Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44–56.
Article
CAS
PubMed
Google Scholar
Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, et al. A guide to deep learning in healthcare. Nat Med. 2019;25:24–9.
Article
CAS
PubMed
Google Scholar
Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Aff. 2008;27:759–69. https://doi.org/10.1377/hlthaff.27.3.759.
Article
Google Scholar
Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. Ann Fam Med. 2014;12:573–6.
Article
PubMed
PubMed Central
Google Scholar
Hwang EJ, Park S, Jin K-N, Kim JI, Choi SY, Lee JH, et al. Development and validation of a deep learning-based automated detection algorithm for major thoracic diseases on chest radiographs. JAMA Netw Open. 2019;2:e191095.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. https://doi.org/10.1109/cvpr.2017.369.
Book
Google Scholar
Li Z, Wang C, Han M, Xue Y, Wei W, Li L-J, et al. Thoracic Disease Identification and Localization with Limited Supervision. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. p. 2018. https://doi.org/10.1109/cvpr.2018.00865.
Singh R, Kalra MK, Nitiwarangkul C, Patti JA, Homayounieh F, Padole A, et al. Deep learning in chest radiography: detection of findings and presence of change. PLoS One. 2018;13:e0204155. https://doi.org/10.1371/journal.pone.0204155.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nam JG, Park S, Hwang EJ, Lee JH, Jin K-N, Lim KY, et al. Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology. 2019;290:218–28. https://doi.org/10.1148/radiol.2018180237.
Article
PubMed
Google Scholar
Geras KJ, Wolfson S, Shen Y, Wu N, Gene Kim S, Kim E, et al. High-resolution breast cancer screening with multi-view deep convolutional neural networks. arXiv. 2017; https://arxiv.org/abs/1703.07047. Accessed 1 May 2019.
Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M, et al. Deep neural networks improve radiologists’ performance in breast cancer screening. arXiv. 2019; https://arxiv.org/abs/1903.08297. Accessed 1 May 2019.
Hua K-L, Hsu C-H, Hidayati SC, Cheng W-H, Chen Y-J. Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther. 2015;8:2015–22.
CAS
PubMed
PubMed Central
Google Scholar
Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: a preliminary study. Radiology. 2018;286:887–96. https://doi.org/10.1148/radiol.2017170706.
Article
PubMed
Google Scholar
Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392:2388–96.
Article
PubMed
Google Scholar
Shadmi R, Mazo V, Bregman-Amitai O, Elnekave E. Fully-convolutional deep-learning based system for coronary calcium score prediction from non-contrast chest CT. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018. https://doi.org/10.1109/isbi.2018.8363515.
Book
Google Scholar
Kamnitsas K, Ferrante E, Parisot S, Ledig C, Nori AV, Criminisi A, et al. DeepMedic for brain tumor segmentation. In: International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries; 2016. p. 38–49. https://doi.org/10.1007/978-3-319-55524-9_14.
Chapter
Google Scholar
Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using F-FDG PET of the brain. Radiology. 2019;290:456–64.
Article
PubMed
Google Scholar
Chang HY, Jung CK, Woo JI, Lee S, Cho J, Kim SW, et al. Artificial intelligence in pathology. J Pathol Transl Med. 2019;53:1–12.
Article
PubMed
Google Scholar
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29:1836–42.
Article
CAS
PubMed
Google Scholar
Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol. 2018;138:1529–38.
Article
CAS
PubMed
Google Scholar
Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, et al. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer. 2019;113:47–54.
Article
PubMed
Google Scholar
Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316:2402–10.
Article
PubMed
Google Scholar
De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24:1342–50.
Article
PubMed
CAS
Google Scholar
Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25:65–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019;394(10201):861–7. https://doi.org/10.1016/S0140-6736(19)31721-0.
Article
PubMed
Google Scholar
Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP, et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol. 2019;4(5):428–36. https://doi.org/10.1001/jamacardio.2019.0640.
Article
PubMed
PubMed Central
Google Scholar
Wang P, Xiao X, Glissen Brown JR, Berzin TM, Tu M, Xiong F, et al. Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nat Biomed Eng. 2018;2:741–8. https://doi.org/10.1038/s41551-018-0301-3.
Article
PubMed
Google Scholar
Xu J, Yang P, Xue S, Sharma B, Sanchez-Martin M, Wang F, et al. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet. 2019;138:109–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurovich Y, Hanani Y, Bar O, Nadav G, Fleischer N, Gelbman D, et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat Med. 2019;25:60–4.
