progressed from a normal BMI to 
an overweight BMI at baseline (n = 64,498, 46.70%, HR 
= 0.77, 95% CI: 0.70 to 0.84, P = 3.80×10−9), who pro-
gressed from a normal BMI to an obese BMI at baseline 
(n = 21,259, 15.39%, HR = 0.60, 95% CI: 0.53 to 0.69, P 
= 5.42×10−13), and who were overweight at the onset 
of adulthood and became obese at baseline (n = 4371, 
3.16%, HR = 0.54, 95% CI: 0.40 to 0.74, P = 9.33×10−5). 
Interestingly, the NSCLC risk decreased gradually across 
all three BMI trajectories (HR for trend = 0.78, 95%CI: 
0.74 to 0.83, P = 2×10−16) compared with subjects who 
maintained a normal BMI. Sensitivity analyses showed 
that the primary model retained a stable association 
between BMI trajectories and NSCLC risk (Additional 
file 1: Table S4). Furthermore, stratified analyses by sex, 
smoking status, and histological type showed almost 
no significant heterogeneity in the effect of age-specific 
BMI and BMI trajectories on NSCLC risk, although the P 
value for the heterogeneity test was less than 0.05 among 
those with BMI < 18.5 at baseline stratified by sex (Addi-
tional file 1: Figures S1-S3).

Nineteen GWAS-identified SNPs were used to con-
struct the PRS and examine the potential effect of BMI 
trajectories on NSCLC risk according to the genetic 
variants. The characteristics of 13,365 individuals from 
the GWAS are shown in Additional file 1: Appendix S1. 
Nineteen GWAS-identified SNPs associated with lung 
cancer were used to construct the sPRS and wPRS (Addi-
tional file 1: Table S2). Furthermore, compared with the 
low tertiles of sPRSGWAS, the middle and high tertiles of 
sPRSGWAS were associated with a higher probability of 
NSCLC (HR = 1.13, 95% CI: 1.12 to 1.59, P = 0.001; HR 
= 1.56, 95% CI: 1.34 to 1.82, P = 1.62×10−8, respectively) 
(Additional file 1: Table S5). Similar results were obtained 
for wPRSGWAS, indicating that a higher PRSGWAS was 
associated with an increased risk of NSCLC. However, 
there was no significant interaction between BMI trajec-
tories and PRSGWAS with the NSCLC risk (PsPRS= 0.863 
and PwPRS= 0.704; Additional file  1: Figure S4). Similar 
findings were observed for age-specific BMI (Additional 
file 1: Tables S6-S7).

GWIA was subsequently performed to investigate 
the effect of the genome-wide interaction between 
each SNP and BMI trajectories on the NSCLC risk. 
A Manhattan plot was constructed to show the sig-
nificant SNPs that interacted with BMI trajectories 
(Additional file  1: Figure S5). Four independent SNPs 
reached statistically suggestive significance [34] instead 
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Table 1  Characteristics of the study subjects

Variables Total (N=138,110) NSCLC (N=2641) Non-NSCLC (N=135,469) HR (95% CI) P-value*

Age (years)a, Mean ± SD 62.56 ± 5.34 64.34 ± 5.20 62.53 ± 5.34 1.06 (1.05, 1.07) < 2×10−16

Sex, N (%)

  Male 69,713 (50.48) 1646 (62.32) 68,067 (50.25) Reference

  Female 68,397 (49.52) 995 (37.68) 67,402 (49.75) 0.61 (0.56, 0.66) < 2×10−16

Race, N (%)

  White, non-Hispanic 122,404 (88.63) 2343 (88.72) 120,061 (88.63) Reference

  Black, non-Hispanic 6868 (4.97) 184 (6.97) 6684 (4.93) 1.58 (1.36, 1.84) 2.32×10−9

  Hispanic 2552 (1.85) 32 (1.20) 2520 (1.86) 0.70 (0.50, 1.00) 0.049

  Asian 5133 (3.72) 63 (2.39) 5070 (3.74) 0.62 (0.48, 0.80) 2.09×10−4

  Other 1153 (0.83) 19 (0.72) 1134 (0.84) 0.91 (0.58, 1.43) 0.673

Family history of lung cancer, N (%)

  Absent 119,147 (86.88) 2050 (78.21) 117,097 (87.05) Reference

  Present 14,376 (10.48) 447 (17.05) 13,929 (10.35) 1.83 (1.66, 2.03) < 2×10−16

  Missing 3616 (2.64) 124 (4.73) 4443 (2.60)

