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Abstract 

Background:  Observational studies have revealed that type 2 diabetes (T2D) is associated with an increased risk of 
peripheral artery disease (PAD). However, whether the two diseases share a genetic basis and whether the relation-
ship is causal remain unclear. It is also unclear as to whether these relationships differ between ethnic groups.

Methods:  By leveraging large-scale genome-wide association study (GWAS) summary statistics of T2D (European-
based: Ncase = 21,926, Ncontrol = 342,747; East Asian-based: Ncase = 36,614, Ncontrol = 155,150) and PAD (European-
based: Ncase = 5673, Ncontrol = 359,551; East Asian-based: Ncase = 3593, Ncontrol = 208,860), we explored the genetic 
correlation and putative causal relationship between T2D and PAD in both Europeans and East Asians using linkage 
disequilibrium score regression and seven Mendelian randomization (MR) models. We also performed multi-trait 
analysis of GWAS and two gene-based analyses to reveal candidate variants and risk genes involved in the shared 
genetic basis between T2D and PAD.

Results:  We observed a strong genetic correlation (rg) between T2D and PAD in both Europeans (rg = 0.51; p-value 
= 9.34 × 10−15) and East Asians (rg = 0.46; p-value = 1.67 × 10−12). The MR analyses provided consistent evidence 
for a causal effect of T2D on PAD in both ethnicities (odds ratio [OR] = 1.05 to 1.28 for Europeans and 1.15 to 1.27 for 
East Asians) but not PAD on T2D. This putative causal effect was not influenced by total cholesterol, body mass index, 
systolic blood pressure, or smoking initiation according to multivariable MR analysis, and the genetic overlap between 
T2D and PAD was further explored employing an independent European sample through polygenic risk score regres-
sion. Multi-trait analysis of GWAS revealed two novel European-specific single nucleotide polymorphisms (rs927742 
and rs1734409) associated with the shared genetic basis of T2D and PAD. Gene-based analyses consistently identified 
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Introduction
Type 2 diabetes (T2D) is a severe metabolic disease 
caused primarily by the inadequate production or secre-
tion of insulin [1]. Previous studies have revealed that 
T2D patients have a significantly increased risk of suffer-
ing from peripheral artery disease (PAD) [2, 3], a chronic 
circulatory condition characterized by the constriction 
of arteries that serves to slow the blood flow in the limbs 
[4, 5]. Evidence has accumulated for a higher mortal-
ity rate among patients with co-morbid T2D and PAD 
than among patients with PAD alone [6], illustrating the 
importance of understanding the pathophysiological link 
between T2D and PAD.

The observed association between T2D and PAD can 
be explained in part by a shared genetic basis [7–9]. 
For example, Strawbridge and van Zuydam identified 
CDKN2A/B as candidate genes likely to be involved in 
regulating both T2D and PAD [8]. A recent study also 
replicated CDKN2A as being associated with PAD in 
individuals with diabetes [10]. Vujkovic et al. analyzed ~ 
1.4 million individuals of multiple ethnicities (including 
Europeans, African Americans, Hispanics, South Asians, 
and East Asians), thereby disclosing significant associa-
tions between 318 genetic variants and the risk of both 
T2D and PAD [9]. Nevertheless, our knowledge of the 
nature and extent of the genetic associations between 
T2D and PAD is still far from clear. Furthermore, 
whether the associations between T2D and PAD differ 
among ethnic groups remains uncertain, and whether the 
genetic associations between the two diseases reflect a 
causal relationship or pleiotropy is unknown.

The growth of genome-wide association studies 
(GWAS) over the past two decades has stimulated 
the development of approaches to analyze cross-trait 
shared genetic architecture based on GWAS summary 
statistics. For example, Bulik-Sullivan et  al. proposed 
the GWAS-based linkage disequilibrium score regres-
sion (LDSC) statistic as a means to estimate the single 
nucleotide polymorphism (SNP)-based genetic cor-
relation between traits [11]. Mendelian randomization 
(MR) has been proposed as a way to measure the puta-
tive causal relationship between traits. MR uses genetic 

variants as instruments to mimic a random allocation 
procedure in randomized controlled trials [12], thereby 
avoiding issues of confounding and reverse causation 
[13]. With the advent of large-scale biobanks involving 
multiple ethnicities (e.g., UK Biobank [UKB], BioBank 
Japan [BBJ]), it became possible to compare the cross-
trait shared genetic architecture between different 
ethnicities in order to explore the possibility of trans-
ethnic genetic heterogeneity. To date, the applications 
of these approaches and datasets have achieved con-
siderable success in increasing our understanding of 
the shared genetic architecture between complex dis-
eases [14–16], thereby superseding traditional experi-
mental models which are much more time-consuming 
and costlier to implement. Thus, using GWAS-based 
approaches to analyze GWAS summary data for T2D 
and PAD derived from different ethnic groups provides 
an opportunity for us to study the shared genetic basis 
between the two diseases.

In this study, we applied LDSC and seven MR or MR-
equivalent approaches to estimate the genetic correla-
tion and potential causal relationship between T2D and 
PAD in Europeans and East Asians. Further multivari-
able Mendelian randomization analysis (MVMR) was 
used to examine whether the putative causal relationship 
between T2D and PAD can be affected by traits associ-
ated with the increased risk of PAD or T2D. A validation 
of genetic overlap between T2D and PAD was then per-
formed using independent samples to explore whether 
the polygenic risk scores (PRS) for T2D could predict 
the status of PAD, and vice versa. Finally, we performed 
a multi-trait analysis of GWAS (MTAG) and two gene-
based analyses (i.e., multi-marker analysis of genomic 
annotation [MAGMA] and summary data-based Men-
delian randomization [SMR]) to identify the risk SNPs 
and functional genes that are likely to be responsible for 
the shared genetic etiology underlying T2D and PAD. 
We applied the analytical pipeline to Europeans, and 
also to East Asians independently as a replicated analy-
sis, to investigate the common and distinct mechanisms 
of co-occurring T2D-PAD between Europeans and East 
Asians.

one gene ANKFY1 and gene-gene interactions (e.g., STARD10 [European-specific] to AP3S2 [East Asian-specific]; KCNJ11 
[European-specific] to KCNQ1 [East Asian-specific]) associated with the trans-ethnic genetic overlap between T2D and 
PAD, reflecting a common genetic basis for the co-occurrence of T2D and PAD in both Europeans and East Asians.

Conclusions:  Our study provides the first evidence for a genetically causal effect of T2D on PAD in both Europe-
ans and East Asians. Several candidate variants and risk genes were identified as being associated with this genetic 
overlap. Our findings emphasize the importance of monitoring PAD status in T2D patients and suggest new genetic 
biomarkers for screening PAD risk among patients with T2D.

Keywords:  Type 2 diabetes, Peripheral artery disease, Shared genetics, Causality
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Methods
Data sources for Europeans
Analyses were performed by utilizing more than 400,000 
individuals of European ancestry from the UKB cohort. 
Individuals of European ancestry were selected using 
a two-stage approach: first, we calculated the top two 
principal components (PCs) for each individual from 
HapMap 3 (HM3) SNPs of 1000 Genomes Project [17]; 
second, we assigned individuals to European if their PC 
information was optimally matched to the 1000 Euro-
pean Genomes reference (compared to other popula-
tion reference, e.g., African, East Asian, South Asian and 
Admixed) [18]. Individuals were classified as T2D or 
PAD patients if they were coded with the International 
Classification of Diseases 10th (ICD-10) based on non-
insulin-dependent (type 2) diabetes mellitus (UKB Field 
ID: 41270 [E11]; Additional file  1: Table  S1) or ICD-10 
based diseases of arteries, arterioles, and capillaries (UKB 
Field ID: 41270 [I70-I79]; Additional file  1: Table  S1), 
respectively [19]. They were classified as controls in rela-
tion to T2D or PAD if they had not been ascribed the 
corresponding T2D or PAD code, respectively. In total, 
we obtained a T2D sample of 364,673 individuals (Ncase = 
21,926; Ncontrol = 342,747) and a PAD sample of 365,224 
individuals (Ncase = 5673; Ncontrol = 359,551).

Next, we randomly divided these individuals (includ-
ing cases and controls) into two subsets, comprising 80% 
and 20% of the sample, respectively. The former (i.e., 80% 
of the sample) was used as the GWAS discovery sam-
ple whereas the latter (i.e., 20% of the sample) was used 
in the subsequent PRS analysis (see below). GWAS was 
carried out using BOLT-LMM [20], which is a Bayes-
ian-based linear mixed model (LMM) that allows for 
the relatedness of individuals by adjusting the popula-
tion structure and cryptic relatedness. BOLT-LMM was 
corrected for age, sex, genotype batch, and assessment 
center and was fitted by random effects of the restricted 
SNPs (with LD r2 < 0.9). The SNPs used in BOLT-LMM 
were calibrated by the LD scores calculated from the 
1000 Genomes Project Europeans reference [21]. Geno-
typed SNPs were imputed according to the Haplotype 
Reference Consortium reference panel [22]. We further 
excluded SNPs with minor allele frequency (MAF) < 0.01, 
imputation INFO score < 0.3, p-value of Hardy-Weinberg 
test < 1 × 10−6, minor allele count < 5, or the call rate 
< 0.05, yielding a final set of 8.54M SNPs. SNP effects 
(i.e., βBOLT − LMM) and their associated standard errors 
(i.e., SEBOLT − LMM) from BOLT-LMM were converted 
to a quantitative scale using the approximate approach 
β ′

BOLT−LMM or SE′

BOLT−LMM =
βBOLT−LMM (or SEBOLT−LMM)

µ(1−µ)
 , 

where μ is the proportion of cases. The remaining indi-
viduals (i.e., 20% of cases and 20% of controls) were 
employed for the PRS analysis (NT2D case = 3655, NT2D 

control = 59,801; NPAD case = 863, NPAD control = 62,593), 
after excluding the individuals who were genetically 
related (with a cryptic relatedness r2 > 0.05) to the indi-
viduals of the discovery sample for GWAS.

