Bates P, Ramachandran M: Bone injury, healing and grafting. Basic Orthopaedic Sciences. The Stanmore Guide. Edited by: Ramachandran M. 2007, London: Hodder Arnold, 123-134.
Google Scholar
Einhorn TA: The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998, 355 (Suppl): S7-21.
PubMed
Google Scholar
Cho TJ, Gerstenfeld LC, Einhorn TA: Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res. 2002, 17: 513-520. 10.1359/jbmr.2002.17.3.513.
CAS
PubMed
Google Scholar
Ferguson C, Alpern E, Miclau T, Helms JA: Does adult fracture repair recapitulate embryonic skeletal formation?. Mech Dev. 1999, 87: 57-66. 10.1016/S0925-4773(99)00142-2.
CAS
PubMed
Google Scholar
Audigé L, Griffin D, Bhandari M, Kellam J, Rüedi TP: Path analysis of factors for delayed healing and nonunion in 416 operatively treated tibial shaft fractures. Clin Orthop Relat Res. 2005, 438: 221-232.
PubMed
Google Scholar
Aronson J: Limb-lengthening, skeletal reconstruction, and bone transport with the Ilizarov method. J Bone Joint Surg Am. 1997, 79 (8): 1243-1258.
CAS
PubMed
Google Scholar
Green SA, Jackson JM, Wall DM, Marinow H, Ishkanian J: Management of segmental defects by the Ilizarov intercalary bone transport method. Clin Orthop Relat Re. 1992, 280: 136-142.
Google Scholar
Giannoudis PV, Dinopoulos H, Tsiridis E: Bone substitutes: an update. Injury. 2005, 36 (Suppl 3): S20-27.
PubMed
Google Scholar
Giannoudis PV, Einhorn TA: Bone morphogenetic proteins in musculoskeletal medicine. Injury. 2009, 40 (Suppl 3): S1-3.
Google Scholar
Masquelet AC, Begue T: The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am. 2010, 41 (1): 27-37. 10.1016/j.ocl.2009.07.011.
PubMed
Google Scholar
Busse JW, Bhandari M, Kulkarni AV, Tunks E: The effect of low-intensity pulsed ultrasound therapy on time to fracture healing: a meta-analysis. CMAJ. 2002, 166 (4): 437-441.
PubMed
PubMed Central
Google Scholar
Schofer MD, Block JE, Aigner J, Schmelz A: Improved healing response in delayed unions of the tibia with low-intensity pulsed ultrasound: results of a randomized sham-controlled trial. BMC Musculoskelet Disord. 2010, 11: 229-10.1186/1471-2474-11-229.
PubMed
PubMed Central
Google Scholar
Walker NA, Denegar CR, Preische J: Low-intensity pulsed ultrasound and pulsed electromagnetic field in the treatment of tibial fractures: a systematic review. J Athl Train. 2007, 42 (4): 530-535.
PubMed
PubMed Central
Google Scholar
Raschke M, Oedekoven G, Ficke J, Claudi BF: The monorail method for segment bone transport. Injury. 1993, 24 (Suppl 2): S54-61.
PubMed
Google Scholar
Cole JD, Justin D, Kasparis T, DeVlught D, Knobloch C: The intramedullary skeletal kinetic distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia. Injury. 2001, 32 (Suppl 4): 129-139.
Google Scholar
Bauer TW, Muschler GF: Bone graft materials. An overview of the basic science. Clin Orthop Relat Res. 2000, 371: 10-27.
PubMed
Google Scholar
Pederson WC, Person DW: Long bone reconstruction with vascularized bone grafts. Orthop Clin North Am. 2007, 38 (1): 23-35. 10.1016/j.ocl.2006.10.006.
PubMed
Google Scholar
Korompilias AV, Beris AE, Lykissas MG, Kostas-Agnantis IP, Soucacos PN: Femoral head osteonecrosis: Why choose free vascularized fibula grafting. Microsurgery. 2010.
Google Scholar
Giannoudis PV, Tzioupis C, Green J: Surgical techniques: how I do it? The reamer/irrigator/aspirator (RIA) system. Injury. 2009, 40 (11): 1231-1236. 10.1016/j.injury.2009.07.070.
