Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet. 2013;381:142–51.
Article
PubMed
PubMed Central
Google Scholar
Piel FB, Patil AP, Howes RE, Nyangiri OA, Gething PW, Williams TN, et al. Global distribution of the sickle cell gene and geographical confirmation of the malaria hypothesis. Nat Commun. 2010;1:104.
Article
CAS
PubMed
Google Scholar
Piel FB, Hay SI, Gupta S, Weatherall DJ, Williams TN. Global burden of sickle cell anaemia in children under five, 2010-2050: modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013;10(7):e1001484.
Kato GJ, Piel FB, Reid CD, Gaston MH, Ohene-Frempong K, Krishnamurti L, et al. Sickle cell disease. Nat Rev Dis Primer. 2018;4.
Simpson S. Sickle cell disease: a new era. Lancet Haematol. 2019;6(8):e393–4.
Article
PubMed
Google Scholar
Piel FB, Howes RE, Patil AP, Nyangiri OA, Gething PW, Bhatt S, et al. The distribution of haemoglobin C and its prevalence in newborns in Africa. Sci Rep. 2013;3(1):1671.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macharia AW, Mochama G, Uyoga S, et al. The clinical epidemiology of sickle cell anemia in Africa. Am J Hematol. 2018;93:363–70.
Article
CAS
PubMed
Google Scholar
Marks LJ, Munube D, Kasirye P, Mupere E, Jin Z, LaRussa P, et al. Stroke prevalence in children with sickle cell disease in sub-Saharan Africa: a systematic review and meta-analysis. Glob Pediatr Health. 2018;5:2333794X18774970.
PubMed
PubMed Central
Google Scholar
Yanni E, Grosse SD, Yang Q, Olney RS. Trends in pediatric sickle cell disease-related mortality in the United States, 1983-2002. J Pediatr. 2009;154(4):541–5.
Article
PubMed
Google Scholar
King L, Fraser R, Forbes M, Grindley M, Ali S, Reid M. Newborn sickle cell disease screening: the Jamaican experience (1995–2006). J Med Screen. 2016; [cited 2019 Dec 21]; Available from: https://journals.sagepub.com/doi/abs/10.1258/096914107782066185.
Moeti M. Regional Committee side event on sickle cell disease [Internet]. WHO | Regional Office for Africa. 2019. Available from: https://www.afro.who.int/regional-director/speeches-messages/regional-committee-side-event-sickle-cell-disease. Cited 21 Jan 2020.
NIH. NIH launches new collaboration to develop gene-based cures for sickle cell disease and HIV on global scale [Internet]. National Institutes of Health (NIH). 2019. Available from: https://www.nih.gov/news-events/news-releases/nih-launches-new-collaboration-develop-gene-based-cures-sickle-cell-disease-hiv-global-scale. Cited 16 Dec 2019.
Gluckman E, Cappelli B, Bernaudin F, Labopin M, Volt F, Carreras J, et al. Sickle cell disease: an international survey of results of HLA-identical sibling hematopoietic stem cell transplantation. Blood. 2017;129(11):1548–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hulbert ML, Shenoy S. Hematopoietic stem cell transplantation for sickle cell disease: progress and challenges. Pediatr Blood Cancer. 2018;65(9):e27263.
Article
PubMed
Google Scholar
Makani J, Ofori-Acquah SF, Nnodu O, Wonkam A, Ohene-Frempong K. Sickle cell disease: new opportunities and challenges in Africa. Sci World J. 2013;2013:16.
Article
Google Scholar
Piel FB, Steinberg MH, Rees DC. Sickle cell disease. N Engl J Med. 2017;376(16):1561–73.
Article
CAS
PubMed
Google Scholar
Ramakrishnan M, Moïsi JC, Klugman KP, Iglesias JMF, Grant LR, Mpoudi-Etame M, et al. Increased risk of invasive bacterial infections in African people with sickle-cell disease: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10(5):329–37.
Article
PubMed
Google Scholar
Brown BJ, Okereke JO, Lagunju IA, Orimadegun AE, Ohaeri JU, Akinyinka OO. Burden of health-care of carers of children with sickle cell disease in Nigeria. Health Soc Care Community. 2010;18(3):289–95.
CAS
PubMed
Google Scholar
Ware RE. Is sickle cell anemia a neglected tropical disease? PLoS Negl Trop Dis. 2013;7(5):1–4.
Article
Google Scholar
McGann PT, Hernandez AG, Ware RE. Sickle cell anemia in sub-Saharan Africa: advancing the clinical paradigm through partnerships and research. Blood. 2017;129:155–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kadima BT, Ehungu JLG, Ngiyulu RM, Ekulu PM, Aloni MN. High rate of sickle cell anaemia in Sub-Saharan Africa underlines the need to screen all children with severe anaemia for the disease. Acta Paediatr. 2015;104(12):1269–73.