Data sources for East Asians
The GWAS summary statistics of T2D [23] and PAD [24] 
for East Asians were accessed via the BBJ cohort [25]. 
The GWAS of T2D was a fixed-effect inverse variance-
weighted meta-analysis (via METAL [26]) of four Japa-
nese ancestry-based cohorts comprising 36,614 cases and 
155,150 controls. The GWAS of PAD included 3593 cases 
and 208,860 controls and was generated using a LMM via 
SAIGE [27], adjusted by age, sex, and the top five genetic 
principal components. Additionally, unrelated East 
Asian individuals (NT2D case = 241, NT2D control = 2,483; 
NPAD case = 26, NPAD control = 2698) were extracted from 
UKB (independent from BBJ) for the downstream PRS 
analysis.

eQTL summary data
Expression quantitative trait loci (eQTL) are defined as 
loci which are associated with genetic variants that alter 
gene expression levels [28]. In our study, we obtained the 
publicly available blood-based cis-eQTL summary data 
from the eQTLGen Consortium for SMR analysis (see 
below) [29]. The cis-eQTL summary data were gener-
ated from 31,684 individuals of European ancestry using 
a weighted Z-score [30] based on a meta-analysis of 37 
cohorts comprising 19,250 probes [31].

Linkage disequilibrium score regression
We performed single-trait and cross-trait LDSC to esti-
mate the liability-scale heritability (h2) of T2D and PAD 
as well as their genetic correlation (rg) [32, 33], respec-
tively, according to the population and sample preva-
lence values of T2D (or PAD) to be 10.00% (or 5.30%) and 
6.01% (or 1.55%) in Europeans [34, 35]. The correspond-
ing population and sample prevalence values of T2D (or 
PAD) were 7.50% (or 4.30%) and 19.09% (or 1.69%) in 
East Asians (as a test of replicability of the analysis in 
Europeans) [23, 36]. SNPs were excluded from LDSC if 
they resided within the major histocompatibility complex 
(MHC) region (chromosome 6: 28,477,797–33,448,354), 
were strand-ambiguous (i.e., the A/T and G/C SNPs), or 
had an MAF less than 0.01. The default 1000 Genomes 
Project European- and East Asian-based LD score ref-
erence panels were employed throughout the analyses. 
LDSC were performed with and without intercept con-
straint to explore the impact of potential inflation of the 
GWAS summary statistics due to the presence of popula-
tion stratification. The significant genetic correlation was 
assumed on the basis of a p-value < 0.05.
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Mendelian randomization analysis
We applied multiple MR models to investigate the puta-
tive causal relationship between T2D and PAD. MR 
evaluates the causal effect of a risk factor (i.e., expo-
sure) on a target trait (i.e., outcome) using genetic vari-
ants as instruments, assuming that the genetic variants 
concerned are significantly associated with the exposure 
and have causal effects on the outcome only through the 
exposure. This latter assumption may be violated due 
to the presence of horizontal pleiotropy, which occurs 
if the genetic variants affect the outcome through non-
causal pathways [32]. Horizontal pleiotropy can itself be 
subclassified into correlated pleiotropy which is defined 
as the genetic variants acting on exposure and outcome 
via shared factors and uncorrelated pleiotropy that occurs 
if the genetic variants act on exposure and outcome via 
other independent pathways. To distinguish true causal-
ity from horizontal pleiotropy, we applied multiple MR 
and MR-equivalent models employing different assump-
tions on horizontal pleiotropy, namely inverse variance-
weighted (IVW), MR-Egger, weighted mode, weighed 
median, generalized summary data-based Mendelian 
randomization (GSMR), the causal analysis using sum-
mary effect estimates (CAUSE), and MR-equivalent 
latent causal variable (LCV) analysis. IVW estimates the 
Wald ratio for each SNP and calculates the causal esti-
mate using a weighted linear regression which does not 
correct for horizontal pleiotropy [37]. MR-Egger adds an 
extra intercept to IVW to weigh the possible deviations 
attributable to uncorrelated pleiotropy [38]. Weighted 
mode greatly loosens the assumptions made on cor-
related and uncorrelated pleiotropy and measures the 
causal effect only from the most frequent SNP set with 
consistent effect [39]. The weighted median calculates the 
causal effect using the weighted median of the SNP ratio 
under the assumption that most instrumental variants 
are valid (i.e., more than half the instrumental variants 
are valid instrumental SNPs) [40]. GSMR is an extension 
of IVW which applies the heterogeneity in dependent 
instruments (HEIDI) test to exclude instrumental SNPs 
with potentially uncorrelated pleiotropic effects [29, 41]. 
Bayesian-based CAUSE corrects both correlated and 
uncorrelated pleiotropy via a multivariate linear model 
adjusted by a joint distribution of instrumental SNPs, 
assuming that true causality can be attributed to all 
instrumental SNPs whereas correlated and uncorrelated 
pleiotropy only affects partial instrumental SNPs [42]. 
CAUSE further examines the model fitness using the 
expected log pointwise posterior density (ELPD) by com-
paring the causal model (i.e., exposure affects outcome 
via both causal effect and pleiotropic effects), the shared 
model (i.e., exposure affects outcome only via pleio-
tropic effects), and the null model (i.e., no causal effect 

or pleiotropic effects between exposure and outcome). 
Finally, LCV supposes that the rg between the two dis-
ease entities is regulated by a latent variable with causal 
effects on both exposure and outcome and evaluates this 
latent causal variable using the genetic causality propor-
tion (GCP) [43].

MR analyses were carried out using R packages cause 
(version 1.0.0), LCV, gsmr (version 1.0.9), and TwoSam-
pleMR (version 0.5.5). LCV recruits all HapMap3 variants 
as instrumental SNPs [44]; CAUSE selects independent 
instrumental SNPs with an arbitrary p-value of exposure 
GWAS < 1 × 10−5 by LD pruning; other MR approaches 
determine independent instrumental SNPs (with GWAS 
p-value < 5 × 10−8 or < 1 × 10−5 when employing T2D 
or PAD as exposure) by LD clumping (LD r2 < 0.05 within 
1000-kb windows) using PLINK (v1.90) [45]. Instrumen-
tal SNPs were further filtered out if they were located 
within the MHC region [33], had a MAF less than 0.01, 
or were nominally significantly associated with the out-
come (as potential pleiotropic SNPs).

The putative causal relationship was determined if con-
sistent results were identified by multiple MR models 
with Bonferroni-corrected p-value < 3.85 × 10−3 (= 
0.05/13, six methods with bi-directional analyses and 
LCV model). Post hoc power calculations were per-
formed using an online web tool (https://​sb452.​shiny​
apps.​io/​power/) [46]. The causal effects (i.e., β) were con-
verted from logit scale to liability scale using the method 
proposed by Byrne et  al. [47]: 
βxyliability =

ZKxKy(1−Ky)
ZKyKx(1−Kx)

βxylogit , where Kx and Ky are the 
population prevalence of exposure and outcome, and ZKx 
and ZKyare the values (heights) of the standard normal 
distribution at the two population prevalence, respec-
tively. The liability-scale β was then transformed to odds 
ratios (OR), assuming the population prevalence for T2D 
and PAD to be 10.00% and 5.30% in Europeans [34, 35] 
and 7.50% and 4.30% in East Asians (as a replicated anal-
ysis) [23, 36], respectively.

Multivariable MR analysis
Multivariable MR (MVMR) is an extension of stand-
ard MR that re-estimates the causal effect of exposure 
on the outcome after adjusting the potential pleiotropic 
effects from the outcome-related risk factors (i.e., risk 
factors that may affect the outcome through exposure) 
[48]. Here, we performed MVMR by considering T2D 
(or PAD) as the initial exposure, together with additional 
exposures including total cholesterol (TC) [49, 50], body 
mass index (BMI) [51, 52], systolic blood pressure (SBP) 
[53, 54], and smoking initiation [55, 56], which had pub-
licly available GWAS in both Europeans and East Asians. 
MVMR-based independent instrumental SNPs were 
selected if they were significantly (p-value < 5 × 10−8 or 

https://sb452.shinyapps.io/power/
https://sb452.shinyapps.io/power/
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< 1 × 10−5 when employing T2D or PAD as exposure) 
associated with at least one exposure. We applied MVMR 
to ascertain the causality of T2D on PAD (or PAD on 
T2D) for Europeans and East Asians (for replication), 
adjusted for each outcome-related risk factor individu-
ally as well as for all four risk factors (TC, BMI, SBP, and 
smoking initiation) acting combinatorically. MVMR was 
performed using the R package TwoSampleMR (version 
0.5.5).

Polygenic risk score analysis
Whenever a genetic correlation between T2D and PAD 
was identified, PRS analysis was performed to explore 
whether the aggregated T2D-related genetic effects could 
predict the status of PAD (and vice versa) based on the 
genetic profile, using independent European- or East 
Asian-based samples. SNP sets for PRS calculation were 
selected by employing 9 different p-value cutoffs (i.e., 5 × 
10−8, 1 × 10−5, 1 × 10−3, 0.01, 0.05, 0.1, 0.3, 0.5, and 1), 
which were then filtered by LD clumping (LD r2 < 0.05 
within 1000-kb windows) using PLINK (v1.90) [45]. 
These independent SNPs were used to calculate PRS 
through the PLINK “score” function. PRS analysis was 
performed via logistic regression for the binary T2D sta-
tus on the scaled PRS for PAD, and the binary PAD status 
on the scaled PRS for T2D, respectively. The regression 
model was constructed based on independent samples to 
test whether PRS from combined effects of multiple T2D 
risk-associated SNPs can predict the status of PAD, and 
vice versa. All the regressions were adjusted by age, sex, 
genotype batch, and assessment center. The variance of 
the susceptibility to a target trait explained by PRS was 
quantified by Nagelkerke’s pseudo-coefficient of determi-
nation (R2) [57]. We converted the observed Nagelkerke’s 
pseudo-R2 (and their upper and lower bounds of 95% 
confidence intervals [CI]) to the liability scale, assuming 
the population and sample prevalence of T2D (or PAD) 
to be 10.00% (or 5.30%) and 5.76% (or 1.36%) in Europe-
ans [34, 35] and T2D (or PAD) at 7.50% (or 4.30%) and 
8.85% (or 0.95%) in East Asians [23, 36], respectively. The 
standard error of R2 was estimated using Olkin and Finn’s 

approximation ( R2
SE =

√

4R2(1−R2)
2
(N−K−1)2

(N 2−1)(3+N )
 , where N is 

the sample size and K is the number of predictors used in 
the full model) [58]. The power of each PRS regression 
was calculated via the R package AVENGEME [59].

