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Abstract 

Background:  Two neonatal mortality prediction models, the Neonatal Essential Treatment Score (NETS) which uses 
treatments prescribed at admission and the Score for Essential Neonatal Symptoms and Signs (SENSS) which uses 
basic clinical signs, were derived in high-mortality, low-resource settings to utilise data more likely to be available in 
these settings. In this study, we evaluate the predictive accuracy of two neonatal prediction models for all-cause in-
hospital mortality.

Methods:  We used retrospectively collected routine clinical data recorded by duty clinicians at admission from 
16 Kenyan hospitals used to externally validate and update the SENSS and NETS models that were initially devel-
oped from the data from the largest Kenyan maternity hospital to predict in-hospital mortality. Model performance 
was evaluated by assessing discrimination and calibration. Discrimination, the ability of the model to differenti-
ate between those with and without the outcome, was measured using the c-statistic. Calibration, the agreement 
between predictions from the model and what was observed, was measured using the calibration intercept and 
slope (with values of 0 and 1 denoting perfect calibration).

Results:  At initial external validation, the estimated mortality risks from the original SENSS and NETS models were 
markedly overestimated with calibration intercepts of − 0.703 (95% CI − 0.738 to − 0.669) and − 1.109 (95% CI − 1.148 
to − 1.069) and too extreme with calibration slopes of 0.565 (95% CI 0.552 to 0.577) and 0.466 (95% CI 0.451 to 0.480), 
respectively. After model updating, the calibration of the model improved. The updated SENSS and NETS models 
had calibration intercepts of 0.311 (95% CI 0.282 to 0.350) and 0.032 (95% CI − 0.002 to 0.066) and calibration slopes 
of 1.029 (95% CI 1.006 to 1.051) and 0.799 (95% CI 0.774 to 0.823), respectively, while showing good discrimination 
with c-statistics of 0.834 (95% CI 0.829 to 0.839) and 0.775 (95% CI 0.768 to 0.782), respectively. The overall calibration 
performance of the updated SENSS and NETS models was better than any existing neonatal in-hospital mortality 
prediction models externally validated for settings comparable to Kenya.

Conclusion:  Few prediction models undergo rigorous external validation. We show how external validation using 
data from multiple locations enables model updating and improving their performance and potential value. The 
improved models indicate it is possible to predict in-hospital mortality using either treatments or signs and symptoms 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

*Correspondence:  TTuti@kemri-wellcome.org

1 KEMRI-Wellcome Trust Research Programme, P.O. Box 43640, Nairobi, Kenya
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-7915-3004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-022-02439-5&domain=pdf


Page 2 of 13Tuti et al. BMC Medicine          (2022) 20:236 

Background
Low- and middle-income countries (LMICs) accounted 
for 98% of the global neonatal mortality in 2018 [1]. 
Improved delivery of essential interventions in LMICs 
hospitals can advance the attainment of the Sustainable 
Development Goal of lowering the neonatal mortality 
rate considerably [2, 3]. A better understanding of hos-
pitals’ neonatal mortality coupled with consistent and 
appropriate information on how this mortality varies 
may enhance efforts to improve hospital care at scale [4, 
5]. Without adjustment for patient case-mix efforts to 
contrast neonatal in-hospital mortality may be mislead-
ing because they fail to adjust for neonatal population 
characteristics [6].

Well-performing prediction models can support better 
clinical decision-making and case-mix adjustment and 
subsequently help improve service delivery at the health 
system level [7]. However, a review of existing neonatal 
prediction models found them to be ill-suited for routine 
practice in LMICs due to over-relying on physiological 
patient measures and treatments that are usually unavail-
able in LMICs [8]. Such limitations can be addressed by 
using predictors that are available in LMIC settings and 
applying recommended approaches to prediction model 
development and validation [8, 9]. Candidate predictors 
encompass essential interventions included in the clinical 
practice guidelines for in-hospital neonatal care devel-
oped by the WHO [10] and simple clinical symptoms and 
signs recommended for assessing illness in these popu-
lations in LMIC settings, such data are more easily col-
lectable [11]. Other prediction models for LMICs (e.g. 
Neonatal Mortality Rate (NMR)-2000 [12]) proposed 
for sub-Saharan Africa (SSA) still depend on technolo-
gies like pulse oximeters which may not be available or 
routinely used in most hospital settings in SSA [12]. 
Such models may also show only modest calibration to 
patient populations in LMICs and are typically developed 
from relatively small patient cohorts [12]. Even simpler 
approaches to mortality risk estimation suitable for the 
LMIC context may therefore be useful.

Prior work suggested neonatal data on essential clini-
cal signs, symptoms, and treatments routinely collected 
in a low-resource clinical setting might accurately pre-
dict in-hospital mortality [13]. Two prediction mod-
els were developed in Kenya: (1) the Neonatal Essential 
Treatment Score (NETS) from treatments prescribed 
at the time of admission and (2) the Score for Essential 

Neonatal Symptoms and Signs (SENSS) from basic clini-
cal signs. Both demonstrated reasonably good discrimi-
nation performance with AUCROC of 0.89 (95% CI 0.86 
to 0.92) and 0.89 (95% CI 0.84 to 0.93), respectively, with 
their development described in detail elsewhere [13].