Education, N (%)

  HS or less 41,506 (30.05) 1007 (38.13) 40,499 (29.90) Reference

  Post HS or some college 47,376 (34.30) 986 (37.33) 46,390 (34.24) 0.90 (0.80, 1.01) 0.065

  College graduate or degree 48,968 (35.46) 645 (24.42) 48,323 (35.67) 0.63 (0.58, 0.69) < 2×10−16

  Missing 260 (0.19) 3 (0.12) 257 (0.19)

BMI at age 20 (kg/m2), Mean ± SD 22.10 ± 3.01 22.11 ± 2.99 22.10 ± 3.01 1.00 (0.99, 1.02) 0.520

BMI at age 50 (kg/m2), Mean ± SD 25.85 ± 4.17 25.16 ± 3.70 25.87 ± 4.18 0.96 (0.95, 0.97) 5.66×10−15

BMI at baseline (kg/m2), Mean ± SD 27.30 ± 4.75 26.49 ± 4.43 27.32 ± 4.75 0.96 (0.95, 0.97) 3.65×10−16

Smoking status, N (%)

  Never 63,945 (46.30) 217 (8.22) 63,728 (47.04) Reference

  Former 59,685 (43.22) 1365 (51.68) 58,320 (43.06) 6.94 (6.01, 8.01) < 2×10−16

  Current 14,464 (10.47) 1059 (40.10) 13,405 (9.89) 24.22 (20.93, 28.03) < 2×10−16

  Missing 16 (0.01) 0 16 (0.01)

Personal history of diabetes, N (%)

  Absent 127,024 (91.97) 2398 (90.80) 124,626 (92.00) Reference

  Present 10,426 (7.55) 221 (8.37) 10,205 (7.53) 1.25 (1.09, 1.44) 0.001

  Missing 660 (0.48) 22 (0.83) 638 (0.47)

Current marital status, N (%)

  Married or living with someone 105,276 (76.23) 1890 (70.96) 103,386 (76.32) Reference

  Divorced, separated, or widowed 28,030 (20.30) 677 (26.35) 27,353 (20.19) 1.41 (1.30, 1.54) 1.08×10−14

  Single, never married 4580 (3.32) 71 (2.56) 4509 (3.33) 0.91 (0.71, 1.15) 0.409

  Missing 224 (0.15) 3 (0.13) 221 (0.16)

Hormone replacement therapy (in female), N (%)

  Never 22,083 (32.31) 389 (39.10) 21,694 (32.19) Reference

  Current 34,779 (50.82) 411 (41.31) 34,368 (50.99) 0.67 (0.58, 0.77) 1.09×10−8

  Former 11,120 (16.26) 187 (18.79) 10,933 (16.22) 0.95 (0.80, 1.14) 0.600

  Missing 353 (0.61) 8 (0.80) 345 (0.60)

Study centre, N (%)

  1 = University of Colorado 11,852 (8.58) 178 (6.74) 11,674 (8.62) Reference

  2 = Georgetown University 6294 (4.56) 111 (4.20) 6183 (4.56) 1.13 (0.89, 1.43) 0.310

  3 = Pacific Health Research and Education 
Institute (Honolulu)

9362 (6.78) 176 (6.66) 9186 (6.78) 1.24 (1.01, 1.53) 0.045

  4 = Henry Ford Health System 21,887 (15.85) 442 (16.74) 21,445 (15.83) 1.47 (1.24, 1.75) 1.35×10−5

  5 = University of Minnesota 24,613 (17.82) 510 (19.31) 24,103 (17.79) 1.36 (1.15, 1.62) 3.83×10−4

  6 = Washington University in St Louis 13,763 (9.96) 310 (11.74) 13,453 (9.93) 1.54 (1.28, 1.85) 4.60×10−6