CAS
PubMed
Google Scholar
Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P: Comparison of anterior and posterior iliac crest bone graft in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 2002, 84 (5): 716-720. 10.1302/0301-620X.84B5.12571.
PubMed
Google Scholar
St John TA, Vaccaro AR, Sah AP, Schaefer M, Berta SC, Albert T, Hilibrand A: Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop. 2003, 32 (1): 18-23.
PubMed
Google Scholar
Younger EM, Chapman MW: Morbidity at bone graft donor sites. J Orthop Trauma. 1989, 3 (3): 192-195. 10.1097/00005131-198909000-00002.
CAS
PubMed
Google Scholar
Finkemeier CG: Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am. 2002, 84 (3): 454-464.
PubMed
Google Scholar
Bullens PH, Bart Schreuder HW, de Waal Malefijt MC, Verdonschot N, Buma P: Is an impacted morselized graft in a cage an alternative for reconstructing segmental diaphyseal defects?. Clin Orthop Relat Res. 2009, 467 (3): 783-791. 10.1007/s11999-008-0686-5.
PubMed
PubMed Central
Google Scholar
Ostermann PA, Haase N, Rübberdt A, Wich M, Ekkernkamp A: Management of a long segmental defect at the proximal meta-diaphyseal junction of the tibia using a cylindrical titanium mesh cage. J Orthop Trauma. 2002, 16 (8): 597-601. 10.1097/00005131-200209000-00010.
PubMed
Google Scholar
Urist MR, O'Connor BT, Burwell RG: Bone Graft Derivatives and Substitutes. 1994, Oxford: Butterworth-Heinemann Ltd
Google Scholar
Komatsu DE, Warden SJ: The control of fracture healing and its therapeutic targeting: improving upon nature. J Cell Biochem. 2010, 109 (2): 302-311.
CAS
PubMed
Google Scholar
Giannoudis PV, Einhorn TA, Marsh D: Fracture healing: the diamond concept. Injury. 2007, 38 (Suppl 4): S3-6.
Google Scholar
Dimitriou R, Tsiridis E, Giannoudis PV: Current concepts of molecular aspects of bone healing. Injury. 2005, 36 (12): 1392-1404. 10.1016/j.injury.2005.07.019.
PubMed
Google Scholar
Food and Drug Administration: Medical devices. [http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/default.htm].
Blokhuis TJ: Formulations and delivery vehicles for bone morphogenetic proteins: latest advances and future directions. Injury. 2009, 40 (Suppl 3): S8-11.
PubMed
Google Scholar
Nauth A, Giannoudis PV, Einhorn TA, Hankenson KD, Friedlaender GE, Li R, Schemitsch EH: Growth factors: beyond bone morphogenetic proteins. J Orthop Trauma. 2010, 24 (9): 543-546. 10.1097/BOT.0b013e3181ec4833.
PubMed
Google Scholar
Simpson AH, Mills L, Noble B: The role of growth factors and related agents in accelerating fracture healing. J Bone Joint Surg Br. 2006, 88 (6): 701-705. 10.1302/0301-620X.88B6.17524.
CAS
PubMed
Google Scholar
Alsousou J, Thompson M, Hulley P, Noble A, Willett K: The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br. 2009, 91 (8): 987-996. 10.1302/0301-620X.91B8.22546.
CAS
PubMed
Google Scholar
Argintar E, Edwards S, Delahay J: Bone morphogenetic proteins in orthopaedic trauma surgery. Injury. 2010.
Google Scholar
Chen FM, Ma ZW, Dong GY, Wu ZF: Composite glycidyl methacrylated dextran (Dex-GMA)/gelatin nanoparticles for localized protein delivery. Acta Pharmacol Sin. 2009, 30 (4): 485-493. 10.1038/aps.2009.15.
CAS
PubMed
PubMed Central
Google Scholar
Pountos I, Georgouli T, Kontakis G, Giannoudis PV: Efficacy of minimally invasive techniques for enhancement of fracture healing: evidence today. Int Orthop. 2010, 34 (1): 3-12. 10.1007/s00264-009-0892-0.
PubMed
Google Scholar
D'Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA: Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res. 1999, 14 (7): 1115-1122. 10.1359/jbmr.1999.14.7.1115.