However, they were developed using data from a sin-
gle hospital, and thus, further external validation of these 
models is recommended to ensure that the risk esti-
mates they produce are reliable and is warranted to sup-
port their wider use to help understand and examine the 
performance variation across hospitals after case-mix 
adjustment [13–15]. The most valuable characteristic of 
a prediction model performance is its generalisability to 
an external population. Differences in the case-mix and 
outcomes from the population contributing to the devel-
opment data may influence the calibration of the models 
[16]. Our objectives therefore were to:

1.	 Conduct external validation of the NETS and the 
SENSS models for predicting in-hospital neonatal 
mortality using routine clinical data from different 
hospitals

2.	 Evaluate whether their performance (and generalis-
ability) could be improved by re-estimating the origi-
nal regression coefficients with updated data from 
the derivation hospital

Methods
Ethics and reporting
The reporting of this study follows the Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis Or Diagnosis (TRIPOD) guidelines, 
which is a set of recommendations for the reporting of 
studies developing, validating, or updating prediction 
models for prognostic purposes [17]. The Scientific and 
Ethics Review Unit of the Kenya Medical Research Insti-
tute (KEMRI) approved the collection of the de-identified 
data that provides the basis for this study as part of the 
Clinical Information Network (CIN). The CIN is run in 
partnership with the Ministry of Health (MoH) and par-
ticipating hospitals. Individual consent for access to the 
de-identified patient data was not required.

Study design and participants
The study used data on all patients admitted to the 
New-Born Units (NBUs) from 16 public hospitals 

derived from routine neonatal data from low-resource hospital settings also making possible their use for case-mix 
adjustment when contrasting similar hospital settings.
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representative of different malaria transmission zones 
in Kenya, purposefully selected in partnership with the 
MoH. From the map in Fig. 1, the hospitals that cluster 
west of the map are in moderate to high malaria trans-
mission zone while the cluster at the centre of the map 
are in moderate to low malaria transmission zones. These 
hospitals largely provide maternal care services to imme-
diately surrounding populations including accepting 
referrals from smaller rural clinics. They were purpose-
fully selected to have moderately sized NBUs with an 
interquartile range of annual NBU inpatient admissions 
of 550 to 1640 (Fig. 1).

De-identified patient-level data were obtained after 
being recorded by clinicians as part of routine care. This 
data collection system linked to the CIN includes data 
quality assurance procedures and is described in detail 
elsewhere [11, 18, 19]. In brief, structured paper newborn 
admission record (NAR) and NBU exit forms that are 
endorsed by the Kenyan MoH are the primary data sources 

for the CIN. CIN supports one data clerk in each hospi-
tal to abstract data from the paper hospital records each 
day for all patients after discharge with the data entered 
directly into a non-proprietary Research Electronic Data 
Capture (REDCap) tool [20] with inbuilt range and valid-
ity checks. Data entry is guided by a standard operating 
procedure manual that forms the basis of the data clerks’ 
training with automated error-checking systems. To 
ensure no record is missed, the research team benchmarks 
the admission numbers entered in the CIN database with 
the aggregate statistics submitted to the MoH. External 
data quality assurance is done by KEMRI research assis-
tants who perform an on-site concordance check every 
3 months by comparing results from 5% randomly selected 
records they re-enter into REDCap to data clerks’ entries. 
The overall concordance of the external data quality audits 
has been ranging between 87 and 92% over time with feed-
back given to the data clerks and any challenges addressed 
for continuous improvement of data quality.

Fig. 1  Hospitals providing data for model derivation and external validation represented by the dots. The hospitals that cluster west of the map are 
in moderate to high malaria transmission zone while the cluster at the centre of the map is in moderate to low malaria transmission zones
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This study included neonates admitted to the NBUs 
between August 2016 and March 2020, from 16 hospi-
tals representing different regions of the country, with 
15 hospitals providing the external validation dataset 
(n = 53,909) (Fig. 1) and the 16th hospital dataset used for 
the model derivation and temporal validation. For objec-
tive 2, the data that was used for the model updating (i.e. 
re-estimating all the original SENSS and NETS regression 
coefficients) consisted of derivation stage dataset (April 
2014 to December 2015: n = 5427), temporal validation 
stage dataset (January 2016 to July 2016: n = 1627), and 
additional data collected from August 2016 to December 
2020 (n = 8848), all from the same hospital (16th hospi-
tal). Model updating is typically required where there is 
observed deterioration in model performance in the new 
population (e.g. during model external validation) [21]. 
We provide explanations of the meaning and significance 
of the different datasets in Additional file 1: Table S1.

Outcome
The outcome was all-cause in-hospital neonatal unit 
mortality. Outcome assessment was blind to predictor 
distribution as the hospital data clerks were unaware of 
the study [9].