  8 = University of Pittsburgh 16,021 (11.60) 350 (13.25) 15,671 (11.57) 1.48 (1.23, 1.77) 2.31×10−5
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of genome-wide significance in GWIA, which were 
also confirmed in the bootstrap and permutation tests 
(Additional file  1: Table  S8). Among the four SNPs, 
rs79297227 with the lowest P value (1.01×10−7) located 
in SLC16A7 (12q14.1) showed a statistically sugges-
tively significant interaction with the BMI trajectories, 
and the remaining three SNPs, including rs2336652 
near CLASP2 (3p22.3, P = 3.92×10−7), rs16018 in 
CACNA1A (19p13.2, P = 3.92×10−7), and rs4726760 
near BRAF (7q34, P = 9.19×10−7) interacted with the 
BMI trajectories in terms of the NSCLC risk. Simi-
lar results were obtained from the analysis stratified 
by genotype (Table  2). Figure  2B displays the cumula-
tive incidence of NSCLC stratified by GWIA-identified 
SNPs by the log-rank test. In the sensitivity analysis, 
a significant interaction was observed between four 
SNPs and the BMI trajectories by additionally adjust-
ing for occupation and family history of any cancer 

or performing other sensitivity analyses (almost P < 
1.0×10−4, Additional file  1: Table  S9). MR sensitivity 
analyses showed that the correlation direction between 
BMI trajectories and NSCLC risk was consistent with 
the above analysis, although no meaningful differences 
in these results were observed, with no evidence of 
directional pleiotropy (Additional file  1: Tables S10-
S11). For the functional annotation, the search for 
cis-eQTLs at the four loci detected by GWIA showed 
that SNP rs4726760 at 7q34 was a strong cis-eQTL for 
BRAF (P = 0.011, β = 0.073) in the lung tissue. No cis-
eQTL was found at the other three loci (rs16018, P = 
0.070, β = 0.128; rs2336652, P = 0.854, β = −0.015; 
rs79297227, P = 0.376, β = −0.042) (Additional file 1: 
Figure S6A). SNP rs16018 is located on chromosome 
19p13.2 in calcium voltage-gated channel subunit 
alpha1 A (CACNA1A), which is a protein-coding gene 
involved in calcium channel regulation; SNP rs2336652 

Table 1  (continued)

Variables Total (N=138,110) NSCLC (N=2641) Non-NSCLC (N=135,469) HR (95% CI) P-value*

  9 = University of Utah 13,449 (9.74) 175 (6.63) 13,274 (9.80) 0.87 (0.70, 1.07) 0.180

  10 = Marshfield Clinic Research Foundation 15,153 (10.97) 289 (10.94) 14,864 (10.97) 1.25 (1.04, 1.51) 0.017

  11 = University of Alabama at Birmingham 5716 (4.14) 100 (3.79) 5616 (4.15) 1.44 (1.13, 1.84) 0.004

*Univariate cox proportional hazard regression model
a Age at the time of study enrolment

NSCLC non-small cell lung cancer, BMI body mass index, HR hazard ratio, CI confidence interval

Fig. 1  The latent class growth model of BMI trajectories in the PLCO study. A BMI changes for each participant in each trajectory group across three 
analysed age points (ages of 20 years, 50 years, and baseline). B Each trajectory was calculated at any of the three analysed age points (ages of 20 
years, 50 years, and baseline). HR and 95% CI were estimated by Cox proportional hazards regression model with the adjustment for age, sex, race, 
family history of lung cancer, education, smoking, personal history of diabetes, current marital status, and study centre
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at 3p22.3 is located near cytoplasmic linker-associated 
protein 2 (CLASP2),which is significantly expressed in 
lung tissue and promotes the stability of microtubules; 
and SNP rs79297227 at 12q14.1 is located in the solute 
carrier family 16 member 7 (SLC16A7), which is not 
only significantly expressed in lung tissues (Additional 
file 1: Figure S6B) but also expressed in various types of 
malignant tumours.

GWIA-based PRS of the four SNPs above was con-
structed to evaluate the cumulative interaction with BMI 
trajectories on NSCLC risk (Fig.  3). Although a signifi-
cant association was identified between BMI trajectories 
and a higher NSCLC risk among the individuals with 
high tertiles of wPRSGWIA (HR for trend =1.30, 95% CI = 
1.10–1.54), interestingly, BMI trajectories were also asso-
ciated with a decreased risk of NSCLC among individuals 

Table 2  Association between BMI trajectories and NSCLC risk stratified by the four susceptibility SNPs

a Cox proportional hazard regression model adjusted age, sex, race, family history of lung cancer, education, smoking, personal history of diabetes, current marital 
status, study centre, and first10 principal component

BMI body mass index, NSCLC non-small cell lung cancer, SNPs single nucleotide polymorphisms, HR hazard ratio, CI confidence interval