Multi‑trait analysis of T2D and PAD
To detect risk SNPs shared between T2D and PAD, we 
performed an inverse variance-weighted cross-trait 
meta-analysis using MTAG [60], which has an advan-
tage over other meta-analysis tools because MTAG can 
account for potential sample overlap between GWAS 

summary data via cross-trait LDSC results. We also 
calculated “maxFDR” (the approximate upper limit for 
the false discovery rate [FDR] of the MTAG results) to 
assess the validity of the assumption that more than 10% 
of SNPs were causal for each trait. The lower maxFDR 
value suggests that the MTAG results were unlikely to 
be false-positive. Novel risk SNPs were identified if they 
were (1) independent of each other (i.e., LD clumping r2 
< 0.05 in a window of 1000 kb), (2) genome-wide signifi-
cant (p-value < 5 × 10−8) associations with the cross-trait 
shared architecture of T2D and PAD but not single-trait 
T2D or PAD, and (3) independent from genome-wide 
significant SNPs of single-trait T2D or PAD (i.e., r2 < 0.05 
in a window of 1000 kb).

Gene‑based association analysis
Whenever a significant shared genetic architecture 
between T2D and PAD was determined, we then 
extended the association results from the SNP level to the 
gene level and applied powerful MAGMA to identify the 
genes associated with T2D and PAD [61], as well as the 
cross-trait shared architecture of T2D and PAD in Euro-
peans and East Asians (for replication). A total of 19,259 
protein-coding genes (based on NCBI 37.3 build; exclud-
ing the MHC genes) were analyzed. SNPs were mapped 
to a gene if they were located within 50 kb upstream 
or downstream of the gene length boundary. The 1000 
Genomes Project European- and East Asian-based LD 
reference panels were utilized to correct LD structure. 
Candidate pleiotropic genes underlying T2D and PAD 
were identified as those exhibiting associations with the 
cross-trait shared architecture of T2D and PAD at the 
FDR 5% significance level.

Summary data‑based Mendelian randomization analysis
When genes were indicated as being significantly associ-
ated with the cross-trait shared architecture of T2D and 
PAD by MAGMA analysis, we further evaluated whether 
the expression levels of these genes were significantly 
associated with the cross-trait shared architecture of T2D 
and PAD using SMR [29]. SMR recruits functional genes 
as exposure and a focal trait as an outcome, using the top 
SNPs of eQTLs (p-value < 5 × 10−8) as instrumental vari-
ables, which expects to yield sufficient power to identify 
significant gene-trait associations [62]. The blood-based 
cis-eQTL summary data were obtained from the eQTL-
Gen Consortium [31]. The HEIDI test [29] was utilized to 
exclude significant SMR associations due to linkage (i.e., 
different causal SNPs in LD that influence gene expres-
sion and disease separately), rather than causality (i.e., 
instrumental SNP influences disease via gene expression) 
or pleiotropy (i.e., instrumental SNP influences both gene 
expression and disease via shared effects). Significant 
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SMR associations were determined with a Bonferroni-
corrected SMR p-value (= 0.05/number of tested genes) 
and a HEIDI p-value > 0.01 from a minimum of 10 SNPs. 
Novel functional genes were ascertained if they exhibited 
significant associations with the cross-trait shared archi-
tecture of T2D and PAD using both MAGMA and SMR.

Results
Shared genetics and putative causal relationship 
between T2D and PAD in Europeans
Genetic correlation between T2D and PAD
Using the single-trait LDSC (without constrained inter-
cept, Table 1), we estimated the European-based liability-
scale h2 for T2D and PAD to be 23.47% (p-value = 9.42 
× 10−52) and 10.93% (p-value = 8.54 × 10−9), respec-
tively. The h2 values estimated with constrained intercept 
(T2D: h2 = 28.08%, p-value = 2.29 × 10−85; PAD: h2 = 
12.23%, p-value = 3.11 × 10−17) were compatible with 
those without constrained intercept, implying mild infla-
tions in these GWAS summary data. Using the cross-trait 
LDSC with constrained intercept (Table 1), we estimated 
the rg between T2D and PAD to be 0.44 (p-value = 5.23 
× 10−17) whereas when we used the cross-trait LDSC 
without constrained intercept, the rg between T2D and 
PAD was estimated to be 0.51 (p-value = 9.34 × 10−15). 
These results were held to indicate strong shared genetics 
between the two conditions in Europeans.

Putative causal effect of T2D on PAD
The application of multiple MR methods provided sug-
gestive evidence for a causal effect of T2D on PAD 
(Fig. 1A, Additional file 1: Table S2 and S3) in Europeans. 
We observed that four out of seven MR models (with the 
exception of MR-Egger [p-value = 0.58], weighted mode 
[p-value = 5.09 × 10−3], and LCV [p-value = 0.28]) sur-
passed the Bonferroni-corrected level of significance 
(p-value < 3.85 × 10−3), with estimated liability-scale 

odds ratios (ORs) at ~ 1.14 on average, suggesting that 
T2D patients had approximately 1.14 times the risk 
(mean standard error = 5.83 × 10−2) of developing PAD 
compared to healthy individuals. The power of MR mod-
els was evaluated to be in the range of 78–100% (except 
for the MR-Egger model that failed to reach the 5% level 
of significance), corresponding to the causal effect esti-
mated between 1.12 and 1.28 (Additional file 2: Fig. S1). 
These results suggested the sufficiency of study power 
of our GWAS summary statistics to identify causal-
ity between T2D and PAD, although the power of MR 
models for PAD on T2D is relatively limited compared 
to those for T2D on PAD. Horizontal pleiotropy would 
appear to have had a limited impact on this putative 
causal relationship, since MR-Egger suggested a close-to-
zero intercept (intercept = 6.75 × 10−3, p-value = 0.41) 
while CAUSE indicated a better fit for the causal model 
compared to either the sharing model (ELPD p-value = 
4.77 × 10−3) or the null model (ELPD p-value = 8.57 × 
10−3). Furthermore, recruiting weaker instrumental SNPs 
(p-value < 1 × 10−5) for the CAUSE model is unlikely 
to have affected the accuracy of the MR estimates, as 
similar results (Additional file  1: Table  S2 and S3) were 
obtained in a parallel CAUSE analysis utilizing a stricter 
p-value threshold of 5 × 10−8. Applications of MVMR 
analyses found that the putative causal effect of T2D 
on PAD was largely unchanged after adjusting for TC, 
BMI, SBP, and smoking individually, as well as adjusting 
for these risk factors as a whole (Fig. 1A and Additional 
file  1: Table  S4). Furthermore, there was no consistent 
causal effect of PAD on T2D using MVMR after adjusting 
for the same risk factors (Fig.  1A and Additional file  1: 
Table S4).

Higher PRS for T2D in PAD patients than in non‑PAD controls
Irrespective of the p-value cutoffs in the PRS calculations, 
we observed consistently higher PRS for T2D in patients 

Table 1  Genetic correlation between T2D and PAD in Europeans and East Asians

PAD peripheral artery disease, T2D type 2 diabetes, h2 heritability, rg genetic correlation, SE standard error, Ph2p-value for estimated h2, Prgp-value for estimated rg, LDSC 
linkage disequilibrium score regression, EUR Europeans, EAS East Asians

Constrained intercept Unconstrained intercept

T2D PAD T2D PAD

EUR Single-trait LDSC h2 ± SE 28.08% ± 1.35% 12.23% ± 1.40% 23.47% ± 1.47% 10.93% ± 1.86%

Ph2 2.29 × 10−85 3.11 × 10−17 9.42 × 10−52 8.54 × 10−9

Cross-trait LDSC rg ± SE 0.44 ± 0.05 0.51 ± 0.07

Prg 5.23 × 10−17 9.34 × 10−15

EAS Single-trait LDSC h2 ± SE 21.48% ± 1.17% 13.58% ± 2.04% 15.12% ± 1.37% 18.83% ± 2.93%

Ph2 2.45 × 10−67 8.34 × 10−11 3.61 × 10−26 3.44 × 10−10

Cross-trait LDSC rg ± SE 0.45 ± 0.07 0.46 ± 0.06

Prg 1.16 × 10−10 1.67 × 10−12
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with PAD compared to those without PAD (Additional 
file 1: Table S5). The increased p-value cutoffs appeared 
to drive up the values of the liability-scaled Nagelkerke’s 
pseudo-R2 (except for the results below p-value < 5 × 
10−8), suggesting that PRS for T2D calculated using addi-
tional SNPs could explain more of the variance of PAD, 
consistent with the expectation that PRS regression 
(Additional file  2: Fig. S2) had better predictive power 
when additional SNPs were included and when the sam-
ple size of GWAS summary statistics was increased. This 
notwithstanding, the reverse (PRS for PAD in the predic-
tion of T2D status) was non-significant (Additional file 1: 
Table  S6). Liability-scaled Nagelkerke’s pseudo-R2 of 
PRS for PAD on T2D status were also significantly lower 
(p-valuepaired t-test = 6.15 × 10−6) than those estimations 
of PRS for T2D on PAD status (Fig. 2). These results pro-
vided further evidence in support of the genetic overlap 
between T2D on PAD in Europeans.

Novel SNPs and candidate genes associated with the shared 
genetics of T2D and PAD
Performing a meta-analysis of the T2D and PAD GWAS 
data using MTAG revealed two novel SNPs, rs927742 and 
rs1734409 (Additional file 1: Table S7) that were signifi-
cantly (p-value < 5 × 10−8) associated with the cross-trait 
shared architecture of T2D and PAD (MTAG MaxFDR 
= 4.54 × 10−7) and independent from the top SNPs of 
single-trait T2D or PAD. We also applied gene-based 
MAGMA analysis to identify a total of 898 FDR signifi-
cant genes associated with the cross-trait shared archi-
tecture of T2D and PAD (Additional file 1: Table S8 and 
Fig.  3A). Among them, 136 genes were only associated 
with the cross-trait shared architecture of T2D and PAD 
(i.e., novel pleiotropic genes); the rest of the genes were 
additionally associated with T2D (N = 761; i.e., T2D-spe-
cific genes) or both T2D and PAD (N = 1; i.e., pleiotropic 
gene). Furthermore, SMR and HEIDI analysis implied 26 

Fig. 1  The causal effect (in liability-scale odds ratio [OR]) of type 2 diabetes (T2D) on peripheral artery disease (PAD) as estimated by six Mendelian 
randomization (MR) models (MR-Egger, weighted median, IVW, weighted mode, GSMR, and CAUSE) in A Europeans and B East Asians. MVMR 
analyses were performed by adjusting TC [“MVMR (adjusting TC)”], BMI [“MVMR (adjusting BMI)”], SBP [“MVMR (adjusting SBP)”], and smoking [“MVMR 
(adjusting smoking)”] and by adjusting all these factors jointly [“MVMR (adjusting TC, BMI, SBP, smoking)”] in Europeans and East Asians. Error bars 
represent the 95% confidence intervals of the estimates. IVW, inverse variance weighted; GSMR, generalized summary data-based Mendelian 
randomization; CAUSE, causal analysis using summary effect estimates; MVMR, multivariable MR; TC, total cholesterol; BMI, body mass index; SBP, 
systolic blood pressure
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genes (out of 898 MAGMA genes; three as novel pleio-
tropic genes and 23 as T2D-specific genes) whose expres-
sion levels were significantly (p-value < 8.05 × 10−5 with 
Bonferroni correction) associated with the risk of the 
cross-trait shared architecture of T2D and PAD due to 
either pleiotropy or causality (Additional file 1: Table S9 
and Fig. 3B).