Predictors
No new predictors were considered for SENSS and NETS 
models’ external validation and updating, only those 
used in the derivation and temporal validation study 
were included [13, 21]. For the NETS model, the use/
non-use of supplementary oxygen, enteral feeds, intra-
venous fluids, first-line intravenous antibiotics (penicillin 
and gentamicin), and parenteral phenobarbital predic-
tors were used [10]. For the SENSS model, the presence 
or absence of difficulty feeding, convulsions, indrawing, 
central cyanosis, and floppy/inability to suck, as assessed 
at admission, were used [10, 13]. Neonate’s birth weight 
by category (< 1 kg, 1.0 to < 1.5 kg, 1.5 to < 2.5 kg, 2.5 to 
4.0  kg, and > 4  kg) and sex were also included in both 
models. Weight was treated as a categorical predic-
tor rather than being continuous, despite categorisation 
likely causing information loss, based on a priori clinical 
consensus [9, 10]. Detailed descriptions and arguments 
for the selection of these variables are provided in the 
derivation study [13] and in Additional file  1: Table  S2 
and Additional file 1: Table S3. The proportion of predic-
tor missingness is consistent with previous work in Ken-
yan hospitals [22].

Sample size
Sample size for model validation
Sample size guidance for external validation of prediction 
models suggests a minimum recommended 100 events 

and 100 non-events for validation studies [23]. For SENSS 
and NETS models, there were 7486/53,909 (13.89%) and 
6482/45,090 (14.38%) events (deaths), respectively, with 
46,358/53,909 (85.99%) and 38,576/45,090 (85.55%) non-
events (survived), respectively.

Sample size for model updating
Based on an outcome prevalence of 508/5427 (9.36%) 
and 447/4840 (9.24%) for the SENSS and NETS deriva-
tion datasets, respectively; 10 predictor parameters; and 
R-squared values of 0.453 and 0.380, using the pmsampsize 
library in R, the required sample sizes required for SENSS 
and NETS model updating were 323 and 341 patients with 
31 and 32 deaths, respectively [24]. There were 7486 (from 
53,909 patients) and 6482 deaths (from 45,090 patients) 
observed for SENSS and NETS models, respectively, which 
exceeds the required sample sizes [24, 25].

Missing data
Predictor missingness in the SENSS external validation 
dataset (Additional file  1: Table  S4) ranged from 1.19% 
(sex) to 14.63% (floppy/inability to suck). The derivation 
model assumed a missing at random (MAR) mechanism 
for the observed missingness and performed multiple 
imputation using the chained equation (MICE) approach 
[26]. Therefore, for external validation before updating, 
the same mechanism was assumed. Similar to the deri-
vation study, mode of delivery, outborn, Apgar score at 
5 min, HIV exposure, and outcome were used as auxiliary 
variables in the imputation process [13, 27].

Consistent with the NETS model derivation approach, 
8819 (16.36%) observations in the external dataset with 
missing treatment sheets in the patient files were excluded, 
leaving 45,090 observations with 6482 (14.38%) in-hos-
pital deaths. Multiple imputation was considered inap-
propriate and therefore not done for NETS where the 
entire treatment sheets were missing (i.e. no information 
on any of the treatment predictors was available) because 
individual missing treatment data was judged to be sys-
tematically missing due to the factors not reflected in the 
dataset. Therefore, all patients with no treatment sheets 
(8819/53,909 in the external dataset and 2238/8848 in 
the model updating dataset) and those missing data in 
any treatment variable in the resultant NETS dataset 
(9440/45,090 in the NETS external dataset and 941/6610 
in the NETS model updating dataset) were dropped from 
NETS model analyses (Additional file 1: Table S5). Conse-
quently, NETS analyses were complete case analyses based 
on the missingness of the patient’s sex and birth weight.

Statistical analysis methods
The overall recommended process of predictive model-
ling is well articulated in the scientific literature [9, 14, 
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17, 24, 28]. To externally validate the performance of the 
original SENSS and NETS models, these models were 
applied to the CIN dataset from 15 hospitals (geographi-
cal external validation). For external validation before 
updating (i.e. objective one), external validation was done 
by applying the model coefficients obtained at the model 
derivation stage to the external validation data [13]. The 
models and coefficients are presented in Table  1. The 
SENSS model was fit on each of the 33 imputed data-
sets (based on 33% of observations missing at least one 
variable [29]) with parameter estimates combined using 
Rubin’s rule [30].

Model calibration was assessed by both plotting the 
predicted probability of in-hospital death against the 
observed proportion and calculating the calibration 
slope and calibration-in-the-large [16]. Discrimination 
was assessed by the c-statistic (equivalent to the area 
under the receiver operating curve) [23, 28]. The confi-
dence intervals for both c-statistic and calibration slope 
and intercept were calculated through bootstrapping (i.e. 
iterative sampling with replacement). Additionally, to 
facilitate a comparison of SENSS and NETS model per-
formance to the Neonatal Mortality Rate (NMR)-2000 
[12] score findings, we also report the Brier score which 
reflects the combined model discrimination and calibra-
tion. These metrics are briefly described in Table  2 and 
explained in detail elsewhere [31].