SNP/Genotype BMI trajectory HRtrend (95% CI) Ptrend Pinteraction

Normal BMI Normal to 
overweight

Normal to obese Overweight to 
obese

rs79297227 1.01×10−7

  TT

    NSCLC/Non-
NSCLC

402/2947 481/5593 111/1772 14/268

    HR (95% CI)a Reference 0.75 (0.65, 0.85) 0.53 (0.42, 0.67) 0.42 (0.24, 0.74) 0.74 (0.67, 0.81) 3.37×10−10

  TC/CC

    NSCLC/Non-
NSCLC

30/353 39/583 34/199 4/29

    HR (95% CI)a Reference 1.06 (0.62, 1.81) 2.54 (1.42, 4.53) 1.73 (0.49, 6.05) 1.49 (1.14, 1.94) 0.003

rs2336652 3.92×10−7

  CC

    NSCLC/Non-
NSCLC

408/3031 465/5692 115/1810 13/282

    HR (95% CI)a Reference 0.72 (0.63, 0.84) 0.54 (0.43, 0.68) 0.34 (0.18, 0.62) 0.73 (0.66, 0.80) 6.51×10−11

  CA/AA

    NSCLC/Non-
NSCLC

40/398 64/734 32/229 4/31

    HR (95% CI)a Reference 0.98 (0.64, 1.51) 1.85 (1.09, 3.12) 2.05 (0.69, 6.10) 1.33 (1.04, 1.70) 0.025

rs16018 3.92×10−7

  AA

    NSCLC/Non-
NSCLC

252/1645 233/3103 63/983 4/153

    HR (95% CI)a Reference 0.58 (0.48, 0.70) 0.49 (0.36, 0.66) 0.12 (0.03, 0.47) 0.64 (0.56, 0.73) 8.56×10−11

  AG/GG

    NSCLC/Non-
NSCLC

197/1789 299/3328 84/1058 14/160

    HR (95% CI)a Reference 0.94 (0.78, 1.14) 0.81 (0.62, 1.08) 0.87 (0.50, 1.52) 0.92 (0.82, 1.04) 0.187

rs4726760 9.19×10−7

  CC

    NSCLC/Non-
NSCLC

308/2528 412/4656 121/1433 16/235

    HR (95% CI)a Reference 0.88 (0.76, 1.04) 0.86 (0.69, 1.09) 0.57 (0.33, 0.98) 0.90 (0.81, 0.99) 0.030

  CT/TT

    NSCLC/Non-
NSCLC

126/811 110/1589 23/522 1/68

    HR (95% CI)a Reference 0.47 (0.35, 0.62) 0.24 (0.14, 0.40) 0.13 (0.02, 0.95) 0.48 (0.39, 0.59) 2.07×10−11
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with a low (0.54, 0.47–0.62) or intermediate tertiles of 
wPRSGWIA (0.85, 0.72–0.99), indicating an obvious interac-
tion between the GWIA-based wPRSGWIA and BMI trajec-
tories. Similar findings were observed for age-specific BMI 

(Additional file  1: Table  S12). The interaction between 
BMI trajectories and PRSGWIA with the NSCLC risk was 
significant (PsPRS = 6.61×10−5 and PwPRS = 3.80×10−16; 
Additional file 1: Figure S4). In addition, individuals with 

Fig. 2  Stratifications analysis for the interaction effects between BMI trajectories and GWIA-identified SNPs on NSCLC risk. A The identified four BMI 
trajectories from the onset of adulthood to the baseline. B Cumulative incidence of NSCLC stratified by GWIA-identified SNPs. P-value was derived 
from the Log-rank test. C Pathway of the gene (BRAF)-BMI trajectories interaction effect on the risk of NSCLC
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low or intermediate tertiles of wPRSGWIA experienced a 
gradually decreased cancer risk across the BMI trajectories 
from normal to normal, normal to overweight, overweight 
to obese, and normal to obese, while the high tertiles of 
wPRSGWIA were just the opposite after adjustment for age, 
sex, race, family history of lung cancer, education, smok-
ing, personal history of diabetes, current marital status, 
study centre, and first 10 principal components (Fig. 3A, 
B). Stratification analyses for wPRSGWIA showed that asso-
ciations between BMI trajectories and NSCLC risk were 
heterogeneous (I2 = 73.09%, P for heterogeneity < 0.001, 
Fig.  3B). Similar results were also observed in sPRSGWIA 
(Additional file 1: Figure S4CD, Table S13).