PubMed
Google Scholar
Huibregtse BA, Johnstone B, Goldberg VM, Caplan AI: Effect of age and sampling site on the chondro-osteogenic potential of rabbit marrow-derived mesenchymal progenitor cells. J Orthop Res. 2000, 18 (1): 18-24. 10.1002/jor.1100180104.
CAS
PubMed
Google Scholar
Hernigou P, Poignard A, Beaujean F, Rouard H: Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am. 2005, 87 (7): 1430-1437. 10.2106/JBJS.D.02215.
PubMed
Google Scholar
Jäger M, Herten M, Fochtmann U, Fischer J, Hernigou P, Zilkens C, Hendrich C, Krauspe R: Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J Orthop Res. 2011, 29 (2): 173-180. 10.1002/jor.21230.
PubMed
Google Scholar
Bianchi G, Banfi A, Mastrogiacomo M, Notaro R, Luzzatto L, Cancedda R, Quarto R: Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res. 2003, 287 (1): 98-105. 10.1016/S0014-4827(03)00138-1.
CAS
PubMed
Google Scholar
D'Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC: Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci. 2004, 117 (14): 2971-2981. 10.1242/jcs.01103.
PubMed
Google Scholar
Patterson TE, Kumagai K, Griffith L, Muschler GF: Cellular strategies for enhancement of fracture repair. J Bone Joint Surg Am. 2008, 90 (Suppl 1): 111-119.
PubMed
Google Scholar
McGonagle D, English A, Jones EA: The relevance of mesenchymal stem cells in vivo for future orthopaedic strategies aimed at fracture repair. Curr Orthop. 2007, 21 (4): 262-267. 10.1016/j.cuor.2007.07.004.
Google Scholar
Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, Nawata M, Tensho K, Kato H, Uematsu K, Kuroda R, Kurosaka M, Yoshiya S, Hattori K, Ohgushi H: Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011, 5 (2): 146-150. 10.1002/term.299.
PubMed
Google Scholar
Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki H, Miwa M, Horii M, Hayashi S, Oyamada A, Nishimura H, Murasawa S, Doita M, Kurosaka M, Asahara T: Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol. 2006, 169: 1440-1457. 10.2353/ajpath.2006.060064.
CAS
PubMed
PubMed Central
Google Scholar
Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001, 7 (2): 211-228. 10.1089/107632701300062859.
CAS
PubMed
Google Scholar
Jackson WM, Aragon AB, Djouad F, Song Y, Koehler SM, Nesti LJ, Tuan RS: Mesenchymal progenitor cells derived from traumatized human muscle. J Tissue Eng Regen Med. 2009, 3 (2): 129-138. 10.1002/term.149.
CAS
PubMed
PubMed Central
Google Scholar
Im GI, Shin YW, Lee KB: Do adipose tissue-derived mesenchymal stem cells have the same osteogenic and chondrogenic potential as bone marrow-derived cells?. Osteoarthritis Cartilage. 2005, 13 (10): 845-853. 10.1016/j.joca.2005.05.005.
PubMed
Google Scholar
Niemeyer P, Fechner K, Milz S, Richter W, Suedkamp NP, Mehlhorn AT, Pearce S, Kasten P: Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials. 2010, 31 (13): 3572-3529. 10.1016/j.biomaterials.2010.01.085.
CAS
PubMed
Google Scholar
Jones E, McGonagle D: Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford). 2008, 47 (2): 126-131.
CAS
Google Scholar
Jones EA, Kinsey SE, English A, Jones RA, Straszynski L, Meredith DM, Markham AF, Jack A, Emery P, McGonagle D: Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum. 2002, 46 (12): 3349-3360. 10.1002/art.10696.
PubMed
Google Scholar
Jones E, English A, Churchman SM, Kouroupis D, Boxall SA, Kinsey S, Giannoudis PG, Emery P, McGonagle D: Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells. Arthritis Rheum. 2010, 62 (7): 1944-1954.
CAS
PubMed
Google Scholar
Akkouch A, Zhang Z, Rouabhia M: A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration. J Biomed Mater Res A. 2011, 96A: 693-704. 10.1002/jbm.a.33033.
CAS
Google Scholar
Tampieri A, Landi E, Valentini F, Sandri M, D'Alessandro T, Dediu V, Marcacci M: A conceptually new type of bio-hybrid scaffold for bone regeneration. Nanotechnology. 2011, 22 (1): 015104-10.1088/0957-4484/22/1/015104.