Article
CAS
PubMed
Google Scholar
Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2:21. https://doi.org/10.1038/s41746-019-0096-y.
Article
PubMed
PubMed Central
Google Scholar
Liang H, Tsui BY, Ni H, Valentim CCS, Baxter SL, Liu G, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat Med. 2019;25:433–8.
Article
CAS
PubMed
Google Scholar
Escobar GJ, Turk BJ, Ragins A, Ha J, Hoberman B, LeVine SM, et al. Piloting electronic medical record-based early detection of inpatient deterioration in community hospitals. J Hosp Med. 2016;11(Suppl 1):S18–24.
Article
PubMed
Google Scholar
Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1:18. https://doi.org/10.1038/s41746-018-0029-1.
Article
PubMed
PubMed Central
Google Scholar
Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature. 2019;572:116–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Prasad N, Cheng L-F, Chivers C, Draugelis M, Engelhardt BE. A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. arXiv. 2017; https://arxiv.org/abs/1704.06300. Accessed 1 May 2019.
Raghu A, Komorowski M, Ahmed I, Celi L, Szolovits P, Ghassemi M. Deep reinforcement learning for sepsis treatment. arXiv. 2017; https://arxiv.org/abs/1711.09602. Accessed 1 May 2019.
Gottesman O, Johansson F, Meier J, Dent J, Lee D, Srinivasan S, et al. Evaluating reinforcement learning algorithms in observational health settings. arXiv. 2018; https://arxiv.org/abs/1805.12298. Accessed 1 May 2019.
Kannan A, Chen K, Jaunzeikare D, Rajkomar A. Semi-supervised learning for information extraction from dialogue. Interspeech. 2018;2018:2077–81. https://doi.org/10.21437/interspeech.2018-1318.
Article
Google Scholar
Chiu C-C, Tripathi A, Chou K, Co C, Jaitly N, Jaunzeikare D, et al. Speech recognition for medical conversations. arXiv. 2017; https://arxiv.org/abs/1711.07274. Accessed 1 May 2019.
Nelson A, Herron D, Rees G, Nachev P. Predicting scheduled hospital attendance with artificial intelligence. NPJ Digit Med. 2019;2:26. https://doi.org/10.1038/s41746-019-0103-3.
Article
PubMed
PubMed Central
Google Scholar
Rajkomar A, Kannan A, Chen K, Vardoulakis L, Chou K, Cui C, et al. Automatically charting symptoms from patient-physician conversations using machine learning. JAMA Intern Med. 2019;179(6):836–8. https://doi.org/10.1001/jamainternmed.2018.8558.
Article
PubMed
PubMed Central
Google Scholar
McGlynn EA, McDonald KM, Cassel CK. Measurement is essential for improving diagnosis and reducing diagnostic error: a report from the institute of medicine. JAMA. 2015;314:2501–2.
Article
CAS
PubMed
Google Scholar
Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, van de Vijver MJ, et al. Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci Transl Med. 2011;3:108ra113.
Article
PubMed
Google Scholar
Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158–64.
Article
PubMed
Google Scholar
Zarins CK, Taylor CA, Min JK. Computed fractional flow reserve (FFTCT) derived from coronary CT angiography. J Cardiovasc Transl Res. 2013;6:708–14. https://doi.org/10.1007/s12265-013-9498-4.
Article
PubMed
PubMed Central
Google Scholar
Mutlu U, Colijn JM, Ikram MA, Bonnemaijer PWM, Licher S, Wolters FJ, et al. Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study. JAMA Neurol. 2018;75:1256–63.
Article
PubMed
PubMed Central
Google Scholar
Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1:39. https://doi.org/10.1038/s41746-018-0040-6.
Article
PubMed
PubMed Central
Google Scholar
Kanagasingam Y, Xiao D, Vignarajan J, Preetham A, Tay-Kearney M-L, Mehrotra A. Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care. JAMA Netw Open. 2018;1:e182665. https://doi.org/10.1001/jamanetworkopen.2018.2665.
Article
PubMed
PubMed Central
Google Scholar
Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health. 2019;1:e35–44.
Article
PubMed
Google Scholar
Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, et al. Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch Pathol Lab Med. 2018;143(7):859–68. https://doi.org/10.5858/arpa.2018-0147-oa.
Article
PubMed
Google Scholar
Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, et al. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am J Surg Pathol. 2018;42:1636–46.
Article
PubMed
PubMed Central
Google Scholar
Lindsey R, Daluiski A, Chopra S, Lachapelle A, Mozer M, Sicular S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A. 2018;115:11591–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mori Y, Kudo S-E, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann Intern Med. 2018;169:357. https://doi.org/10.7326/m18-0249.