Discussion
In this multi-centre study, four distinct trajectories of 
BMI were identified during adulthood, finding that sub-
jects who progressed from a normal BMI at the onset 

of adulthood to overweight or obesity at baseline (com-
pared to maintaining a stable BMI) had a lower risk of 
developing NSCLC in this PLCO cohort (Fig.  2A). In 
addition, interaction analysis provided evidence that the 
association between BMI trajectories and NSCLC risk 
slightly differed according to genetic variation at SNPs 
rs4726760, rs16018, rs2336652, and rs79297227.

The results of this study suggested that the BMI trajec-
tory from normal weight to overweight or obesity was 
associated with protective effects against NSCLC devel-
opment, which was consistent with previous epidemiol-
ogy studies [1, 2, 41–43]. Several hypotheses have been 
postulated to explain the relationship between leanness 
and a higher risk of lung cancer. For example, smoking, 
as a dominant risk factor for lung cancer, usually leads 
to lower body weight, which may explain the observed 
inverse BMI-lung cancer association. However, several 
large prospective studies show a negative association 
between BMI and lung cancer risk, and this association 

Fig. 3  Interaction analysis and stratification analysis of BMI trajectories and the PRS constructed by four GWIA-identified SNPs on NSCLC risk. A, 
BwPRSGWIA were weighted according to the strength of their association with lung cancer. C, DsPRSGWIA were calculated by simple counting. P value 
for interaction was derived from multivariate-adjusted Cox proportional hazards regression model. PRS, polygenic risk score; GWIA, genome wide 
interaction analysis; SNP, single nucleotide polymorphism; HR, hazard ratio; CI, confidence interval
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persists after excluding up to 10 years of follow-up, sug-
gesting that it is not entirely due to smoking [44]. More-
over, never-smokers were more likely to have a stable 
normal BMI trajectory according to a stratified analysis 
of smoking status, although never-smokers in each BMI 
trajectory group accounted for about 50% of our analysis. 
Likewise, it has been suggested that weight loss repre-
sents a preclinical event prior to the clinical manifesta-
tion of lung cancer [45]. However, our sensitivity analysis 
suggested that BMI trajectories resulting in overweight 
or obesity were associated with a lower risk of lung can-
cer, even excluding patients who developed the disease 
during the first, second, or fourth year of follow-up. 
Interestingly, interaction analysis of PRSGWIA with BMI 
trajectories on NSCLC risk indicated that BMI pro-
gressed from normal to overweight or obesity was associ-
ated with higher NSCLC risk among individuals with the 
high tertiles of wPRSGWIA or sPRSGWIA. Specifically, they 
experienced a gradually increased NSCLC risk across 
the BMI trajectories from normal to normal, normal to 
overweight, overweight to obese, and normal to obese, 
although the low or intermediate tertiles of wPRSGWIA 
or sPRSGWIA were just the opposite (Fig. 3). In addition, 
those identified SNPs were located in or near genes that 
might be involved in biological pathways leading to lung 
cancer. The gene BRAF near rs4726760 provides instruc-
tions for making a protein that helps transmit chemical 
signals from outside the cell to the nucleus. This pro-
tein is a component of the extracellular signal-regulated 
kinase (ERK)/mitogen-activated protein kinase (MAPK) 
pathway, which regulates several important cell functions 
including cellular proliferation, differentiation, migration, 
and apoptosis. Chemical signalling through this pathway 
is essential for normal development before birth. BRAF 
also is an oncogene. When mutated, oncogenes have 
the potential to cause normal cells to become cancer-
ous [46]. BRAF mutations are seen in 3–5% of NSCLC 
cases [47]. It is generally believed that obese people eat 
nutrient-rich foods, and studies have found that nutri-
ents (antioxidants) can significantly inhibit the MAPK 
signalling pathway to reduce the inflammation response 
related to the risk of cancer [48]. The MAPK pathway 
plays an important role in the differentiation of adipo-
cytes [49], and ERK is essential for the transcription of 
gene CCATT/enhancer binding protein α/β/δ and per-
oxisome proliferator-activated receptor gamma (PPARγ), 
key factors of adipocyte differentiation. When the ERK 
signalling pathway is activated, PPARγ is phosphoryl-
ated and transcriptional activity is reduced, which inhib-
its adipocyte differentiation [50]. Decreased adipocyte 
differentiation reduces the accumulation of adipocytes, 

thereby reducing the incidence of inflammation that may 
be related to pathological obesity (Fig. 2C).

