GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–858.
Bowman LR, Donegan S, McCall PJ. Is dengue vector control deficient in effectiveness or evidence?: systematic review and meta-analysis. PLoS Negl Trop Dis. 2016;10:e0004551.
Article
PubMed
PubMed Central
Google Scholar
Yakob L, Walker T. Zika virus outbreak in the Americas: the need for novel mosquito control methods. Lancet Glob Health. 2016;4:e148–9.
Article
PubMed
Google Scholar
von Seidlein L, Kekulé AS, Strickman D. Novel vector control approaches: the future for prevention of Zika virus transmission? PLoS Med. 2017;14:e1002219.
Article
PubMed
PubMed Central
Google Scholar
Walker T, Johnson PH, Moreira LA, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011;476:450–3.
Article
CAS
PubMed
Google Scholar
Zheng X, Zhang D, Li Y, Yang C, Wu Y, Liang X, Liang Y, Pan X, Hu L, Sun Q, Wang X. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature. 2019;17:1.
O’Neill SL, Ryan PA, Turley AP, et al. Scaled deployment of Wolbachia to protect the community from Aedes transmitted arboviruses. Gates Open Res. 2018;2:36.
Article
PubMed
PubMed Central
Google Scholar
Schmidt TL, Barton NH, Rašić G, et al. Local introduction and heterogeneous spatial spread of dengue-suppressing Wolbachia through an urban population of Aedes aegypti. PLoS Biol. 2017;15:e2001894.
Article
PubMed
PubMed Central
Google Scholar
Singapore National Environment Agency. Project Wolbachia Singapore. 2019. https://www.nea.gov.sg/corporate-functions/resources/research/wolbachia-aedes-mosquito-suppression-strategy/project-wolbachia-singapore.
van den Hurk AF, Hall-Mendelin S, Pyke AT, et al. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 2012;6:e1892.
Article
PubMed
PubMed Central
Google Scholar
Dutra HLC, Rocha MN, Dias FBS, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe. 2016;19:771–4.
Article
CAS
Google Scholar
Hoffmann AA, Montgomery BL, Popovici J, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011;476:454–7.
Article
CAS
PubMed
Google Scholar
Anders KL, Indriani C, Ahmad RA, et al. The AWED trial (applying Wolbachia to eliminate dengue) to assess the efficacy of Wolbachia-infected mosquito deployments to reduce dengue incidence in Yogyakarta, Indonesia: study protocol for a cluster randomised controlled trial. Trials. 2018;19:302.
Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013;496:504–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanaway JD, Shepard DS, Undurraga EA, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis. 2016;3099:1–12.
Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: a systematic analysis. Lancet Infect Dis. 2016;16:935–41.
Article
PubMed
Google Scholar
Undurraga EA, Halasa YA, Shepard DS. Use of expansion factors to estimate the burden of dengue in Southeast Asia: a systematic analysis. PLoS Negl Trop Dis. 2013;7:e2056.
Article
PubMed
PubMed Central
Google Scholar
Halasa YA, Shepard DS, Zeng W. Economic cost of dengue in Puerto Rico. Am J Trop Med Hyg. 2012;86:745–52.
Article
PubMed
PubMed Central
Google Scholar
Nealon J, Taurel A-F, Capeding MR, et al. Symptomatic dengue disease in five southeast Asian countries: epidemiological evidence from a dengue vaccine trial. PLoS Negl Trop Dis. 2016;10:e0004918.
Article
PubMed
PubMed Central
Google Scholar
Toan NT, Rossi S, Prisco G, Nante N, Viviani S. Dengue epidemiology in selected endemic countries: factors influencing expansion factors as estimates of underreporting. Trop Med Int Health. 2015;20:840–63.
Article
Google Scholar
Wahyono TYM, Nealon J, Beucher S, et al. Indonesian dengue burden estimates: review of evidence by an expert panel. Epidemiol Infect. 2017;145:2324–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Messina JP, Brady OJ, Scott TW, et al. Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 2014;22:138–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brady OJ, Messina JP, Scott TW, Hay SI. Mapping the epidemiology of dengue. Oxford: CABI International; 2014.
Ong J, Liu X, Rajarethinam J, et al. Mapping dengue risk in Singapore using random forest. PLoS Negl Trop Dis. 2018;12:e0006587.
Article
PubMed
PubMed Central
Google Scholar
Salje H, Paul KK, Paul R, Rodriguez-Barraquer I, Rahman Z, Alam MS, Rahman M, Al-Amin HM, Heffelfinger J, Gurley E. Nationally-representative serostudy of dengue in Bangladesh allows generalizable disease burden estimates. Elife. 2019;8:e42869.
Ferguson NM, Kien DTH, Clapham H, et al. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Transl Med. 2015;7:279ra37.
Article
PubMed
PubMed Central
Google Scholar
Flasche S, Jit M, Rodríguez-Barraquer I, et al. The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): a model comparison study. PLoS Med. 2016;13:e1002181.
Article
PubMed
PubMed Central
Google Scholar
Hughes H, Britton NF. Modelling the use of Wolbachia to control dengue fever transmission. Bull Math Biol. 2013;75:796–818.
Article
PubMed
Google Scholar
Ndii MZ, Hickson RI, Allingham D, Mercer GN. Modelling the transmission dynamics of dengue in the presence of Wolbachia. Math Biosci. 2015;262:157–66.