Replicability of the putative causal relationship 
between T2D and PAD in East Asians
In East Asians, the h2 values for T2D and PAD were esti-
mated to be 15.12% (p-value = 3.61 × 10−26) and 18.83% 
(p-value = 3.44 × 10−10) without constrained intercept 
and 21.48% (p-value = 2.45 × 10−67) and 13.58% (p-value 
= 8.34 × 10−11) with constrained intercept (Table  1). 
The rg values between T2D and PAD were estimated to 
be 0.45 (p-value = 1.16 × 10–10) and 0.46 (p-value = 
1.67 × 10−12) with and without constrained intercept, 
respectively. These results were largely similar to those 
derived from Europeans, indicating strong shared genet-
ics between T2D and PAD in different ethnicities.

We also identified a putative causal effect of T2D on 
PAD in East Asians (Fig. 1B, Additional file 1: Table S10 
and S11), with five of seven MR models surpassing the 

Bonferroni-corrected threshold (except for MR-Egger 
[p-value = 0.12] and weighted mode [p-value = 0.13]). 
The estimated ORs for the causality of T2D on PAD in 
East Asians ranged from 1.15 to 1.27, which were slightly 
higher than those noted in Europeans. The power of MR 
models in East Asians was estimated to be in excess of 
99% (Additional file 2: Fig. S1) for T2D on PAD, slightly 
higher than those in Europeans, while the power of MR 
models in East Asians for PAD on T2D was still signifi-
cantly lower than those for T2D on PAD. These results 
were deemed to be less likely to be affected by horizontal 
pleiotropy (MR-Egger intercept = 2.54 × 10−3, p-value 
= 0.76; CAUSE causal model vs. sharing model ELPD 
p-value = 2.63 × 10−4 and vs. null model ELPD p-value 
= 1.60 × 10−5) or the application of weaker instrumen-
tal SNPs (similar results from the parallel CAUSE model 
using instrumental SNPs with p-value < 5 × 10−8; Addi-
tional file 1: Table S10). Additionally, the causal effect of 
T2D on PAD was less likely to be influenced by TC, BMI, 
SBP, or smoking, according to the MVMR results (Fig. 1B 
and Additional file 1: Table S12).

We next attempted to investigate whether the aggre-
gated T2D (or PAD)-related genetic effects could be 
used to predict the status of PAD (or T2D) using PRS 

Fig. 2  European-based liability-scaled Nagelkerke’s R2 presents the goodness of fit of the logistic regression model to peripheral artery disease 
(PAD) status with polygenic risk score (PRS) for type 2 diabetes (T2D) (“PAD status – PRS for T2D”) and the goodness of fit of the logistic regression 
model to T2D status with PRS for PAD (“T2D status – PRS for PAD”). Error bars represent the 95% confidence intervals of the estimated Nagelkerke’s 
R2. Asterisk represents a significant coefficient (p-value < 2.78 × 10−3 = 0.05/18, Bonferroni correction) of the PRS terms in regression
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regression (Additional file  1: Table  S13 and S14), but 
failed to identify significant results, probably on account 
of the insufficient sample size limiting the statistical 
power of regression (Additional file 2: Fig. S2). Neverthe-
less, we still observed significantly higher (p-valuepaired 

t-test = 1.98 × 10−3) liability-scaled Nagelkerke’s pseudo-
R2 values estimated from the regression of PRS for T2D 
on PAD status than those of PRS for PAD on T2D status, 
suggesting that PAD maybe genetically a consequence of 
T2D but not the other way around.

We performed MTAG analysis but did not identify any 
novel genetic loci significantly associated with the cross-
trait shared architecture of T2D and PAD in East Asians 
(MTAG MaxFDR = 4.54 × 10−7). Whereas gene-based 
MAGMA analysis found 372 genes exhibiting significant 
associations (FDR < 0.05) with cross-trait shared archi-
tecture of T2D and PAD (all T2D-specific genes; see 

Additional file 1: Table S15 and Fig. 3A), 15 of which were 
further observed as significant associations by SMR and 
HEIDI analysis (Bonferroni-corrected SMR p-value < 
1.92 × 10−4; Additional file 1: Table S16 and Fig. 3C).

Common and distinct mechanisms underlying 
the co‑occurrence of T2D and PAD between Europeans 
and East Asians
Gene-based analyses (i.e., MAGAMA and SMR) in 
Europeans and East Asians consistently identified the 
ANKFY1 gene as being significantly associated with 
the cross-trait shared architecture of T2D and PAD in 
both Europeans (p-valueMAGAMA = 3.28 × 10−7; βSMR = 
0.44, p-valueSMR = 1.18 × 10−5) and East Asians (p-val-
ueMAGAMA = 6.90 × 10−4; βSMR = 0.42, p-valueSMR = 
1.83 × 10−4). MAGAMA and SMR additionally identi-
fied 25 and 14 genes which were significantly associated 

Fig. 3  Genes significantly associated with type 2 diabetes (T2D), peripheral artery disease (PAD), or cross-trait shared architecture of T2D and 
PAD identified by MAGMA or SMR analysis in Europeans and East Asians. A The genes significantly associated with T2D, PAD, or cross-trait shared 
architecture of T2D and PAD identified by multi-marker analysis of genomic annotation (MAGMA) in Europeans and East Asians, and the genes 
associated with T2D, PAD, or cross-trait shared architecture of T2D and PAD identified by summary data-based Mendelian randomization (SMR) in B 
Europeans and C East Asians. The color bar in A represents the z-score in MAGMA analysis. The width of the line in B and C denotes the strength of 
the SMR association. In B and C, lines in purple and orange represent respectively up- and downregulated genes associated with the increasing risk 
of the disease in question
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with cross-trait shared architecture of T2D and PAD 
in Europeans (FDRMAGAMA < 2.49 × 10−3; p-valueSMR 
< 8.05 × 10−5) and East Asians (FDRMAGAMA < 1.06 × 
10−3; p-valueSMR < 1.94 × 10−4), respectively. These 
genes showed a significant (p-value = 1.53 × 10−2) 
enrichment in their protein-protein interactions 
(PPI) with each other according to STRING (Addi-
tional file  2: Fig. S3) [63], including seven interactions 
between genes significantly associated with the cross-
trait shared architecture of T2D and PAD in Europeans 
and genes associated with the cross-trait shared archi-
tecture of T2D and PAD in East Asians (e.g., interac-
tions of STARD10 [European-specific] with AP3S2 
[East Asian-specific], and KCNJ11 [European-spe-
cific] with KCNQ1 [East Asian-specific]). These find-
ings point to the existence of common trans-ethnic 
mechanisms underlying T2D and PAD. Nevertheless, 
we also noted distinct mechanisms underlying the co-
occurrence of T2D and PAD between Europeans and 
East Asians, which might be attributed to the different 
LD structures in the two ethnicities (Fig. 4 taking gene 
SMARCD2 as an example).

Discussion
In this study, we systematically investigated the shared 
genetic architecture between T2D and PAD in Europeans 
and East Asians by leveraging their large-scale GWAS 
summary statistics. Our study disclosed a putative causal 
effect of T2D upon PAD in both Europeans and East 
Asians and identified several novel loci/functional genes 
that might be relevant to the shared genetics underlying 
T2D and PAD. We additionally used MVMR analysis to 
exclude an underlying heritable trait as the basis of the 
causal relationship between T2D and PAD and indicated 
that the causal effect of T2D on PAD is not influenced 
by TC, BMI, SBP, or smoking initiation. All these traits 
are generally considered to be factors that are associated 
with a high risk of PAD and T2D, and they are known 
to be related with dysfunction of lipoproteins or hemo-
stasis [64, 65], etc. Indeed, recent studies have revealed 
lipoproteins and hemostatic factors to be risk factors for 
PAD [66–68]. Our study may indirectly indicate that nei-
ther the lipoproteins nor hemostatic factors have much 
influence on the causal relationship between T2D and 
PAD. Taken together, this study not only improves our 

Fig. 4  The genomic region near to SMARCD2 gene was used as an example to illustrate the different genetic structures between Europeans (A) and 
East Asians (B). SMARCD2 was found to be significantly associated with the cross-trait shared architecture of type 2 diabetes (T2D) and peripheral 
artery disease (PAD) in Europeans but not in East Asians by MGAMA and SMR analysis. The dot and the triangle represent respectively p-values and 
effect sizes of SNPs in GWAS and eQTL. The directions of the triangles indicate the direction of SNPs in GWAS. Most of the SNPs plotted in A and B 
show opposite GWAS directions. The heatmap represents the linkage disequilibrium (LD) of the SNPs, which are obviously stronger in East Asians 
than in Europeans. GWAS, genome-wide association studies; eQTL, expression quantitative trait loci
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understanding of the genetic etiology shared by T2D and 
PAD but also provides evidence to support the concept of 
genetically screening T2D patients in order to pre-symp-
tomatically detect/prevent PAD.

To our knowledge, this is the first study to investigate 
the shared genetic architecture between T2D and PAD, 
although a significant clinical/phenotypic correlation has 
been previously reported [69, 70]. One of the main aims 
of this study was to investigate the shared genetic rela-
tionship between T2D and PAD in Europeans and East 
Asians. On the basis of an online LDSC power calcula-
tion (https://​neale​lab.​github.​io/​UKBB_​ldsc/​viz_​samps​
ize.​html), we believe our input GWAS summary statistics 
have sufficient power (> 95%) to uncover shared genetic 
associations between T2D and PAD in either Europe-
ans or East Asians. Here, we observed a genetic correla-
tion between the two disease entities in both Europeans 
and East Asians. The estimated h2 of T2D and PAD, as 
well as the rg between T2D and PAD in Europeans, 
were largely similar to those in East Asians, suggesting a 
strong genetic correlation between T2D and PAD in both 
ethnicities.