The SNP rs16018, a member of the family of voltage-
gated calcium channels, is located in the gene CACNA1A 
which is upregulated in numerous types of cancer includ-
ing lung cancer [51]. The roles of calcium channels in 
various cell functions including mitogenesis, cell prolif-
eration, differentiation, inflammation, and metastasis are 
well recognized [52]. Through calmodulin, intracellular 
calcium (Ca2+) levels regulate many different kinases, 
phosphatases, cyclases, esterases, and ion channels. 
Increased intracellular Ca2+ levels are correlated with 
cell proliferation, leading to inflammation and promoting 
carcinogenesis [51]. Subjects with a higher BMI may have 
sufficient nutritional status, and current studies have 
demonstrated that people with higher intake of nutrients 
(e.g. high dietary calcium) can modulate circulating cal-
citriol, thereby regulating intracellular Ca2+ levels [53], 
maintaining the balance of intracellular and extracellular 
Ca2+ concentrations and reducing the risk of lung cancer.

The SNP rs2336652, located near CLASP2, interacts 
with cytoplasmic linker protein, binds to microtubules, 
and has microtubule-stabilizing effects [54]. Increasing 
microtubule instability may cause genetic instability, and 
altered expression of CLASP2 may induce genetic insta-
bility and contribute to the development of lung can-
cer [55]. The variant rs79297227 is associated with the 
expression of SLC16A7. The SLC16A family of monocar-
boxylate transporters is a subfamily of solute carriers that 
transport monocarboxylate molecules, including L-lac-
tate and pyruvate, across cell membranes [56]. Aberrant 
expression of SLC16A gene family members occurs in 
various types of malignant tumours and regulates cell 
migration, invasion, and proliferation [57–59].

MR analysis revealed non-significant associations 
between genetic polymorphisms affecting BMI and 
NSCLC. Although MR is considered a powerful tool to 
infer causality from nature’s randomization, it cannot 
completely avoid bias and confounders; thus, the results 
of MR studies warrant a cautious interpretation [60]. 
For example, BMI is strongly affected by smoking sta-
tus, age, sex, and ethnicity [61]. However, confounding 
could not result in the genetic variant, and it is possible 
that attenuation of a protective effect against NSCLC has 
been caused by adjustment for mediators actually along 
the causal pathway or associated with collider bias [62]. 
In the end, the use of BMI variants in MR as proxies 
for BMI trajectories had inherent limitations due to the 
lack of previous GWAS studies on BMI trajectories, and 
insufficient PLCO genetic data despite the large sample 
in the PLCO cohort.
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Our study had several strengths. First, this study was 
performed in a multi-centre, large sample size cohort. 
Second, we not only investigated the association between 
BMI trajectories and the NSCLC risk but also evaluated 
the interaction between BMI trajectories and genetic vari-
ants in the development of NSCLC. Third, we identified 
four novel and functionally plausible GWIA-based SNPs, 
which located near genes that paly critical roles in cell 
growth, differentiation, and inflammation and were mech-
anistically linked to BMI and NSCLC genesis.  However, 
limitations of this study have also been identified. Similar 
to nearly all epidemiologic study on the subject, BMI at 
age 20 and 50 were obtained from individual’s self-report. 
However, that information was obtained before the subse-
quent development of the outcomes of interest, so recall 
bias could not have been operative. Second, a substantial 
number of exclusions could limit generalizability, while 
it constrained our study cohort to those with complete 
data available that should help mitigate against threats 
to internal validity. Third, residual for unmeasured con-
founding cannot be excluded even exhaustive adjustment 
was performed in the multivariable analyses. And conclu-
sions from further Mendelian randomization, which pur-
portedly provides a methodologic approach for causality 
inference, should also be treated with caution. Fourth, our 
findings have not been validated by other larger-sample 
epidemiological studies, especially the limited sample size 
of the PLCO GWAS data. Finally, additional functional 
studies are warranted to elucidate the mechanisms under-
lying the effects of these loci and BMI trajectories interac-
tions on NSCLC risk.

Conclusions
Our study found that genetic susceptibility may modify 
the effect of BMI trajectories on the development of 
NSCLC by regulating cell growth, differentiation and 
inflammation. Further larger or multi-ethnicity studies 
should be conducted to validate our findings.
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