Article
CAS
PubMed
Google Scholar
National Population Commission - NPC/Nigeria and ICF, 2019. Nigeria Demographic and Health Survey 2018. Abuja, Nigeria, and Rockville, Maryland, USA: NPC and ICF. http://dhsprogram.com/pubs/pdf/FR359/FR359.pdf. Accessed 17 Mar 2020.
Ndiaye M, Lengue F, Sagna SD, Sow AD, Fogany Y, Deme H, et al. Childhood arterial ischemic stroke in Senegal (West Africa). Arch Pédiatr. 2018;25(6):351–4.
Article
CAS
PubMed
Google Scholar
Kunz JB, Lobitz S, Grosse R, Oevermann L, Hakimeh D, Jarisch A, et al. Sickle cell disease in Germany: results from a national registry. Pediatr Blood Cancer. 2019;n/a(n/a):e28130.
Google Scholar
Hsu L, Nnodu OE, Brown BJ, Tluway F, King S, Dogara LG, et al. White paper: pathways to progress in newborn screening for sickle cell disease in sub-Saharan Africa. J Trop Dis Public Health. 2018;6(2) [cited 2019 Dec 22]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6261323/.
Nnodu OE. Interventions for the prevention and control of sickle cell disease at primary health care centres in Gwagwalada Area Council of the Federal Capital Territory, Nigeria. Cureus. 2014;6(8):e194.
Google Scholar
Williams TN. An accurate and affordable test for the rapid diagnosis of sickle cell disease could revolutionize the outlook for affected children born in resource-limited settings. BMC Med. 2015;13(1):1–3.
Article
CAS
Google Scholar
Nnodu O, Isa H, Nwegbu M, Ohiaeri C, Adegoke S, Chianumba R, et al. HemoTypeSC, a low-cost point-of-care testing device for sickle cell disease: promises and challenges. Blood Cells Mol Dis. 2019;78:22–28.
Nankanja R, Kadhumbula S, Tagoola A, Geisberg M, Serrao E, Balyegyusa S. HemoTypeSC demonstrates >99% field accuracy in a sickle cell disease screening initiative in children of southeastern Uganda. Am J Hematol. 2019;94(6):E164–E166.
Segbena AY, Guindo A, Buono R, Kueviakoe I, Diallo DA, Guernec G, et al. Diagnostic accuracy in field conditions of the sickle SCAN® rapid test for sickle cell disease among children and adults in two west African settings: the DREPATEST study. BMC Hematol. 2018;18(1):1–10.
Article
CAS
Google Scholar
WHO-Unicef. WHO UNICEF coverage estimates WHO World Health Organization: Immunization, Vaccines And Biologicals. Vaccine preventable diseases Vaccines monitoring system 2019 Global Summary Reference Time Series: DTP3 [Internet]. [cited 2019 Dec 16]. Available from: https://apps.who.int/immunization_monitoring/globalsummary/timeseries/tswucoveragedtp3.html.
United Nations. World Fertility Patterns 2015 [Internet]. 2016 [cited 2020 Jan 14]. Available from: https://www.un.org/en/development/desa/population/publications/pdf/fertility/world-fertility-patterns-2015.pdf.
Ataguba JE-O. A reassessment of global antenatal care coverage for improving maternal health using sub-Saharan Africa as a case study. PLoS One. 2018;13(10):e0204822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boafor TK, Olayemi E, Galadanci N, Hayfron-Benjamin C, Dei-Adomakoh Y, Segbefia C, et al. Pregnancy outcomes in women with sickle-cell disease in low and high income countries: a systematic review and meta-analysis. BJOG Int J Obstet Gynaecol. 2016;123(5):691–8.
Article
CAS
Google Scholar
Petrea Cober M, Phelps SJ. Penicillin prophylaxis in children with sickle cell disease. J Pediatr Pharmacol Ther. 2010;15:152–9.
Google Scholar
Médecins Sans Frontières. Sickle cell disease - clinical guidelines [Internet]. 2019 [cited 2020 Jan 21]. Available from: https://medicalguidelines.msf.org/viewport/CG/english/sickle-cell-disease-18482466.html.
Google Scholar
Schäfermann S, Neci R, Ndze EN, Nyaah F, Pondo VB, Heide L. Availability, prices and affordability of selected antibiotics and medicines against non-communicable diseases in western Cameroon and northeast DR Congo. PLoS One. 2020;15(1):e0227515.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO. World Health Organization Model List of Essential Medicines [Internet]. 2019 [cited 2020 Jan 9]. Available from: https://apps.who.int/iris/bitstream/handle/10665/325771/WHO-MVP-EMP-IAU-2019.06-eng.pdf?ua=1.