In both Europeans and East Asians, we applied mul-
tiple MR methods and consistently identified the puta-
tive causal effect of T2D in relation to PAD, suggesting 
a common causal genetic relationship between T2D and 
PAD in Europeans and East Asians. Among multiple MR 
methods, CAUSE and LCV were the only models capa-
ble of distinguishing both correlated and uncorrelated 
pleiotropy from causality. LCV can yield conservative 
results when the genetic correlation is mild and cannot 
measure the extent of the causal effect directly. Other 
MR models can only deal with uncorrelated pleiotropy 
or partially correlated pleiotropy. Therefore, we consider 
CAUSE to be a prior MR method compared to other 
models. In our study, CAUSE showed consistent evi-
dence for a putative causal effect of T2D on PAD, indicat-
ing that our findings are credible. Furthermore, MVMR 
analysis indicated that the putative causal effect of T2D 
on PAD is less likely to be influenced by TC, BMI, SBP, 
and smoking which have generally been considered to 
be common factors associated with the increased risk of 
PAD [71–76]. We further identified a higher PRS for T2D 
among PAD patients compared to non-PAD individuals 
using PRS regression, in line with previous studies that 
have reported T2D as a risk factor for arterial disease 
(such as coronary artery disease and arterial stiffness [77, 
78]). Taken together, we conclude that T2D is a causal 
risk factor for PAD, although further studies with larger 
sample sizes (particularly with reference to additional 
PAD patients) will be required to establish this causal 
relationship conclusively. Nevertheless, several MR mod-
els (MR-Egger, weighted mode, and LCV) failed to fully 

distinguish causality from horizontal pleiotropy, after 
allowing for Bonferroni correction. The underlying rea-
son may be the limitations inherent to these models. For 
instance, MR-Egger may inflate type I errors when hori-
zontal pleiotropy from instrumental SNPs occurs via the 
same confounder [79]. The weighted mode is thought to 
be less powerful in comparison with other MR methods 
as it uses a smaller set of instrumental SNPs [80]. The 
standard error of GCP statistics produced by LCV analy-
sis may be enhanced when analyzing the trait pair with 
mild or moderate genetic correlation [43].

Previous studies have provided support for the con-
clusion that while East Asians are more prone to T2D 
than Europeans [1, 81, 82], the prevalence of PAD in 
T2D patients is lower in East Asians than in Europe-
ans [83]. The underlying reason has remained unclear, 
although genetic factors are thought to make impor-
tant contributions to the ethnic disparities in relation to 
T2D and PAD prevalence [83–86]. Herein, we provide 
the first evidence for the common and distinct mecha-
nisms underlying the shared genetics of T2D and PAD 
between Europeans and East Asians. We used MAGMA 
and SMR analyses to identify the ANKFY1 gene as show-
ing significant associations with the cross-trait shared 
architecture of T2D and PAD in both Europeans and 
East Asians. ANKFY1 is thought to play a role in angio-
genesis on the basis of experiments in endothelial cells 
[87, 88] and has been reported as a gene conferring T2D 
risk in a GWAS study [34]. Another study has identi-
fied a homozygous missense mutation in ANKFY1 to be 
a potential cause of nephrotic syndrome [89], a disease 
commonly comorbid with diabetes and cardiovascular 
disease [90, 91]. Moreover, protein-protein interaction 
analysis provided further evidence for common mecha-
nisms shared between Europeans and East Asians by 
revealing gene-gene interactions underlying the comor-
bidity of T2D and PAD, specifically the interactions 
between STARD10 (European-specific) and AP3S2 (East 
Asian-specific) and between KCNJ11 (European-specific) 
and KCNQ1 (East Asian-specific). In the context of the 
interaction of STARD10 (European-specific) and AP3S2 
(East Asian-specific), STARD10 is a phospholipid trans-
fer protein whose expression in isolated pancreatic islets 
has been found to influence the production and process-
ing of insulin in the mouse [92]. Prior studies indicated 
that STARD10 harbors SNPs associated with T2D [93, 
94]. AP3S2 encodes a protein involved in protein trans-
port whose variants are associated with the risk of T2D 
in South Asians and Japanese [95, 96]. Other studies have 
implicated AP3S2 as being important for the pathogen-
esis of T2D [97–101]. Regarding the interaction between 
KCNJ11 and KCNQ1, both genes contribute to potas-
sium channels whereas genetic variants located near both 

https://nealelab.github.io/UKBB_ldsc/viz_sampsize.html
https://nealelab.github.io/UKBB_ldsc/viz_sampsize.html
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KCNJ11 and KCNQ1 are known to be significantly asso-
ciated with T2D [9, 102]. Here, we revealed their poten-
tial roles in the occurrence of PAD in T2D patients in 
both Europeans and East Asians. In addition, numerous 
genes identified as being associated with the cross-trait 
shared architecture of T2D and PAD in Europeans have 
similar functions to those in East Asians. For example, 
TP53INP1 (European-specific) and MOB1B (East Asian-
specific) both have functions related to cell migration 
and death [103, 104]; CHMP4B (European-specific) and 
AP3S2 (East Asian-specific) are involved in protein trans-
port and intracellular trafficking [105, 106]. These genes 
were reported as harboring SNPs significantly associated 
with T2D [1, 107, 108]. Here, they are suggestive of com-
mon genetic mechanisms of comorbid T2D and PAD 
between the two populations.

The distinct genetic mechanisms of co-occurrence of 
T2D and PAD between Europeans and East Asians may 
be explicable in terms of the discrepant prevalence of 
T2D/PAD between Europeans and East Asians. The dis-
crepant prevalence of T2D between ethnic groups may 
be attributed to insulin resistance and β-cell dysfunc-
tion [109]. T2D in Europeans tends to be caused by obe-
sity and insulin resistance whereas T2D in East Asians, 
who are generally characterized by a leaner body mass, is 
caused by more severe β-cell dysfunction [82]. Our study 
potentially supports the view that the distinct genetic 
mechanisms of co-occurrence of T2D and PAD could be 
due, at least in part, to the differences in the prevalence 
of insulin resistance and β-cell dysfunction between the 
two populations. For instance, we identified the insu-
lin resistance-related gene TIGAR​ in Europeans and the 
β-cell dysfunction-related gene TLE1 in East Asians as 
being associated with the cross-trait shared architecture 
of T2D and PAD (Additional file 1: Table S9) [110, 111]. 
TIGAR​, activated by p53, promotes insulin resistance 
in the rat whereas TLE1 has been found to play a role 
in inducing pancreatic β-cells and converting α-cells to 
β-cells [110, 111]. Further studies are required to explore 
the different roles that insulin resistance and β-cell dys-
function play in causing T2D-PAD comorbidity in Euro-
peans and East Asians.

Our findings are potentially important for pre-symp-
tomatic screening in order to prevent the occurrence of 
PAD in those T2D patients with genetic defects associ-
ated with PAD. Identifying incipient PAD among T2D 
patients and carrying out clinical interventions prior 
to the onset of arterial disease has the potential to dra-
matically improve the life quality and prognosis of T2D 
patients [112]. Our results could lead to the early-stage 
genetic screening for PAD in T2D patients thereby offer-
ing more effective diagnostic and therapeutic approaches 
for both diseases. Additionally, our study revealed the 

putative shared/distinct mechanisms underlying the 
causal relationship between T2D and PAD in Europeans 
and East Asians, which highlights the need for personal-
ized intervention in designing therapies for PAD in T2D 
patients with different ethnic backgrounds.

Study limitation
Our study has several limitations. First, the sample size 
of East Asians in the UKB cohort is insufficient, thereby 
limiting the power of the study to confirm the putative 
causal relationship between T2D and PAD in East Asians 
via PRS analysis. Clearly, the results of this study should 
be replicated on a much larger group of East Asians. 
Second, neither European- nor East Asian-based PAD 
GWAS have enough instrumental SNPs (p-value < 5 × 
10−8) for testing with some MR models. Alternatively, we 
relaxed the p-value threshold and recruited the “proxy” 
instrumental SNPs (with p-value < 1 × 10−5), which may 
have led to a violation of MR assumptions. Nevertheless, 
this influence is likely to be negligible as we obtained 
very similar results when applying multiple MR methods 
for sensitivity analysis. Third, the SMR results for East 
Asian-based GWAS were probably underpowered, as 
the eQTL summary data from eQTLGen were of Euro-
pean descent, which hampered our ability to identify 
trans-ethnic functional genes underlying T2D and PAD. 
Fourth, we excluded SNPs in the MHC region from all 
our analyses because of the complicated LD pattern 
within the MHC region; this could have led to an under-
estimation of the shared genetic basis between T2D and 
PAD. Finally, the classification of ICD-10-based T2D 
cases in our study may be less precise because we can-
not filter out some rare cases of maturity-onset diabetes 
of the young (MODY). Nevertheless, as the proportion of 
MODY comprises only 1-5% of total diabetes [113], we 
believe such influence is likely to be minimal.

Conclusions
In conclusion, our study has provided the first evidence 
for a trans-ethnic genetic association between T2D and 
PAD, a trans-ethnic putative causal effect of T2D on 
PAD, and the identification of multiple genes which rep-
resent candidates for involvement in the shared genetic 
etiology between T2D and PAD in different ethnic 
groups. Acquiring a better understanding of the shared 
genetic architecture underlying T2D and PAD should 
help to improve clinical treatment and disease prevention 
of PAD in patients with T2D.

Web resources: GWAS summary statistics from 
Biobank Japan, http://​jenger.​riken.​jp/​en/; BOLT-LMM 
(v2.3.4), https://​alkes​group.​broad​insti​tute.​org/​BOLT-​
LMM/; eQTLGen Consortium, https://​eqtlg​en.​org/​
cis-​eqtls.​html; 1000 Genomics LD score reference 

http://jenger.riken.jp/en/
https://alkesgroup.broadinstitute.org/BOLT-LMM/
https://alkesgroup.broadinstitute.org/BOLT-LMM/
https://eqtlgen.org/cis-eqtls.html
https://eqtlgen.org/cis-eqtls.html
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panels, https://​alkes​group.​broad​insti​tute.​org/​LDSCO​
RE/; STRING, https://​string-​db.​org/; and Online tool 
for MR power calculation, https://​sb452.​shiny​apps.​io/​
power/.