For objective 2 (i.e. model updating), given that simple 
recalibration did not resolve poor model performance 
(Additional file 2 [21, 32]), we refit the SENSS and NETS 
models and re-estimated the coefficients while applying 
regularisation (a technique for reducing model over-
fitting) using data from the 16th hospital (i.e. the mod-
els’ derivation study site). Model overfitting is when the 
model fits too closely to the training dataset making it 

unable to generalise well to new datasets. We used elas-
tic net regularisation which combines L1 regularisa-
tion (introduces sparsity by shrinking the less important 
covariates’ coefficients towards zero) and L2 regulari-
sation (minimises biassed estimates due to highly cor-
related independent variables) [33]. Also, to minimise 
model overfitting from the selection of elastic-net tun-
ning parameters, we applied tenfold internal cross-
validation repeated 20 times [34]. Cross-validation is a 
re-sampling procedure where the model development 
dataset is randomly split into an equally sized number of 
partitions (i.e. folds) and one of the random partitions is 
left out during model fitting for use as the internal valida-
tion dataset, with the model then built on the remaining 
portion of development dataset, and predictive perfor-
mance evaluated on the left-out partition. This process 
is repeated with each iteration using a different parti-
tion as the validation data source. It could also include 
optional extra iterations to repeat the random splitting of 
the development dataset which would generate different 
folds [34]. The goal of cross-validation is assessing how 
accurately a predictive model might perform in practice 
given, for example, the different elastic net thresholds 
used during model fitting (i.e. thereby aiding the selec-
tion of the most optimum model hyperparameters such 
as regularisation parameters) [34].

The SENSS and the NETS models were fit on data col-
lected between August 2016 and December 2020 col-
lected from the 16th hospital. The updated SENSS and 
NETS model performance was evaluated on data from 
the other 15 hospitals (Additional file  1: Table  S6). All 
cases included in the NETS model are a subset of those 
included in the SENSS model but with a treatment sheet 
present. Given the models are developed independently 
of each other, there is no substantive implication on the 
interpretation of findings. We provide explanations of 
the meaning and significance of the different datasets in 
Additional file 1: Table S1.

To examine the heterogeneity in model performance, 
we compared the updated models’ internal–exter-
nal cross-validation performance where we omitted 
one hospital at a time using it as the validation data-
set, built the model on the remaining hospitals, and 
evaluated the model’s discrimination and calibration 
performance on the hospital left out. We repeated this 
process with each iteration using a different hospital as 
the validation data source [35].

Results
There were no noticeable differences in the level of 
missingness in the auxiliary variables between the der-
ivation and temporal datasets used in the derivation 

Table 1  Logistic regression models for NETS and SENSS from 
derivation study

For each variable, the presence of the indicator takes a value of 1, and the 
absence takes a value of 0. The coefficients are summated to give the linear 
predictor, which is then converted to the predicted probability of in-hospital 
mortality [13]

ELBW Extremely low birth weight, LBW Low birth weight, LP Linear predictor, 
NETS Neonatal Essential Treatment Score, SENSS Score of Essential Neonatal 
Symptoms and Signs, VLBW Very low birth weight

SENSS:

  Linear predictor (LPSENSS) =  − 3.8583 + 5.7580 * ELBW + 3.7082 * 
VLBW + 0.9232 * LBW − 0.4918 * macrosomia − 0.1336 * Male + 1.3596 * 
difficulty feeding + 1.3977 * convulsion + 1.9790 * indrawing + 0.9584 * 
cyanosis + 1.6266 * floppy unable to suck

NETS:

  Linear predicator (LPNETS) =  − 4.1521 + 5.6836 * ELBW + 4.5359 * 
VLBW + 1.4186 * LBW − 0.2927 * macrosomia − 0.3125 * male + 1.3695 * 
antibiotics + 1.3256 * fluids − 1.9135 * feeds + 0.6142 * oxygen + 2.5947 
* phenobarbital
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study (Table  3) [13]. For the NETS predictors, the 
external validation dataset had a higher proportion of 
patients with intravenous fluids prescribed and birth-
weight < 1500 g (Additional file 1: Table S6). Compared 
to the derivation and the model updating dataset, 
neonates in the SENSS external dataset had a higher 
proportion of all predictors present except for cen-
tral cyanosis and severe indrawing (Additional file  1: 
Table S4). There is a noticeable difference in mortality 
outcomes between the derivation and external valida-
tion datasets (Table 3). Around 40% of the neonates in 
the external validation set did not have normal birth 
weight, and the mortality rate was around 13–14% and 
around 11% of the neonates were born outside the hos-
pital (Table 3).

Objective 1: SENSS and NETS model performance 
on the external validation dataset
The c-statistic (discrimination) for SENSS model was 
0.832 (95% CI 0.827 to 0.837) and 0.776 (95% CI 0.769 
to 0.782) for the NETS model. The calibration of the 
original SENSS and NETS models (Table 1) was poor as 
reflected by the calibration intercept and slope (Fig.  2). 
The estimated mortality risks from both models were too 
extreme (slope < 1) and tended towards overestimation 
(intercept < 0), especially as the observed outcome event 
rate increased.