Article
PubMed
Google Scholar
Mammen MP, Pimgate C, Koenraadt CJM, et al. Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med. 2008;5:e205.
Article
PubMed
PubMed Central
Google Scholar
Guzzetta G, Marques-Toledo CA, Rosà R, Teixeira M, Merler S. Quantifying the spatial spread of dengue in a non-endemic Brazilian metropolis via transmission chain reconstruction. Nat Commun. 2018;9:2837.
Stoddard ST, Forshey BM, Morrison AC, et al. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci U S A. 2013;110:994–9.
Article
Google Scholar
Indonesian Bureau of Statistics. Indonesia - National Socioeconomic Survey 2014 (Combined). https://microdata.bps.go.id/mikrodata/index.php/catalog/631. Accessed 22 June 2018.
SEARO. Comprehensive guidelines for prevention and control of dengue and dengue haemorrhagic fever, revised and expanded edition. New Delhi: World Health Organization, South East Asian Regional Office; 2011.
UNDP. World population prospects 2017. Geneva: United Nations Population Division; 2017.
Zeng W, Halasa Y, Durand L, Coudeville L, Shepard D. Impact of a dengue episode on quality of life or DALYs: systematic review. Am J Trop Med Hyg. 2018;99:1458–65.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. WHO Global Health Observatory data repository: Indonesia. 2018. http://apps.who.int/gho/data/?theme=main&vid=60750. Accessed 20 Apr 2018.
Prayitno A, Taurel A-F, Nealon J, et al. Dengue seroprevalence and force of primary infection in a representative population of urban dwelling Indonesian children. PLoS Negl Trop Dis. 2017;11:e0005621.
Sasmono RT, Taurel A-F, Prayitno A, et al. Dengue virus serotype distribution based on serological evidence in pediatric urban population in Indonesia. PLoS Negl Trop Dis. 2018;12:e0006616.
Article
PubMed
PubMed Central
Google Scholar
Messina JP, Brady OJ, Golding N, Kraemer MU, Wint GW, Ray SE, Pigott DM, Shearer FM, Johnson K, Earl L, Marczak LB. The current and future global distribution and population at risk of dengue. Nature microbiology. 2019. https://doi.org/10.1038/s41564-019-0476-8.
Article
CAS
PubMed
Google Scholar
IPCC. Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: The Intergovernmental Panel on Climate Change; 2014.
Linacre ET. A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric Meteorol. 1977;18:409–24.
Article
Google Scholar
Kraemer MUG, Sinka ME, Duda KA, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:e08347.
Brady OJ, Golding N, Pigott DM, et al. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit Vectors. 2014;7:338.
Article
Google Scholar
Kraemer MU, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, Yi D, Johnson K, Earl L, Marczak LB, Shirude S. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature microbiology. 2019;4(5):854.
Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008;77:802–13.
Article
CAS
PubMed
Google Scholar
WorldPop. Indonesia 100m population; 2018. https://doi.org/10.5258/SOTON/WP00114.
Limmathurotsakul D, Golding N, Dance DAB, et al. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol. 2016;1:15008.
Nguyet MN, Duong THK, Trung VT, et al. Host and viral features of human dengue cases shape the population of infected and infectious Aedes aegypti mosquitoes. Proc Natl Acad Sci U S A. 2013;110:9072–7.
Karyanti MR, Uiterwaal CSPM, Kusriastuti R, et al. The changing incidence of dengue haemorrhagic fever in Indonesia: a 45-year registry-based analysis. BMC Infect Dis. 2014;14:412.
Carrington LB, Tran BCN, Le NTH, et al. Field- and clinically derived estimates of Wolbachia-mediated blocking of dengue virus transmission potential in Aedes aegypti mosquitoes. Proc Natl Acad Sci USA. 2018;115:361–6.
Article
Google Scholar
L’Azou M, Moureau A, Sarti E, et al. Symptomatic dengue in children in 10 Asian and Latin American countries. N Engl J Med. 2016;374:1155–66.
Article
PubMed
Google Scholar
Brady OJ, Bangert M, Castillo GG, et al. A tool kit for national dengue burden estimation. Geneva: The World Health Organization; 2018.
World Health Organization. Dengue guidelines for diagnosis, treatment, prevention and control: new edition. 2009.
Google Scholar
Elsinga J, Lizarazo EF, Vincenti MF, et al. Health seeking behaviour and treatment intentions of dengue and fever: a household survey of children and adults in Venezuela. PLoS Negl Trop Dis. 2015;9:e0004237.
Article
PubMed
PubMed Central
Google Scholar
Fithian W, Elith J, Hastie T, Keith DA. Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol. 2015;6:424–38.
Article
PubMed
PubMed Central
Google Scholar
Cameron E, Battle KE, Bhatt S, et al. Defining the relationship between infection prevalence and clinical incidence of Plasmodium falciparum malaria. Nat Commun. 2015;6:8170.
Dorigatti I, McCormack C, Nedjati-Gilani G, Ferguson NM. Using Wolbachia for dengue control: insights from modelling. Trends Parasitol. 2018;34:102–13.
Article
PubMed
Google Scholar
Tantowijoyo W, Arguni E, Johnson P, et al. Spatial and temporal variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) numbers in the Yogyakarta area of Java, Indonesia, with implications for Wolbachia releases. J Med Entomol. 2016;53:188–98.
Article
Google Scholar
Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog. 2018;14:e1006815.
Article
PubMed
PubMed Central
Google Scholar