Google Scholar
Management Sciences for Health. International Medical Products Price Guide [Internet]. [cited 2020 Jan 9]. Available from: http://mshpriceguide.org/en/home/.
Frimpong A, Thiam LG, Arko-Boham B, Owusu EDA, Adjei GO. Safety and effectiveness of antimalarial therapy in sickle cell disease: a systematic review and network meta-analysis. BMC Infect Dis. 2018;18(1):650.
Article
CAS
PubMed
PubMed Central
Google Scholar
NIH. NIH consensus development conference: hydroxyurea treatment for sickle cell disease - panel statement [Internet]. 2008 [cited 2020 Jan 9]. Available from: https://consensus.nih.gov/2008/sicklecellstatement.htm.
Google Scholar
Lobo CL d C, Pinto JFC, Nascimento EM, Moura PG, Cardoso GP, Hankins JS. The effect of hydroxcarbamide therapy on survival of children with sickle cell disease. Br J Haematol. 2013;161(6):852–60.
Article
CAS
PubMed
Google Scholar
Galadanci NA, Abdullahi SU, Vance LD, Tabari AM, Ali S, Belonwu R, et al. Feasibility trial for primary stroke prevention in children with sickle cell anemia in Nigeria (SPIN trial). Am J Hematol. 2017;92(8):780–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opoka RO, Ndugwa CM, Latham TS, Lane A, Hume HA, Kasirye P, et al. Novel use Of Hydroxyurea in an African Region with Malaria (NOHARM): a trial for children with sickle cell anemia. Blood. 2017;130(24):2585–93.
Article
CAS
PubMed
Google Scholar
Tshilolo L, Tomlinson G, Williams TN, Santos B, Olupot-Olupot P, Lane A, et al. Hydroxyurea for children with sickle cell anemia in sub-Saharan Africa. N Engl J Med. 2019;380:121–31.
Article
CAS
PubMed
Google Scholar
Chambers TM, Kahan S, Camanda JF, Scheurer M, Airewele GE. Intermittent or uneven daily administration of low-dose hydroxyurea is effective in treating children with sickle cell anemia in Angola. Pediatr Blood Cancer. 2018;65(12):e27365.
Article
CAS
PubMed
Google Scholar
Mvalo T, Topazian HM, Kamthunzi P, Chen JS, Kambalame I, Mafunga P, et al. Real-world experience using hydroxyurea in children with sickle cell disease in Lilongwe, Malawi. Pediatr Blood Cancer. 2019;66(11):e27954.
Article
PubMed
PubMed Central
Google Scholar
Lagunju I, Brown BJ, Oyinlade AO, Asinobi A, Ibeh J, Esione A, et al. Annual stroke incidence in Nigerian children with sickle cell disease and elevated TCD velocities treated with hydroxyurea. Pediatr Blood Cancer. 2019;66(3):e27252.
Article
CAS
PubMed
Google Scholar
Press Release – Government of Ghana partner with Novartis | Ministry of Health [Internet]. [cited 2019 Dec 21]. Available from: http://www.moh.gov.gh/press-release-government-of-ghana-partner-with-novartis/.
Umeakunne K, Hibbert JM. Nutrition in sickle cell disease: recent insights. Nutr Diet Suppl. 2019;11:9–17.
Article
CAS
Google Scholar
Rahimy MC, Gangbo A, Ahouignan G, Adjou R, Deguenon C, Goussanou S, et al. Effect of a comprehensive clinical care program on disease course in severely ill children with sickle cell anemia in a sub-Saharan African setting. Blood. 2003;102(3):834–8.
Article
CAS
PubMed
Google Scholar
Makani J, Cox SE, Soka D, Komba AN, Oruo J, Mwamtemi H, et al. Mortality in sickle cell anemia in Africa: a prospective cohort study in Tanzania. PLoS One. 2011;6:e14699.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uyoga S, Macharia AW, Mochamah G, Ndila CM, Nyutu G, Makale J, et al. The epidemiology of sickle cell disease in children recruited in infancy in Kilifi, Kenya: a prospective cohort study. Lancet Glob Health. 2019;7(10):e1458–66.
Article
PubMed
PubMed Central
Google Scholar
Kuznik A, Habib AG, Munube D, Lamorde M. Newborn screening and prophylactic interventions for sickle cell disease in 47 countries in sub-Saharan Africa: a cost-effectiveness analysis. BMC Health Serv Res. 2016;16:304.