Article
PubMed
Google Scholar
Long E, Lin H, Liu Z, Wu X, Wang L, Jiang J, et al. An artificial intelligence platform for the multihospital collaborative management of congenital cataracts. Nat Biomed Eng. 2017;1:0024. https://doi.org/10.1038/s41551-016-0024.
Article
Google Scholar
Turakhia MP, Desai M, Hedlin H, Rajmane A, Talati N, Ferris T, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am Heart J. 2019;207:66–75.
Article
PubMed
Google Scholar
Lin H, Li R, Liu Z, Chen J, Yang Y, Chen H, et al. Diagnostic efficacy and therapeutic decision-making capacity of an artificial intelligence platform for childhood cataracts in eye clinics: a multicentre randomized controlled trial. EClinicalMedicine. 2019;9:52–9. https://doi.org/10.1016/j.eclinm.2019.03.001.
Article
PubMed
PubMed Central
Google Scholar
Wu L, Zhang J, Zhou W, An P, Shen L, Liu J, et al. Randomised controlled trial of WISENSE, a real-time quality improving system for monitoring blind spots during esophagogastroduodenoscopy. Gut. 2019. https://doi.org/10.1136/gutjnl-2018-317366.
Wang P, Berzin TM, Brown JRG, Bharadwaj S, Becq A, Xiao X, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study. Gut. 2019;68(10):1813–9. https://doi.org/10.1136/gutjnl-2018-317500.
Article
PubMed
Google Scholar
Titano JJ, Badgeley M, Schefflein J, Pain M, Su A, Cai M, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24:1337–41.
Article
CAS
PubMed
Google Scholar
Brocklehurst P, Field D, Greene K, Juszczak E, Keith R, Kenyon S, et al. Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial. Lancet. 2017;389:1719–29. https://doi.org/10.1016/s0140-6736(17)30568-8.
Article
Google Scholar
Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: an introduction to the new Medical Research Council guidance. In: Evidence-based Public Health: Effectiveness and Efficiency; 2009. p. 185–202. https://doi.org/10.1093/acprof:oso/9780199563623.003.012.
Chapter
Google Scholar
Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD). Circulation. 2015;131:211–9. https://doi.org/10.1161/circulationaha.114.014508.
Article
PubMed
PubMed Central
Google Scholar
Collins GS, Moons KGM. Reporting of artificial intelligence prediction models. Lancet. 2019;393:1577–9.
Article
PubMed
Google Scholar
Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. NPJ Digit Med. 2018;1:40. https://doi.org/10.1038/s41746-018-0048-y.
Article
PubMed
PubMed Central
Google Scholar
Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One. 2015;10:e0118432. https://doi.org/10.1371/journal.pone.0118432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah NH, Milstein A, Bagley PhD SC. Making machine learning models clinically useful. JAMA. 2019. https://doi.org/10.1001/jama.2019.10306.
Vickers AJ, Cronin AM, Elkin EB, Gonen M. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers. BMC Med Inform Decis Mak. 2008;8:53.
Article
PubMed
PubMed Central
Google Scholar
Marcus G. Deep learning: a critical appraisal. arXiv. 2018; https://arxiv.org/abs/1801.00631. Accessed 1 May 2019.
Nestor B, McDermott MBA, Chauhan G, Naumann T, Hughes MC, Goldenberg A, et al. Rethinking clinical prediction: why machine learning must consider year of care and feature aggregation. In: Machine Learning for Health (ML4H): NeurIPS; 2018. https://arxiv.org/abs/1811.12583. Accessed 1 May 2019.
Davis SE, Greevy RA, Fonnesbeck C, Lasko TA, Walsh CG, Matheny ME. A nonparametric updating method to correct clinical prediction model drift. J Am Med Inform Assoc. 2019. https://doi.org/10.1093/jamia/ocz127.
Ribeiro M, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations; 2016. https://doi.org/10.18653/v1/n16-3020.
Book
Google Scholar
Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, et al. Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. 2019. https://doi.org/10.1001/jamadermatol.2019.1735.
Badgeley MA, Zech JR, Oakden-Rayner L, Glicksberg BS, Liu M, Gale W, et al. Deep learning predicts hip fracture using confounding patient and healthcare variables. arXiv. 2018; https://arxiv.org/abs/1811.03695. Accessed 1 May 2019.
Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15:e1002683.
Article
PubMed
PubMed Central
Google Scholar
Debray TPA, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KGM. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68:279–89.