CAS
PubMed
Google Scholar
Laschke MW, Witt K, Pohlemann T, Menger MD: Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J Biomed Mater Res B Appl Biomater. 2007, 82 (2): 494-505.
PubMed
Google Scholar
Salgado AJ, Coutinho OP, Reis RL: Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004, 4 (8): 743-765. 10.1002/mabi.200400026.
CAS
PubMed
Google Scholar
Rose FR, Oreffo RO: Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun. 2002, 292: 1-7. 10.1006/bbrc.2002.6519.
CAS
PubMed
Google Scholar
Jones EA, Yang XB: Mesenchymal stem cells and their future in bone repair. Int J Adv Rheumatol. 2005, 3 (3): 15-21.
Google Scholar
Chatterjea A, Meijer G, van Blitterswijk C, de Boer J: Clinical application of human mesenchymal stromal cells for bone tissue engineering. Stem Cells Int. 2010, 2010: 215625.
PubMed
PubMed Central
Google Scholar
Kim SJ, Shin YW, Yang KH, Kim SB, Yoo MJ, Han SK, Im SA, Won YD, Sung YB, Jeon TS, Chang CH, Jang JD, Lee SB, Kim HC, Lee SY: A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskelet Disord. 2009, 10: 20-10.1186/1471-2474-10-20.
PubMed
PubMed Central
Google Scholar
Ohgushi H, Kotobuki N, Funaoka H, Machida H, Hirose M, Tanaka Y, Takakura Y: Tissue engineered ceramic artificial joint--ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials. 2005, 26 (22): 4654-4661. 10.1016/j.biomaterials.2004.11.055.
CAS
PubMed
Google Scholar
Kokemueller H, Spalthoff S, Nolff M, Tavassol F, Essig H, Stuehmer C, Bormann KH, Rücker M, Gellrich NC: Prefabrication of vascularized bioartificial bone grafts in vivo for segmental mandibular reconstruction: experimental pilot study in sheep and first clinical application. Int J Oral Maxillofac Surg. 2010, 39 (4): 379-387. 10.1016/j.ijom.2010.01.010.
CAS
PubMed
Google Scholar
Tarte K, Gaillard J, Lataillade JJ, Fouillard L, Becker M, Mossafa H, Tchirkov A, Rouard H, Henry C, Splingard M, Dulong J, Monnier D, Gourmelon P, Gorin NC, Sensebé L, Société Française de Greffe de Moelle et Thérapie Cellulaire: Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood. 2010, 115 (8): 1549-1553. 10.1182/blood-2009-05-219907.
CAS
PubMed
Google Scholar
Weinand C, Xu JW, Peretti GM, Bonassar LJ, Gill TJ: Conditions affecting cell seeding onto three-dimensional scaffolds for cellular-based biodegradable implants. J Biomed Mater Res B Appl Biomater. 2009, 91 (1): 80-87.
PubMed
Google Scholar
Yoshioka T, Mishima H, Ohyabu Y, Sakai S, Akaogi H, Ishii T, Kojima H, Tanaka J, Ochiai N, Uemura T: Repair of large osteochondral defects with allogeneic cartilaginous aggregates formed from bone marrow-derived cells using RWV bioreactor. J Orthop Res. 2007, 25 (10): 1291-1298. 10.1002/jor.20426.
PubMed
Google Scholar
Caplan AI: Mesenchymal stem cells and gene therapy. Clin Orthop Relat Res. 2000, 379 (Suppl): S67-70.
PubMed
Google Scholar
Chen Y: Orthopaedic application of gene therapy. J Orthop Sci. 2001, 6: 199-207. 10.1007/s007760100072.
CAS
PubMed
Google Scholar
Calori GM, Donati D, Di Bella C, Tagliabue L: Bone morphogenetic proteins and tissue engineering: future directions. Injury. 2009, 40 (Suppl 3): S67-76.
PubMed
Google Scholar
Tang Y, Tang W, Lin Y, Long J, Wang H, Liu L, Tian W: Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol Int. 2008, 32 (9): 1150-1157. 10.1016/j.cellbi.2008.06.005.
CAS
PubMed
Google Scholar
Lacroix D, Prendergast PJ: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech. 2002, 35 (9): 1163-1171. 10.1016/S0021-9290(02)00086-6.