Article
PubMed
PubMed Central
Google Scholar
Weatherall DJ. The importance of micromapping the gene frequencies for the common inherited disorders of haemoglobin. Br J Haematol. 2010;149(5):635–7.
Article
PubMed
Google Scholar
Ndeezi G, Kiyaga C, Hernandez AG, Munube D, Howard TA, Ssewanyana I, et al. Burden of sickle cell trait and disease in the Uganda Sickle Surveillance Study (US3): a cross-sectional study. Lancet Glob Health. 2016;4(3):195–200.
Article
Google Scholar
Kiyaga C, Hernandez AG, Ssewanyana I, Schaefer BA, McElhinney KE, Ndeezi G, et al. Sickle cell screening in Uganda: high burden, human immunodeficiency virus comorbidity, and genetic modifiers. Pediatr Blood Cancer. 2019;66(8):e27807.
Article
CAS
PubMed
Google Scholar
Smart LR, Ambrose EE, Charles M, Hernandez AG, Latham TS, Hokororo A, et al. Genetic analysis in the Tanzania Sickle Surveillance Study (TS3): modifiers of sickle cell disease and identification of hemoglobin variants. Blood. 2019;134(Supplement 1):988.
Nnodu OE. Interventions for the prevention and control of sickle cell disease at primary health care centres in Gwagwalada Area Council of the Federal Capital Territory, Nigeria. Cureus. 2014. Available from: http://www.cureus.com/articles/2554-interventions-for-the-prevention-and-control-of-sickle-cell-disease-at-primary-health-care-centres-in-gwagwalada-area-council-of-the-federal-capital-territory-nigeria. Cited 22 Dec 2019.
Marsh VM, Kamuya DM, Mlamba AM, Williams TN, Molyneux SS. Experiences with community engagement and informed consent in a genetic cohort study of severe childhood diseases in Kenya. BMC Med Ethics. 2010;11(1):13.
Article
PubMed
PubMed Central
Google Scholar
Marsh VM, Kombe F, Fitzpatrick R, Williams TN, Parker M, Molyneux S. Consulting communities on feedback of genetic findings in international health research: sharing sickle cell disease and carrier information in coastal Kenya. BMC Med Ethics. 2013;14(1):41.
Nzewi E. Malevolent Ogbanje: recurrent reincarnation or sickle cell disease? Soc Sci Med. 2001;52(9):1403–16.
Article
CAS
PubMed
Google Scholar
Dennis-Antwi JA, Culley L, Hiles DR, Dyson SM. ‘I can die today, I can die tomorrow’: lay perceptions of sickle cell disease in Kumasi, Ghana at a point of transition. Ethn Health. 2011;16(4–5):465–81.
Article
PubMed
PubMed Central
Google Scholar
Ofakunrin A, Adekola K, Okpe E, Oguche S, Afolaranmi T, Kanhu P, et al. Level of utilization and provider-related barriers to hydroxyurea use in the treatment of sickle cell disease in Jos, Nigeria. Blood. 2019;134:1029.
Article
Google Scholar
Grosse SD, Odame I, Atrash HK, Amendah DD, Piel FB, Williams TN. Sickle cell disease in Africa: a neglected cause of early childhood mortality. Am J Prev Med. 2011;41(6. Suppl 4):398–405.
Article
Google Scholar
SickleInAfrica Consortium | https://www.sickleinafrica.org [Internet]. [cited 2020 Jan 7]. Available from: https://www.sickleinafrica.org/.
Munung NS, Nembaware V, de Vries J, Bukini D, Tluway F, Treadwell M, et al. Establishing a multi-country sickle cell disease registry in Africa: ethical considerations. Front Genet. 2019;10:943.
Article
PubMed
PubMed Central
Google Scholar
Wonkam A, Makani J. Sickle cell disease in Africa: an urgent need for longitudinal cohort studies. Lancet Glob Health. 2019;7(10):e1310–1.
Article
PubMed
PubMed Central
Google Scholar
Adegoke SA, Abioye-Kuteyi EA, Orji EO. The rate and cost of hospitalisation in children with sickle cell anaemia and its implications in a developing economy. Afr Health Sci. 2014;14(2):475–80.
Article
PubMed
PubMed Central
Google Scholar
Wonkam A, Bitoungui VJN, Vorster AA, Ramesar R, Cooper RS, Tayo B, et al. Association of Variants at BCL11A and HBS1L-MYB with hemoglobin F and hospitalization rates among sickle cell patients in Cameroon. PLoS One. 2014;9(3):e92506.
Article
CAS
PubMed
PubMed Central
Google Scholar