Abbreviations
T2D: Type 2 diabetes; PAD: Peripheral artery disease; PRS: Polygenic risk score; 
MAGMA: Multi-marker analysis of genomic annotation; SMR: Summary data-
based Mendelian randomization; GWAS: Genome-wide association studies; 
LDSC: Linkage disequilibrium score regression; PCs: Principal components; HM 
3: HapMap 3SNP: single nucleotide polymorphism; MR: Mendelian randomiza-
tion; UKB: UK Biobank; BBJ: BioBank Japan; MVMR: Multivariable Mendelian 
randomization analysis; MTAG​: Multi-trait analysis of GWAS; LMM: Linear mixed 
model; MAF: minor allele frequency; eQTL: Expression quantitative trait loci; 
h2: Heritability; rg: Genetic correlation; MHC: Major histocompatibility complex; 
IVW: Inverse variance-weighted; GSMR: Generalized summary data-based 
Mendelian randomization; CAUSE: Causal analysis using summary effect 
estimates; LCV: Latent causal variable; HEIDI: Heterogeneity in dependent 
instruments; ELPD: Expected log pointwise posterior density; GCP: Genetic 
causality proportion; TC: Total cholesterol; BMI: Body mass index; SBP: Systolic 
blood pressure; CI: Confidence intervals.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12916-​022-​02476-0.

Additional file 1: Table S1. ICD codes of PAD and T2D. Table S2. MR 
results between T2D and PAD in Europeans. Table S3. MR results between 
T2D and PAD in Europeans (without excluding potential pleiotropy SNPs). 
Table S4. MVMR results between T2D and PAD adjusted by potential risk 
factors in Europeans. Table S5. Summary of PRS regression of PRS for 
T2D on PAD status in Europeans. Table S6. Summary of PRS regression of 
PRS for PAD on T2D status in Europeans. Table S7. Novel SNPs underly-
ing the shared genetics of T2D and PAD in Europeans detected by MTAG. 
Table S8. Candidate genes associated with comorbid T2D and PAD in 
Europeans detected by MAGMA. Table S9. Significant SMR associations 
of gene expression (from Table S8) with T2D, PAD, and their cross-trait. 
Table S10. MR results between T2D and PAD in East Asians. Table S11. 
MR results between T2D and PAD in East Asians (without excluding 
potential pleiotropy SNPs). Table S12. MVMR results between T2D and 
PAD adjusted by potential risk factors in East Asians. Table S13. Summary 
of PRS regression of PRS for T2D on PAD status in East Asians. Table S14. 
Summary of PRS regression of PRS for PAD on T2D status in East Asians. 
Table S15. Candidate genes associated with comorbid T2D and PAD in 
East Asians detected by MAGMA. Table S16. Significant SMR associations 
of gene expression (from Table S15) with T2D, PAD, and their cross-trait. 
(XLS 383 kb)

Additional file 2: Figure S1. Estimated powers of European- or East 
Asian-based MR models for the causality between T2D and PAD. Figure 
S2. The power of PRS regression regarding SNP p-value thresholds of 
different discovery GWAS. Figure S3. The protein-protein interaction (PPI) 
network for candidate genes.

Acknowledgements
The authors thank the BioBank Japan project for making the data available.
Data for this study were also obtained from the UK Biobank (application 
number #65805).

Authors’ contributions
YH.Y and H. Zhao designed the study. X.X and H. Zhang performed the 
analyses, with assistance from YH. Y and H. Zhao. X.X, YH.Y, D.N.C, and H. Zhao 
wrote the manuscript. YD.Y, YH.Y, and H. Zhao supervised the study. All authors 
discussed and approved the results and interpretation and contributed to the 
final version of the paper.

Funding
The work was funded by the National Key Research and Development 
Program of China (2020YFB0204803), Natural Science Foundation of China 
(81801132, 81971190, 61772566), Guangdong Key Field Research and Devel-
opment Plan (2019B020228001, 2018B010109006, and 2021A1515010256), 
Introducing Innovative and Entrepreneurial Teams (2016ZT06D211), Guang-
zhou Science and Technology Research Plan (202007030010), and Mater 
Foundation.

Availability of data and materials
The datasets analyzed during the current study are available in the BBJ, http://​
jenger.​riken.​jp/​en/.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Medical Research Center, Sun Yat-sen Memorial Hospital, 
Sun Yat-sen University; Guangdong Provincial Key Laboratory of Malignant 
Tumor Epigenetics and Gene Regulation, Guangzhou, China. 2 School of Data 
and Computer Science, Sun Yat-sen University, Guangzhou 510000, China. 
3 Garvan‑Weizmann Centre for Cellular Genomics, Garvan Institute of Medical 
Research, Sydney, NSW, Australia. 4 Institute for Molecular Bioscience, The Uni-
versity of Queensland, Brisbane, QLD, Australia. 5 Institute of Medical Genetics, 
School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK. 6 Mater 
Research Institute, Translational Research Institute, Brisbane, QLD, Australia. 

Received: 19 February 2022   Accepted: 12 July 2022

References
	 1.	 Spracklen CN, Horikoshi M, Kim YJ, Lin K, Bragg F, Moon S, et al. Identifi-

cation of type 2 diabetes loci in 433,540 East Asian individuals. Nature. 
2020;582(7811):240–5.

	 2.	 Thiruvoipati T, Kielhorn CE, Armstrong EJ. Peripheral artery disease in 
patients with diabetes: epidemiology, mechanisms, and outcomes. 
World J Diabetes. 2015;6(7):961.

	 3.	 Tresierra-Ayala M, Rojas AG. Association between peripheral arterial 
disease and diabetic foot ulcers in patients with diabetes mellitus type 
2. Medicina Universitaria. 2017;19(76):123–6.

	 4.	 Schorr EN, Treat-Jacobson D, Lindquist R. The relationship between 
peripheral artery disease symptomatology and ischemia. Nurs Res. 
2017;66(5):378–87.

	 5.	 Matsukura M, Ozaki K, Takahashi A, Onouchi Y, Morizono T, Komai H, 
et al. Genome-wide association study of peripheral arterial disease in a 
Japanese population. PLoS One. 2015;10(10):e0139262.

	 6.	 Beckman JA, Creager MA, Libby P. Diabetes and atherosclero-
sis: epidemiology, pathophysiology, and management. Jama. 
2002;287(19):2570–81.

	 7.	 Qin J, Tian J, Liu G, Zhang Y, Tian L, Zhen Y, et al. Association between 
1p13 polymorphisms and peripheral arterial disease in a Chinese popu-
lation with diabetes. J Diabetes Investig. 2018;9(5):1189–95.

	 8.	 Strawbridge RJ, van Zuydam NR. Shared genetic contribution of type 
2 diabetes and cardiovascular disease: implications for prognosis and 
treatment. Curr Diab Rep. 2018;18(8):59.

	 9.	 Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. 
Discovery of 318 new risk loci for type 2 diabetes and related vascular 
outcomes among 1.4 million participants in a multi-ancestry meta-
analysis. Nat Genet. 2020;52(7):680–91.

	 10.	 van Zuydam NR, Stiby A, Abdalla M, Austin E, Dahlstrom EH, McLachlan 
S, et al. Genome-wide association study of peripheral artery disease. 
Circ Genom Precis Med. 2021;14(5):e002862.

	 11.	 Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia 
Working Group of the Psychiatric Genomics C, et al. LD Score regression 
distinguishes confounding from polygenicity in genome-wide associa-
tion studies. Nat Genet. 2015;47(3):291–5.

https://alkesgroup.broadinstitute.org/LDSCORE/
https://alkesgroup.broadinstitute.org/LDSCORE/
https://string-db.org/
https://sb452.shinyapps.io/power/
https://sb452.shinyapps.io/power/
https://doi.org/10.1186/s12916-022-02476-0
https://doi.org/10.1186/s12916-022-02476-0
http://jenger.riken.jp/en/
http://jenger.riken.jp/en/


Page 14 of 16Xiu et al. BMC Medicine          (2022) 20:300 

	 12.	 Hemani G, Bowden J, Davey Smith G. Evaluating the potential role 
of pleiotropy in Mendelian randomization studies. Hum Mol Genet. 
2018;27(R2):R195–208.

	 13.	 Wurtz P, Wang Q, Kangas AJ, Richmond RC, Skarp J, Tiainen M, 
et al. Metabolic signatures of adiposity in young adults: Mendelian 
randomization analysis and effects of weight change. PLoS Med. 
2014;11(12):e1001765.

	 14.	 Guo Y, Rist PM, Daghlas I, Giulianini F, Kurth T, Chasman DI. A genome-
wide cross-phenotype meta-analysis of the association of blood pres-
sure with migraine. Nat Commun. 2020;11(1):3368.

	 15.	 Yang Y, Musco H, Simpson-Yap S, Zhu Z, Wang Y, Lin X, et al. Investigat-
ing the shared genetic architecture between multiple sclerosis and 
inflammatory bowel diseases. Nat Commun. 2021;12(1):5641.

	 16.	 Zhang H, Xiu X, Xue A, Yang Y, Yang Y, Zhao H. Mendelian randomiza-
tion study reveals a population-specific putative causal effect of type 2 
diabetes in risk of cataract. Int J Epidemiol. 2022;50(6):2024–37.

	 17.	 Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel 
JO, et al. A global reference for human genetic variation. Nature. 
2015;526(7571):68–74.

	 18.	 Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. 
Meta-analysis of genome-wide association studies for height and body 
mass index in ∼700000 individuals of European ancestry. Hum Mol 
Genet. 2018;27(20):3641–9.

	 19.	 World Health Organization. The ICD-10 classification of mental and 
behavioural disorders: clinical descriptions and diagnostic guidelines. 
Geneva: World Health Organization; 1992.

	 20.	 Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem 
RM, et al. Efficient Bayesian mixed-model analysis increases association 
power in large cohorts. Nat Genet. 2015;47(3):284–90.

	 21.	 Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, 
et al. A map of human genome variation from population-scale 
sequencing. Nature. 2010;467(7319):1061–73.

	 22.	 Loh PR, Danecek P, Palamara PF, Fuchsberger C, YAR, HKF, et al. 
Reference-based phasing using the Haplotype Reference Consortium 
panel. Nat Genet. 2016;48(11):1443–8.

	 23.	 Suzuki K, Akiyama M, Ishigaki K, Kanai M, Hosoe J, Shojima N, et al. 
Identification of 28 new susceptibility loci for type 2 diabetes in the 
Japanese population. Nat Genet. 2019;51(3):379–86.

	 24.	 Ishigaki K, Akiyama M, Kanai M, Takahashi A, Kawakami E, Sugishita H, 
et al. Large-scale genome-wide association study in a Japanese popula-
tion identifies novel susceptibility loci across different diseases. Nat 
Genet. 2020;52(7):669–79.

	 25.	 Nagai A, Hirata M, Kamatani Y, Muto K, Matsuda K, Kiyohara Y, et al. 
Overview of the BioBank Japan Project: study design and profile. J 
Epidemiol. 2017;27(3s):S2–s8.