CAS
PubMed
Google Scholar
Perren SM: Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res. 1979, 138: 175-196.
PubMed
Google Scholar
Jagodzinski M, Krettek C: Effect of mechanical stability on fracture healing--an update. Injury. 2007, 38 (Suppl1): S3-10.
PubMed
Google Scholar
Epari DR, Schell H, Bail HJ, Duda GN: Instability prolongs the chondral phase during bone healing in sheep. Bone. 2006, 38 (6): 864-870. 10.1016/j.bone.2005.10.023.
PubMed
Google Scholar
Schell H, Epari DR, Kassi JP, Bragulla H, Bail HJ, Duda GN: The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res. 2005, 23 (5): 1022-1028. 10.1016/j.orthres.2005.03.005.
CAS
PubMed
Google Scholar
Claes L, Eckert-Hübner K, Augat P: The effect of mechanical stability on local vascularization and tissue differentiation in callus healing. J Orthop Res. 2002, 20 (5): 1099-1105. 10.1016/S0736-0266(02)00044-X.
PubMed
Google Scholar
Lienau J, Schell H, Duda GN, Seebeck P, Muchow S, Bail HJ: Initial vascularization and tissue differentiation are influenced by fixation stability. J Orthop Res. 2005, 23 (3): 639-645. 10.1016/j.orthres.2004.09.006.
PubMed
Google Scholar
Babis GC, Soucacos PN: Bone scaffolds: The role of mechanical stability and instrumentation. Injury. 2005, 36 (Suppl): S38-S44.
PubMed
Google Scholar
Tran GT, Pagkalos J, Tsiridis E, Narvani AA, Heliotis M, Mantalaris A, Tsiridis E: Growth hormone: does it have a therapeutic role in fracture healing?. Expert Opin Investig Drugs. 2009, 18 (7): 887-911. 10.1517/13543780902893069.
CAS
PubMed
Google Scholar
Rubin MR, Bilezikian JP: Parathyroid hormone as an anabolic skeletal therapy. Drugs. 2005, 65 (17): 2481-2498. 10.2165/00003495-200565170-00005.
CAS
PubMed
Google Scholar
Tzioupis CC, Giannoudis PV: The safety and efficacy of parathyroid hormone (PTH) as a biological response modifier for the enhancement of bone regeneration. Curr Drug Saf. 2006, 1 (2): 189-203. 10.2174/157488606776930571.
CAS
PubMed
Google Scholar
Verhaar HJ, Lems WF: PTH analogues and osteoporotic fractures. Expert Opin Biol Ther. 2010, 10 (9): 1387-1394. 10.1517/14712598.2010.506870.
CAS
PubMed
Google Scholar
Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, Rizzoli R: European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO): European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2008, 19 (4): 399-428. 10.1007/s00198-008-0560-z.
CAS
PubMed
PubMed Central
Google Scholar
Charopoulos I, Orme S, Giannoudis PV: The role and efficacy of denosumab in the treatment of osteoporosis: an update. Expert Opin Drug Saf. 2011.
Google Scholar
Chen Y, Alman BA: Wnt pathway, an essential role in bone regeneration. J Cell Biochem. 2009, 106 (3): 353-362. 10.1002/jcb.22020.
CAS
PubMed
Google Scholar
Wagner ER, Zhu G, Zhang BQ, Luo Q, Shi Q, Huang E, Gao Y, Gao JL, Kim SH, Rastegar F, Yang K, He BC, Chen L, Zuo GW, Bi Y, Su Y, Luo J, Luo X, Huang J, Deng ZL, Reid RR, Luu HH, Haydon RC, He TC: The therapeutic potential of the Wnt signaling pathway in bone disorders. Curr Mol Pharmacol. 2011, 4 (1): 14-25. 10.2174/1874467211104010014.
CAS
PubMed
Google Scholar
Lucotte G, Houzet A, Hubans C, Lagarde JP, Lenoir G: Mutations of the noggin (NOG) and of the activin A type I receptor (ACVR1) genes in a series of twenty-seven French fibrodysplasia ossificans progressiva (FOP) patients. Genet Couns. 2009, 20 (1): 53-62.
CAS
PubMed
Google Scholar