Objective 2: SENSS and NETS model updating
After model updating, SENSS and NETS model calibra-
tion intercepts improved to 0.349 (95% CI 0.321 to 0.377) 
and 0.032 (95% CI − 0.002 to 0.066), respectively. The 
updated SENSS unlike the updated NETS model was still 
suggestive of mortality risk underestimation (Fig. 3). The 
calibration slopes also improved to 1.029 (95% CI 1.006 
to 1.051) for SENSS and 0.799 (95% CI 0.744 to 0.823) for 
NETS models (Fig.  3). The c-statistic from both models 
after did not show any statistically significant improve-
ment. The Brier score of the SENSS and NETS mod-
els was 0.093 (95% CI 0.084 to 0.104) and 0.105 (95% 
CI 0.095 to 0.116), respectively. The coefficients from 
the updated NETS and SENSS models are illustrated in 
Table 4.

Figure  4 illustrates the findings from the sensitiv-
ity analysis applying internal–external cross-validation 
(IECV) to explore the heterogeneity in model perfor-
mance and see in which hospitals the models ‘work’ and 
‘do not work’ based on the performance measures in 
Table 2. From the IECV findings (Fig. 4), 7/16 and 6/16 
hospitals had a calibration intercept suggestive of under-
estimation of the estimated mortality risk when using 
SENSS and NETS models, respectively; 6/16 hospitals 
had a calibration intercept suggestive of overestimation 
of the estimated mortality risk when using SENSS and 
NETS models.

Table 2  Measures for model’s performance assessment (definitions adapted from Riley et al. [31] )

1. Calibration

  This is how close the predicted mortality event is close to the observed mortality event. This measure has two key components:

    (a) Calibration slope

      The calibration slope measures the agreement between the observed and predicted risks of the event (outcome) across the whole range of 
predicted values. For a perfectly calibrated model, we expect to see that, in 100 individuals with a predicted risk of r% from our model, r of the 100 truly 
have the outcome of interest (i.e. death in this case). The slope should ideally be 1. A slope < 1 indicates that some predictions are too extreme (e.g. 
predictions close to 1 are too high, and predictions close to 0 are too low), and a slope > 1 indicates predictions are too narrow. A calibration slope < 1 is 
often observed in validation studies, consistent with over-fitting in the original model development

    (b) Calibration-in-the-large (calibration intercept)

      The calibration intercept compares the mean of all predicted risks with the mean observed risk, i.e. on average how close is predicted to 
observed in the whole dataset. This parameter hence indicates the extent that predictions are systematically too low or too high. It can be well assessed 
graphically, in a plot with predictions on the x-axis and the observed endpoint on the y-axis. The observed values on the y-axis are 0 or 1 (e.g. dead/
alive), while the predictions on the x-axis range between 0 and 100% with the intercept representing calibration-in-the-large

2. Discrimination

  The is a measure of a prediction model’s separation between those with or without the outcome, usually represented by the c-statistic which is also 
known as the concordance index or, for binary outcomes, the area under the receiver operating characteristic (AUROC) curve. It gives the probability 
that for any randomly selected pair of individuals, one with and one without the disease (outcome), the model assigns a higher probability to the indi-
vidual with the disease (outcome). A value of 1 indicates the model has perfect discrimination, while a value of 0.5 indicates the model discriminates no 
better than chance

3. Brier score

  The Brier score captures both discrimination and calibration simultaneously, with smaller values indicating better model performance. Consider a set 
of events with binary outcomes (e.g. ‘death will or will not happen’). If an event comes to pass (‘death did happen’), it is assigned a value of 1 otherwise 
it is assigned a value of 0. Given probabilistic predictions for those events (‘.77 probability of death’), the Brier score is the mean of squared differences 
between those predictions and their corresponding event scores (1 s and 0 s) on the probability scale lying between 0 and 1. Larger differences 
between expected and observed event outcomes reflect more error in predictions, so a lower Brier score indicates greater accuracy



Page 7 of 13Tuti et al. BMC Medicine          (2022) 20:236 	

Four out of 16 hospitals had a calibration slope indi-
cating that the estimated NETS mortality risks were too 
extreme, i.e. too high for patients who are at high risk and 

too low for patients who are at low risk; 6/16 and 8/16 
hospitals had a slope > 1 for NETS and SENSS models, 
respectively, suggesting that the mortality risk estimates 

Table 3  Characteristics of patients included in model derivation and external validation

a The same hospital was used at the model derivation and temporal validation stage, with the temporal validation stage using data from a specific future period
b Data is only from the same hospital used at derivation and temporal validation stage. Data collected between January 2016 and December 2020
c Data presented are before multiple imputation. The multiple imputation filled in the missing values while preserving the pattern of distribution observed in the 
original datasets
d All cases included in NETS model are subset of those included in SENSS model but with a treatment sheet present; given the models are developed independently of 
each other, there is no substantive implication on interpretation of findings
e Includes assisted vaginal deliveries (e.g. forceps, vacuum)
f Outborn refers to neonates admitted to the unit having been born either in another facility, at home or on the way to hospital
g Patients referred out of hospital recoded were also treated as being ‘alive’ at discharge