	 26.	 Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics. 2010;26(17):2190–1.

	 27.	 Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, 
et al. Efficiently controlling for case-control imbalance and sample 
relatedness in large-scale genetic association studies. Nat Genet. 
2018;50(9):1335–41.

	 28.	 Majewski J, Pastinen T. The study of eQTL variations by RNA-seq: from 
SNPs to phenotypes. Trends Genet. 2011;27(2):72–9.

	 29.	 Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integra-
tion of summary data from GWAS and eQTL studies predicts complex 
trait gene targets. Nat Genet. 2016;48(5):481–7.

	 30.	 Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen 
J, et al. Systematic identification of trans eQTLs as putative drivers of 
known disease associations. Nat Genet. 2013;45(10):1238–43.

	 31.	 Võsa U, Claringbould A, Westra H-J, Bonder MJ, Deelen P, Zeng B, et al. 
Unraveling the polygenic architecture of complex traits using blood 
eQTL metaanalysis. bioRxiv. 2018. Preprint at https://​www.​biorx​iv.​org/​
conte​nt/​10.​1101/​44736​7v1.

	 32.	 Davies NM, Holmes MV, Davey Smith G. Reading Mendelian ran-
domisation studies: a guide, glossary, and checklist for clinicians. BMJ. 
2018;362:k601.

	 33.	 da Silva JS, Wowk PF, Poerner F, Santos PS, Bicalho Mda G. Absence of 
strong linkage disequilibrium between odorant receptor alleles and the 
major histocompatibility complex. Hum Immunol. 2013;74(12):1619–23.

	 34.	 Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide 
association analyses identify 143 risk variants and putative regulatory 
mechanisms for type 2 diabetes. Nat Commun. 2018;9(1):2941.

	 35.	 Olinic DM, Spinu M, Olinic M, Homorodean C, Tataru DA, Liew A, et al. 
Epidemiology of peripheral artery disease in Europe: VAS Educational 
Paper. Int Angiol. 2018;37(4):327–34.

	 36.	 Subramaniam T, Nang EE, Lim SC, Wu Y, Khoo CM, Lee J, et al. Distribu-
tion of ankle–brachial index and the risk factors of peripheral artery 
disease in a multi-ethnic Asian population. Vasc Med. 2011;16(2):87–95.

	 37.	 Burgess S, Dudbridge F, Thompson SG. Combining information 
on multiple instrumental variables in Mendelian randomization: 
comparison of allele score and summarized data methods. Stat Med. 
2016;35(11):1880–906.

	 38.	 Bowden J, Davey Smith G, Burgess S. Mendelian randomization with 
invalid instruments: effect estimation and bias detection through Egger 
regression. Int J Epidemiol. 2015;44(2):512–25.

	 39.	 Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary 
data Mendelian randomization via the zero modal pleiotropy assump-
tion. Int J Epidemiol. 2017;46(6):1985–98.

	 40.	 Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation 
in Mendelian randomization with some invalid instruments using a 
weighted Median estimator. Genet Epidemiol. 2016;40(4):304–14.

	 41.	 Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, et al. Causal 
associations between risk factors and common diseases inferred from 
GWAS summary data. Nat Commun. 2018;9(1):224.

	 42.	 Morrison J, Knoblauch N, Marcus JH, Stephens M, He X. Mendelian 
randomization accounting for correlated and uncorrelated pleio-
tropic effects using genome-wide summary statistics. Nat Genet. 
2020;52(7):740–7.

	 43.	 O’Connor LJ, Price AL. Distinguishing genetic correlation from causation 
across 52 diseases and complex traits. Nat Genet. 2018;50(12):1728–34.

	 44.	 Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, 
et al. Integrating common and rare genetic variation in diverse human 
populations. Nature. 2010;467(7311):52–8.

	 45.	 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. 
PLINK: a tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet. 2007;81(3):559–75.

	 46.	 Burgess S. Sample size and power calculations in Mendelian randomi-
zation with a single instrumental variable and a binary outcome. Int J 
Epidemiol. 2014;43(3):922–9.

	 47.	 Byrne EM, Zhu Z, Qi T, Skene NG, Bryois J, Pardinas AF, et al. Conditional 
GWAS analysis to identify disorder-specific SNPs for psychiatric disor-
ders. Mol Psychiatry. 2021;26(6):2070–81.

	 48.	 Burgess S, Thompson SG. Multivariable Mendelian randomization: the 
use of pleiotropic genetic variants to estimate causal effects. Am J 
Epidemiol. 2015;181(4):251–60.

	 49.	 Spracklen CN, Sim X. Progress in defining the genetic contribution to 
type 2 diabetes in individuals of East Asian ancestry. Curr Diab Rep. 
2021;21(6):17.

	 50.	 Spracklen CN, Chen P, Kim YJ, Wang X, Cai H, Li S, et al. Association 
analyses of East Asian individuals and trans-ancestry analyses with 
European individuals reveal new loci associated with cholesterol and 
triglyceride levels. Hum Mol Genet. 2018;27(6):1122.

	 51.	 Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic 
studies of body mass index yield new insights for obesity biology. 
Nature. 2015;518(7538):197–206.

	 52.	 Akiyama M, Okada Y, Kanai M, Takahashi A, Momozawa Y, Ikeda M, et al. 
Genome-wide association study identifies 112 new loci for body mass 
index in the Japanese population. Nat Genet. 2017;49(10):1458–67.

	 53.	 Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, 
et al. Genetic variants in novel pathways influence blood pressure and 
cardiovascular disease risk. Nature. 2011;478(7367):103–9.

	 54.	 Kanai M, Akiyama M, Takahashi A, Matoba N, Momozawa Y, Ikeda 
M, et al. Genetic analysis of quantitative traits in the Japanese 
population links cell types to complex human diseases. Nat Genet. 
2018;50(3):390–400.

	 55.	 Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association stud-
ies of up to 1.2 million individuals yield new insights into the genetic 
etiology of tobacco and alcohol use. Nat Genet. 2019;51(2):237–44.

	 56.	 Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, 
et al. GWAS of smoking behaviour in 165,436 Japanese people reveals 

https://www.biorxiv.org/content/10.1101/447367v1
https://www.biorxiv.org/content/10.1101/447367v1


Page 15 of 16Xiu et al. BMC Medicine          (2022) 20:300 	

seven new loci and shared genetic architecture. Nat Hum Behav. 
2019;3(5):471–7.

	 57.	 Nagelkerke NJD. A note on a general definition of the coefficient of 
determination. Biometrika. 1991;78(3):691–2.

	 58.	 Olkin I, Finn JD. Correlations redux. Psychol Bull. 1995;118(1):115–64.
	 59.	 Palla L, Dudbridge F. A fast method that uses polygenic scores to 

estimate the variance explained by genome-wide marker panels 
and the proportion of variants affecting a trait. Am J Hum Genet. 
2015;97(2):250–9.

	 60.	 Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. 
Multi-trait analysis of genome-wide association summary statistics 
using MTAG. Nat Genet. 2018;50(2):229–37.

	 61.	 de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: gen-
eralized gene-set analysis of GWAS data. PLoS Comput Biol. 
2015;11(4):e1004219.

	 62.	 Veturi Y, Ritchie MD. How powerful are summary-based methods for 
identifying expression-trait associations under different genetic archi-
tectures? Pac Symp Biocomput. 2018;23:228–39.

	 63.	 Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, et al. STRING 
8—a global view on proteins and their functional interactions in 630 
organisms. Nucleic Acids Res. 2009;37(Database issue):D412–6.

	 64.	 Awodu OA, Famodu AA. Haemostatic variables and their relationship to 
body mass index and blood pressure in adult Nigerians with the sickle 
cell trait. Clin Hemorheol Microcirc. 2007;36(1):89–94.

	 65.	 Langer RD, Criqui MH, Reed DM. Lipoproteins and blood pressure as 
biological pathways for effect of moderate alcohol consumption on 
coronary heart disease. Circulation. 1992;85(3):910–5.

	 66.	 Levin MG, Zuber V, Walker VM, Klarin D, Lynch J, Malik R, et al. Prioritizing 
the role of major lipoproteins and subfractions as risk factors for periph-
eral artery disease. Circulation. 2021;144(5):353–64.

	 67.	 Small AM, Huffman JE, Klarin D, Sabater-Lleal M, Lynch JA, Assimes 
TL, et al. Mendelian randomization analysis of hemostatic factors and 
their contribution to peripheral artery disease-brief report. Arterioscler 
Thromb Vasc Biol. 2021;41(1):380–6.

	 68.	 Klarin D, Lynch J, Aragam K, Chaffin M, Assimes TL, Huang J, et al. 
Genome-wide association study of peripheral artery disease in the Mil-
lion Veteran Program. Nat Med. 2019;25(8):1274–9.

	 69.	 Hayfron-Benjamin C, van den Born BJ, Maitland-van der Zee AH, Amoah 
AGB, Meeks KAC, Klipstein-Grobusch K, et al. Microvascular and macro-
vascular complications in type 2 diabetes Ghanaian residents in Ghana 
and Europe: the RODAM study. J Diabetes Complicat. 2019;33(8):572–8.

	 70.	 Ruscitti P, Cipriani P, Liakouli V, Iacono D, Pantano I, Margiotta DPE, 
et al. Subclinical and clinical atherosclerosis in rheumatoid arthritis: 
results from the 3-year, multicentre, prospective, observational GIRRCS 
(Gruppo Italiano di Ricerca in Reumatologia Clinica e Sperimentale) 
study. Arthritis Res Ther. 2019;21(1):204.

	 71.	 Aday AW, Everett BM. Dyslipidemia profiles in patients with peripheral 
artery disease. Curr Cardiol Rep. 2019;21(6):42.

	 72.	 Joshi PH, Martin SS. Unraveling the risk of peripheral artery disease. 
Circulation. 2018;138(21):2342–4.

	 73.	 Heffron SP, Dwivedi A, Rockman CB, Xia Y, Guo Y, Zhong J, et al. 
Body mass index and peripheral artery disease. Atherosclerosis. 
2020;292:31–6.

	 74.	 Yeh CH, Yu HC, Huang TY, Huang PF, Wang YC, Chen TP, et al. High 
systolic and diastolic blood pressure variability is correlated with the 
occurrence of peripheral arterial disease in the first decade following a 
diagnosis of type 2 diabetes mellitus: a new biomarker from old meas-
urement. Biomed Res Int. 2016;2016:9872945.

	 75.	 Clement DL, De Buyzere ML, Duprez DA. Hypertension in peripheral 
arterial disease. Curr Pharm Des. 2004;10(29):3615–20.