Article
PubMed
Google Scholar
Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol. 2019;20:405–10.
Article
PubMed
PubMed Central
Google Scholar
Crawford K, Calo R. There is a blind spot in AI research. Nature. 2016;538:311–3.
Article
CAS
PubMed
Google Scholar
Barocas S, Selbst AD. Big Data’s Disparate Impact. 104 California Law Review 671; 2016. https://doi.org/10.2139/ssrn.2477899.
Book
Google Scholar
Chen IY, Johansson FD, Sontag D. Why Is My Classifier Discriminatory? In: 32nd Conference on Neural Information Processing Systems (NeurIPS). 2018. http://papers.nips.cc/paper/7613-why-is-my-classifier-discriminatory.pdf.
Google Scholar
Haenssle HA, Fink C, Rosenberger A, Uhlmann L. Reply to “Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists” by H. A. Haenssle et al. Ann Oncol. 2019. https://doi.org/10.1093/annonc/mdz015.
Ward-Peterson M, Acuña JM, Alkhalifah MK, Nasiri AM, Al-Akeel ES, Alkhaldi TM, et al. Association between race/ethnicity and survival of melanoma patients in the United States over 3 decades. Medicine. 2016;95:e3315. https://doi.org/10.1097/md.0000000000003315.
Article
PubMed
PubMed Central
Google Scholar
Finlayson SG, Bowers JD, Ito J, Zittrain JL, Beam AL, Kohane IS. Adversarial attacks on medical machine learning. Science. 2019;363:1287–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandel JC, Kreda DA, Mandl KD, Kohane IS, Ramoni RB. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records. J Am Med Inform Assoc. 2016;23:899–908.
Article
PubMed
PubMed Central
Google Scholar
Hersh WR, Weiner MG, Embi PJ, Logan JR, Payne PRO, Bernstam EV, et al. Caveats for the use of operational electronic health record data in comparative effectiveness research. Med Care. 2013;51(8 Suppl 3):S30–7.
Article
PubMed
PubMed Central
Google Scholar
Food and Drug Administration. Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD): FDA; 2019. https://www.regulations.gov/document?D=FDA-2019-N-1185-0001. Accessed 1 May 2019.
Core MG, Lane HC, van Lent M, Gomboc D, Solomon S, Rosenberg M. Building Explainable Artificial Intelligence Systems. IAAI'06 Proceedings of the 18th conference on Innovative Applications of Artificial Intelligence. Volume 2; 2006. p. 1766–73.
Google Scholar
Holzinger A, Biemann C, Pattichis CS. What do we need to build explainable AI systems for the medical domain? arXiv. 2017; https://arxiv.org/abs/1712.09923. Accessed 1 May 2019.
Samek W, Wiegand T, Müller K-R. Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv. 2017; http://arxiv.org/abs/1708.08296. Accessed 1 May 2019.
Bologna G, Hayashi Y. Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J Art Intel Soft Comput Res. 2017;7(4):265–86. https://doi.org/10.1515/jaiscr-2017-0019.
Article
Google Scholar
Fox J. A short account of Knowledge Engineering. Knowl Eng Rev. 1984;1:4–14. https://doi.org/10.1017/s0269888900000424.
Article
Google Scholar
Lacave C, Díez FJ. A review of explanation methods for Bayesian networks. Knowl Eng Rev. 2002;17:107–27. https://doi.org/10.1017/s026988890200019x.
Article
Google Scholar
Doshi-Velez F, Kim B. Towards a rigorous science of interpretable machine learning. arXiv. 2017; http://arxiv.org/abs/1702.08608. Accessed 1 May 2019.
Lehman CD, Wellman RD, Buist DSM, Kerlikowske K, Tosteson ANA, Miglioretti DL, et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175:1828–37.
Article
PubMed
PubMed Central
Google Scholar
Phansalkar S, van der Sijs H, Tucker AD, Desai AA, Bell DS, Teich JM, et al. Drug-drug interactions that should be non-interruptive in order to reduce alert fatigue in electronic health records. J Am Med Inform Assoc. 2013;20:489–93.
Article
PubMed
Google Scholar
Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, et al. Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology. 2019;126:552–64.
Article
PubMed
Google Scholar
Wang D, Khosla A, Gargeya R, Irshad H, Beck AH. Deep Learning for Identifying Metastatic Breast Cancer. 2016. http://arxiv.org/abs/1606.05718. Accessed 28 Aug 2019.
Google Scholar
Google. People and AI Guidebook. https://pair.withgoogle.com/. Accessed 10 May 2019.