Indicator Levels Derivation Temporal validationa Model updating 
(recalibration)b

External validation

SENSSc, 
n = 5427

NETSd, 
n = 4840

SENSSc, 
n = 1627

NETSd, 
n = 1443

SENSSc, 
n = 8848

NETSd, 
n = 6610

SENSSc, 
n = 53,909

NETSd, 
n = 45,090

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)

Male Yes 2937 (54.12) 2605 (53.82) 961 (59.07) 850 (58.91) 4963 (56.09) 3713 (56.17) 29,384 
(54.51)

24,719 (54.82)

Missing 13 (0.24) 12 (0.25) 2 (0.12) 2 (0.14) 27 (0.31) 25 (0.38) 642 (1.19) 468 (1.04)

Weight 1000 g 
and below 
(ELBW)

32 (0.59) 31 (0.64) 10 (0.61) 10 (0.69) 104 (1.18) 96 (1.45) 1243 (2.31) 1083 (2.4)

1001–1499 g 
(VLBW)

136 (2.51) 115 (2.38) 45 (2.77) 40 (2.77) 379 (4.28) 366 (5.54) 3844 (7.13) 3494 (7.75)

1500–2499 g 
(LBW)

1180 (21.74) 1043 (21.55) 361 (22.19) 316 (21.9) 2123 (23.99) 1717 (25.98) 13,207 (24.5) 11,320 (25.11)

2500–4000 g 
(NBW)

3841 (70.78) 3438 (71.03) 1125 (69.15) 1002 (69.44) 5834 (65.94) 4162 (62.97) 31,285 
(58.03)

25,932 (57.51)

 > 4000 g 
(macroso-
mia)

229 (4.22) 204 (4.21) 85 (5.22) 74 (5.13) 368 (4.16) 243 (3.68) 3352 (6.22) 2478 (5.5)

Missing 9 (0.17) 9 (0.19) 1 (0.06) 1 (0.07) 40 (0.45) 26 (0.39) 978 (1.81) 783 (1.74)

Mode of 
delivery

Breech 43 (0.79) 40 (0.83) 23 (1.41) 19 (1.32) 197 (2.23) 165 (2.5) 1226 (2.27) 1028 (2.28)

Caesarean 
section (C/S)

2212 (40.76) 1957 (40.43) 574 (35.28) 509 (35.27) 3211 (36.29) 2251 (34.05) 18,634 
(34.57)

15,540 (34.46)

Spontane-
ous vaginal 
(SVD)e

3014 (55.54) 2698 (55.74) 1012 (62.2) 897 (62.16) 5157 (58.28) 4006 (60.61) 33,203 
(61.59)

27,824 (61.71)

Missing 158 (2.91) 145 (3) 18 (1.11) 18 (1.25) 283 (3.2) 188 (2.84) 846 (1.57) 698 (1.55)

Outbornf Yes 123 (2.27) 107 (2.21) 60 (3.69) 57 (3.95) 495 (5.59) 439 (6.64) 6017 (11.16) 5155 (11.43)

Missing 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Apgar score 
(5 min)

0–3 116 (2.14) 112 (2.31) 33 (2.03) 33 (2.29) 293 (3.31) 274 (4.15) 1146 (2.13) 1005 (2.23)

4–6 602 (11.09) 593 (12.25) 200 (12.29) 199 (13.79) 1334 (15.08) 1184 (17.91) 9121 (16.92) 7986 (17.71)

7–10 3992 (73.56) 3918 (80.95) 1149 (70.62) 1142 (79.14) 6484 (73.28) 4868 (73.65) 38,391 
(71.21)

31,531 (69.93)

Missing 717 (13.21) 217 (4.48) 245 (15.06) 69 (4.78) 737 (8.33) 284 (4.3) 5251 (9.74) 4568 (10.13)

HIV exposure Exposed 319 (5.88) 287 (5.93) 84 (5.16) 74 (5.13) 473 (5.35) 439 (6.64) 2145 (3.98) 1957 (4.34)

Missing 305 (5.62) 277 (5.72) 94 (5.78) 80 (5.54) 276 (3.12) 219 (3.31) 4742 (8.8) 3826 (8.49)

Outcome Aliveg 4900 (90.29) 4374 (90.37) 1469 (90.29) 1299 (90.02) 8134 (91.93) 5950 (90.02) 46,358 
(85.99)

38,576 (85.55)

Dead 508 (9.36) 447 (9.24) 152 (9.34) 138 (9.56) 696 (7.87) 649 (9.82) 7486 (13.89) 6482 (14.38)

Missing 19 (0.35) 19 (0.39) 6 (0.37) 6 (0.42) 18 (0.2) 11 (0.17) 65 (0.12) 32 (0.07)
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from these models for these hospitals are too moder-
ate. The c-statistic of only 9/16 hospitals for the SENSS 
model and 2/16 for the NETS model had a 95% confi-
dence interval that was above 0.8 (Fig. 4).