	 76.	 Clark D 3rd, Cain LR, Blaha MJ, DeFilippis AP, Mentz RJ, Kamimura D, 
et al. Cigarette smoking and subclinical peripheral arterial disease in 
Blacks of the Jackson Heart Study. J Am Heart Assoc. 2019;8(3):e010674.

	 77.	 Jansen H, Loley C, Lieb W, Pencina MJ, Nelson CP, Kathiresan S, et al. 
Genetic variants primarily associated with type 2 diabetes are related to 
coronary artery disease risk. Atherosclerosis. 2015;241(2):419–26.

	 78.	 Xu M, Huang Y, Xie L, Peng K, Ding L, Lin L, et al. Diabetes and risk 
of arterial stiffness: a Mendelian randomization analysis. Diabetes. 
2016;65(6):1731–40.

	 79.	 Burgess S, Thompson SG. Interpreting findings from Mendelian 
randomization using the MR-Egger method. Eur J Epidemiol. 
2017;32(5):377–89.

	 80.	 Burgess S, Foley CN, Allara E, Staley JR, Howson JMM. A robust and effi-
cient method for Mendelian randomization with hundreds of genetic 
variants. Nat Commun. 2020;11(1):376.

	 81.	 Li J, Dong Y, Wu T, Tong N. Differences between Western and Asian type 
2 diabetes patients in the incidence of vascular complications and mor-
tality: a systematic review of randomized controlled trials on lowering 
blood glucose. J Diabetes. 2016;8(6):824–33.

	 82.	 Narayan KMV. Type 2 diabetes: why we are winning the battle but 
losing the war? 2015 Kelly West Award Lecture. Diabetes Care. 
2016;39(5):653.

	 83.	 Vitalis A, Lip GY, Kay M, Vohra RK, Shantsila A. Ethnic differences in the 
prevalence of peripheral arterial disease: a systematic review and meta-
analysis. Expert Rev Cardiovasc Ther. 2017;15(4):327–38.

	 84.	 Ma RC, Chan JC. Type 2 diabetes in East Asians: similarities and differ-
ences with populations in Europe and the United States. Ann N Y Acad 
Sci. 2013;1281:64–91.

	 85.	 Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs 
KV, et al. From noncoding variant to phenotype via SORT1 at the 1p13 
cholesterol locus. Nature. 2010;466(7307):714–9.

	 86.	 Lee JY, Lee BS, Shin DJ, Woo Park K, Shin YA, Joong Kim K, et al. A 
genome-wide association study of a coronary artery disease risk vari-
ant. J Hum Genet. 2013;58(3):120–6.

	 87.	 Maekawa M, Tanigawa K, Sakaue T, Hiyoshi H, Kubota E, Joh T, et al. 
Cullin-3 and its adaptor protein ANKFY1 determine the surface level of 
integrin beta1 in endothelial cells. Biol Open. 2017;6(11):1707–19.

	 88.	 Tanaka M, Nakamura S, Maekawa M, Higashiyama S, Hara H. ANKFY1 
is essential for retinal endothelial cell proliferation and migration 
via VEGFR2/Akt/eNOS pathway. Biochem Biophys Res Commun. 
2020;533(4):1406–12.

	 89.	 Hermle T, Schneider R, Schapiro D, Braun DA, van der Ven AT, Warejko 
JK, et al. GAPVD1 and ANKFY1 mutations implicate RAB5 regulation in 
nephrotic syndrome. J Am Soc Nephrol. 2018;29(8):2123–38.

	 90.	 Kodner C. Diagnosis and management of nephrotic syndrome in 
adults. Am Fam Physician. 2016;93(6):479–85.

	 91.	 Gigante A, Barbano B, Sardo L, Martina P, Gasperini ML, Labbadia R, 
et al. Hypercoagulability and nephrotic syndrome. Curr Vasc Pharmacol. 
2014;12(3):512–7.

	 92.	 Carrat GR, Haythorne E, Tomas A, Haataja L, Müller A, Arvan P, et al. The 
type 2 diabetes gene product STARD10 is a phosphoinositide-binding 
protein that controls insulin secretory granule biogenesis. Mol Metab. 
2020;40:101015.

	 93.	 Imamura M, Takahashi A, Yamauchi T, Hara K, Yasuda K, Grarup N, et al. 
Genome-wide association studies in the Japanese population identify 
seven novel loci for type 2 diabetes. Nat Commun. 2016;7:10531.

	 94.	 Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A 
cross-population atlas of genetic associations for 220 human pheno-
types. Nat Genet. 2021;53(10):1415–24.

	 95.	 Kooner JS, Saleheen D, Sim X, Sehmi J, Zhang W, Frossard P, et al. 
Genome-wide association study in individuals of South Asian ancestry 
identifies six new type 2 diabetes susceptibility loci. Nat Genet. 
2011;43(10):984–9.

	 96.	 Fukuda H, Imamura M, Tanaka Y, Iwata M, Hirose H, Kaku K, et al. A 
single nucleotide polymorphism within DUSP9 is associated with 
susceptibility to type 2 diabetes in a Japanese population. PLoS One. 
2012;7(9):e46263.

	 97.	 Fadason T, Ekblad C, Ingram JR, Schierding WS, O’Sullivan JM. Physical 
interactions and expression quantitative traits loci identify regulatory 
connections for obesity and type 2 diabetes associated SNPs. Front 
Genet. 2017;8:150.

	 98.	 Wood AR, Jonsson A, Jackson AU, Wang N, van Leewen N, Palmer ND, 
et al. A genome-wide association study of IVGTT-based measures of 
first-phase insulin secretion refines the underlying physiology of type 2 
diabetes variants. Diabetes. 2017;66(8):2296–309.

	 99.	 Kanthimathi S, Chidambaram M, Bodhini D, Liju S, Bhavatharini A, Uma 
R, et al. Association of recently identified type 2 diabetes gene vari-
ants with gestational diabetes in Asian Indian population. Mol Genet 
Genomics. 2017;292(3):585–91.



Page 16 of 16Xiu et al. BMC Medicine          (2022) 20:300 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	100.	 Kazakova EV, Zghuang T, Li T, Fang Q, Han J, Qiao H. The Gas6 gene 
rs8191974 and Ap3s2 gene rs2028299 are associated with type 2 
diabetes in the northern Chinese Han population. Acta Biochim Pol. 
2017;64(2):227–31.

	101.	 Shabana, Ullah Shahid S, Wah Li K, Acharya J, Cooper JA, Hasnain S, et al. 
Effect of six type II diabetes susceptibility loci and an FTO variant on 
obesity in Pakistani subjects. Eur J Hum Genet. 2016;24(6):903–10.

	102.	 Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, 
et al. Fine-mapping type 2 diabetes loci to single-variant resolution 
using high-density imputation and islet-specific epigenome maps. Nat 
Genet. 2018;50(11):1505–13.

	103.	 Han L, Huang Z, Liu Y, Ye L, Li D, Yao Z, et al. MicroRNA-106a regulates 
autophagy-related cell death and EMT by targeting TP53INP1 in lung 
cancer with bone metastasis. Cell Death Dis. 2021;12(11):1037.

	104.	 Fan S, Price T, Huang W, Plue M, Warren J, Sundaramoorthy P, et al. 
PINK1-dependent mitophagy regulates the migration and homing 
of multiple myeloma cells via the MOB1B-mediated Hippo-YAP/TAZ 
pathway. Adv Sci (Weinh). 2020;7(5):1900860.

	105.	 Mercier V, Larios J, Molinard G, Goujon A, Matile S, Gruenberg J, et al. 
Endosomal membrane tension regulates ESCRT-III-dependent intra-
lumenal vesicle formation. Nat Cell Biol. 2020;22(8):947–59.

	106.	 Lefrançois S, Janvier K, Boehm M, Ooi CE, Bonifacino JS. An ear-core 
interaction regulates the recruitment of the AP-3 complex to mem-
branes. Dev Cell. 2004;7(4):619–25.

	107.	 Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, et al. 
Twelve type 2 diabetes susceptibility loci identified through large-scale 
association analysis. Nat Genet. 2010;42(7):579–89.

	108.	 Kichaev G, Bhatia G, Loh PR, Gazal S, Burch K, Freund MK, et al. Leverag-
ing polygenic functional enrichment to improve GWAS power. Am J 
Hum Genet. 2019;104(1):65–75.

	109.	 Unnikrishnan R, Pradeepa R, Joshi SR, Mohan V. Type 2 diabetes: demys-
tifying the global epidemic. Diabetes. 2017;66(6):1432.

	110.	 Derdak Z, Lang CH, Villegas KA, Tong M, Mark NM, de la Monte SM, et al. 
Activation of p53 enhances apoptosis and insulin resistance in a rat 
model of alcoholic liver disease. J Hepatol. 2011;54(1):164–72.

	111.	 Metzger DE, Liu C, Ziaie AS, Naji A, Zaret KS. Grg3/TLE3 and Grg1/TLE1 
induce monohormonal pancreatic β-cells while repressing α-cell func-
tions. Diabetes. 2014;63(5):1804–16.

	112.	 Kullo IJ, Leeper NJ. The genetic basis of peripheral arterial disease: 
current knowledge, challenges, and future directions. Circ Res. 
2015;116(9):1551–60.

	113.	 Firdous P, Nissar K, Ali S, Ganai BA, Shabir U, Hassan T, et al. Genetic test-
ing of maturity-onset diabetes of the young current status and future 
perspectives. Front Endocrinol (Lausanne). 2018;9:253.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Genetic evidence for a causal relationship between type 2 diabetes and peripheral artery disease in both Europeans and East Asians
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Data sources for Europeans
	Data sources for East Asians
	eQTL summary data
	Linkage disequilibrium score regression
	Mendelian randomization analysis
	Multivariable MR analysis
	Polygenic risk score analysis
	Multi-trait analysis of T2D and PAD
	Gene-based association analysis
	Summary data-based Mendelian randomization analysis

	Results
	Shared genetics and putative causal relationship between T2D and PAD in Europeans
	Genetic correlation between T2D and PAD
	Putative causal effect of T2D on PAD
	Higher PRS for T2D in PAD patients than in non-PAD controls
	Novel SNPs and candidate genes associated with the shared genetics of T2D and PAD

	Replicability of the putative causal relationship between T2D and PAD in East Asians
	Common and distinct mechanisms underlying the co-occurrence of T2D and PAD between Europeans and East Asians

	Discussion
	Study limitation

	Conclusions
	Acknowledgements
	References