Discussion
The NETS and SENSS models demonstrated improved 
performance after updating the initial specified models 
[13]. At initial external validation, calibration-in-the-
large (calibration intercept) for NETS was − 1.109 (95% 
CI − 1.148 to − 1.069) and that for SENSS was − 0.703 

(95% CI − 0.738 to − 0.669). The calibration slope for 
NETS was 0.466 (95% CI 0.451 to 0.480), and for SENSS, 
it was 0.565 (95% CI 0.552 to 0.577). After updating the 
data used at the derivation stage while applying cross-
validation, model regularisation, and imputation fitting 
procedures, SENSS and NETS model calibration inter-
cepts improved to 0.349 (95% CI 0.321 to 0.377) and 
0.032 (95% CI − 0.002 to 0.066), respectively, and their 
calibration slopes also improved to 1.029 (95% CI 1.006 
to 1.051) for SENSS and 0.799 (95% CI 0.774 to 0.823) for 
NETS model.

Fig. 2  Calibration curves for the SENSS and NETS model in the external validation dataset. SENSS, Score for Essential Neonatal Symptoms and 
Signs; NETS, Neonatal Essential Treatment Score; RCS, restricted cubic splines; CL, confidence limits (95%). Calibration curves generated using the 
CalibrationCurves package in R [36]
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Our analyses sought to address the previous short-
comings of external validation studies by (i) reporting 
model calibration using various performance statistics 
(Brier score, calibration slope, calibration intercept), (ii) 
explicitly highlighting the treatment of missing data, (iii) 
making clear the version(s) of the original model being 
evaluated, and (iv) using a big sample size for analysis 
[31]. The pre-selection of model predictors was based on 
their availability in typical LMICs clinical practice [10, 37] 
and represents the ideal case of using a limited number of 
predictors in the final models [23]. As more parsimonious 

models (fewer predictors), the NETS and SENSS might 
have better predictive performance while being reflec-
tive of many LMIC neonatal contexts [23]. Apart from the 
consensus of 0.8 as a threshold marker of good discrimi-
nation, there is no agreement on cut-off thresholds for 
good calibration. We have therefore adopted calibration 
plots and report the calibration slopes and intercepts [16]. 
However, we also report alternative scores (i.e. Brier score 
[38]) to aid comparison to other studies’ findings [12].

Model updating would help where the model has 
poor calibration but good discrimination in the external 

Fig. 3  Calibration curves for the updated SENSS and NETS model in the external validation dataset. SENSS, Score for Essential Neonatal Symptoms 
and Signs; NETS, Neonatal Essential Treatment Score; RCS, restricted cubic splines; CL, confidence limits (95%). Calibration curves generated using 
the CalibrationCurves package in R [36]
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validation dataset, where the difference between the 
development and validation datasets is in both the pre-
dictor and observed outcome frequencies and where the 
strength of the association between predictors and the 
outcome might be substantially different in the new pop-
ulation [21]; this was the case for the SENSS and NETS 
models in this study, with calibration slopes suggesting 
that the estimated mortality risks are too extreme (Fig. 2, 
Additional file 2: Fig. S1). A possible reason for the differ-
ence in performance might be due to the strength of the 
association between some predictors and the outcome 
might be substantially different in the new population 
[21]. For example, the proportion of deaths per predictor 
for both models in the external validation dataset varied 
substantively compared to the derivation dataset (Addi-
tional file 1: Tables S7 and S8) [13]. This calibration per-
formance difference might also be due to dissimilar case 
fatality—exacerbated by the difference in the level of pre-
dictor missingness—between the original derivation and 
the new external validation datasets.

Our published review showed that there are arguably 
no ‘gold standard’ clinical prediction models for neonatal 
mortality in LMIC. Existing models either (1) are often 
developed in intensive care units, (2) lack external vali-
dation, (3) suffer from widespread methodological limi-
tations, (4) have low certainty in the quality of evidence 
on their performance, or (5) are developed to predict 
risk at the population level as opposed to the in-hospital 
[8, 12, 39]. These neonatal prediction models (includ-
ing commonly used models from high-income settings) 
tend to rely on predictors that are laboratory- and ther-
apy-derived that are often unavailable in care settings in 
LMICs; they are unlikely to be externally validated in set-
tings such as Kenya [8, 40, 41]. Comparison of the SENSS 

and NETS external discrimination and calibration per-
formance to the performance of these previously identi-
fied models’ is thus ill-advised since these measures are 
generated from different patient cohorts [8].

The most similar (and recently validated) score to 
NETS and SENSS is the NMR-2000, whose external vali-
dation sample size from LMICs was 457 patients from 
The Gambia and relied on the presence of pulse oximetry 
[12]. When diagnostic tools (e.g. pulse oximetry) become 
unavailable in routine practice, which is often the case 
in typical LMIC settings in SSA, prediction models like 
NMR-2000 are rendered unusable [12].

The most valuable characteristic of a prediction 
model performance is its generalisability to an exter-
nal population, where calibration-in-the-large is highly 
relevant. From Fig.  2, the original SENSS and NETS 
models’ calibration on the external dataset were notice-
ably poor and would have tended towards overestimat-
ing mortality risk despite being ‘simple’ models [16]. 
Even though the magnitude of the proportion of deaths 
across the external validation dataset for both NETS 
and SENSS datasets was similar, the differences in the 
proportion of deaths for both models were higher in 
the external validation dataset compared to the deriva-
tion dataset (Additional file 1: Tables S3 and S4), which 
might have contributed to the differences in model cali-
bration observed at external validation. This might have 
resulted in a case-mix difference due to random varia-
tion before model updating was done.

Our approach of applying penalised regression tech-
niques (i.e. regularisation) and repeated internal cross-
validation was able to reduce model overfitting and 
improve calibration as evidenced by the better calibration 
intercepts and slopes (Fig.  3). From the IECV findings 
evaluating heterogeneity in model performance (Fig.  4), 
hospital-specific differences in the recognition of signs 
and symptoms of severe illness (for SENSS), coupled with 
differences in case-mix influencing treatment outcomes, 
might have been key factors contributing to the differ-
ences observed in model performance. The heterogeneity 
of the NETS model discrimination is likely from system-
atic differences in hospital practices contributed to by 
changes in junior clinician rotations. IECV performance 
was relatively better for the SENSS model, likely because 
recognition of signs and symptoms of severe illness, 
which requires different arguably less complex clinical 
skills than prescription of treatments (NETS predictors), 
might not vary so much across hospitals.

A key strength of this study is our use of a large and pur-
posely selected neonatal dataset from routine clinical set-
tings from geographically dispersed hospitals for external 
model validation (Fig. 1). Such datasets, with associated 
external validation studies, are quite uncommon in LMIC 

Table 4  Logistic regression models for NETS and SENSS after 
model updating

For each variable, the presence of the indicator takes a value of 1, and the 
absence takes a value of 0. The coefficients are summated to give the linear 
predictor, which is then converted to the predicted probability of in-hospital 
mortality

ELBW Extremely low birth weight, LBW Low birth weight, LP Linear predictor, 
NETS Neonatal Essential Treatment Score, SENSS Score of Essential Neonatal 
Symptoms and Signs, VLBW Very low birth weight

SENSS:

  Linear predictor (LPSENSS) =  − 3.4635 + 2.8734 * ELBW + 1.7696 * 
VLBW + 0.3352 * LBW − 0.2396 * macrosomia − 0.0685 * male + 0.6400 * 
difficulty feeding + 0.5300 * convulsions + 1.5078 * indrawing + 1.0633 * 
cyanosis + 0.9583 * floppy unable to suck

NETS:

  Linear predicator (LPNETS) =  − 3.5246 + 4.2077 * ELBW + 2.6112 * 
VLBW + 0.8759 * LBW + 0.000 * macrosomia − 0.0667 * male + 0.5962 * 
antibiotics + 0.8095 * fluids − 1.2843 * feeds + 0.1522 * oxygen + 1.1303 
* phenobarbital
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settings [18, 31]. We also transitioned from temporal 
validation of the NETS and SENSS models [13] to geo-
graphical external validation to enhance generalisability 
in more neonatal units and better address heterogene-
ity in model performance across populations [31]. A key 
limitation of this study is that variation in treatments 
may be influenced by time, resources available, and level 

of care provided [8]. Nonetheless, the use of standard 
clinical guidelines [10] helps to reduce such variation, 
although routine model updating needs to also be con-
sidered as clinical practice changes over time [16]. Also, 
while purposively sampling in partnership with the Ken-
yan MoH generated the CIN hospitals which have var-
ied NBU characteristics, CIN hospitals perhaps have 

Fig. 4  Heterogeneity in model performance from internal–external cross-validation (IECV) approach. SENSS, Score for Essential Neonatal Symptoms 
and Signs; NETS, Neonatal Essential Treatment Score
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higher-quality clinical data from NBUs than is available 
from all NBUs in Kenya.

Conclusion
The SENSS and the NETS are simplified prediction mod-
els relying on basic routine clinical data recorded by duty 
clinicians, validated for low-resource settings, to accu-
rately predict in-hospital mortality among neonates with 
varying birth weights. By enabling healthcare workers in 
LMIC settings to quickly assess mortality risk (e.g. using 
a neonate’s signs, symptoms, and treatments to calculate 
mortality probability), these scores could help improve 
early recognition of illness severity and rapid initiation 
of evidence-based interventions, crucial for the neonates’ 
survival. However, more research is needed on how best 
to translate SENSS and NETS models to (a) simplified 
clinical prediction or decision rules for clinical use and 
(b) test them using intervention studies to determine 
their impact on patient outcomes and cost-effectiveness 
[14]. They are however well-suited for aiding decision-
makers with case-mix adjustment decisions.
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