Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. 2020;395(10225):689–97. https://doi.org/10.1016/S0140-6736(20)30260-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pan A, Liu L, Wang C, Guo H, Hao X, Wang Q, et al. Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan. China. JAMA. 2020;323(19):1915–23. https://doi.org/10.1001/jama.2020.6130.
Article
CAS
PubMed
Google Scholar
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–207. https://doi.org/10.1056/NEJMoa2001316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368(6489):395–400. https://doi.org/10.1126/science.aba9757.
Article
CAS
PubMed
PubMed Central
Google Scholar
World Health Organization. WHO coronavirus (COVID-19) dashboard. 2021. https://covid19.who.int/. Accessed 12 November 2021.
Google Scholar
Washington NL, Gangavarapu K, Zeller M, Bolze A, Cirulli ET, Schiabor Barrett KM, et al. Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell. 2021;184(10):2587–94.e2587. https://doi.org/10.1016/j.cell.2021.03.052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaymard A, Bosetti P, Feri A, Destras G, Enouf V, Andronico A, et al. Early assessment of diffusion and possible expansion of SARS-CoV-2 Lineage 20I/501Y.V1 (B.1.1.7, variant of concern 202012/01) in France, January to March 2021. Euro Surveill. 2021;26(9):2100133. https://doi.org/10.2807/1560-7917.ES.2021.26.9.2100133.
Article
CAS
PubMed Central
Google Scholar
Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021;372(6538):eabg3055. https://doi.org/10.1126/science.abg3055.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leung K, Shum MH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021;26(1). https://doi.org/10.2807/1560-7917.ES.2020.26.1.2002106.
Zhao S, Lou J, Cao L, Zheng H, Chong MKC, Chen Z, et al. Quantifying the transmission advantage associated with N501Y substitution of SARS-CoV-2 in the UK: an early data-driven analysis. J Travel Med. 2021;28(2). https://doi.org/10.1093/jtm/taab011.
Graham MS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky T, et al. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health. 2021;6(5):e335–45. https://doi.org/10.1016/S2468-2667(21)00055-4.
Article
PubMed
PubMed Central
Google Scholar
Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, et al. Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 2021;593(7858):266–9. https://doi.org/10.1038/s41586-021-03470-x.
Article
CAS
PubMed
Google Scholar
Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS, et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell. 2021;184(9):2384–93.e2312. https://doi.org/10.1016/j.cell.2021.03.036.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med. 2021;27(4):622–5. https://doi.org/10.1038/s41591-021-01285-x.
Article
CAS
PubMed
Google Scholar
Faria NR, Mellan TA, Whittaker C, Claro IM, DdS C, Mishra S, et al. Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 2021:eabh2644. https://doi.org/10.1126/science.abh2644.
Campbell F, Archer B, Laurenson-Schafer H, Jinnai Y, Konings F, Batra N, et al. Increased transmissibility and global spread of SARS-CoV-2 variants of concern as at June 2021. Euro Surveill. 2021;26(24). https://doi.org/10.2807/1560-7917.Es.2021.26.24.2100509.
Challen R, Dyson L, Overton CE, Guzman-Rincon LM, Hill EM, Stage HB, et al. Early epidemiological signatures of novel SARS-CoV-2 variants: establishment of B.1.617.2 in England. medRxiv. 2021;2021(21258365):2006–5. https://doi.org/10.1101/2021.06.05.21258365.
Article
CAS
Google Scholar
Dagpunar J. Interim estimates of increased transmissibility, growth rate, and reproduction number of the Covid-19 B.1.617.2 variant of concern in the United Kingdom. medRxiv. 2021;2021(21258293):2006–3. https://doi.org/10.1101/2021.06.03.21258293.
Article
CAS
Google Scholar
Outbreak.info. Variant of Concern Reports. https://outbreak.info/situation-reports. Accessed August 10 2021.
Chinese Center for Disease Control and Prevention. Distribution of novel coronavirus disease 2019. http://2019ncov.chinacdc.cn/2019-nCoV/. Accessed November 12 2021.
Google Scholar
Zhang M, Xiao J, Deng A, Zhang Y, Zhuang Y, Hu T, et al. Transmission dynamics of an outbreak of the COVID-19 delta variant B.1.617.2 – Guangdong Province, China, May – June 2021. China CDC Weekly. 2021;3(27):584–6. https://doi.org/10.46234/ccdcw2021.148.
Article
PubMed
PubMed Central
Google Scholar
Wang YP, Chen RC, Hu FY, Lan Y, Yang ZW, Zhan C, et al. Transmission, viral kinetics and clinical characteristics of the emergent SARS-CoV-2 Delta VOC in Guangzhou, China. Eclinicalmedicine. 2021;40. https://doi.org/10.1016/j.eclinm.2021.101129.
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 2021. https://doi.org/10.1056/NEJMoa2108891.
National Health Commision of the People’s Republic of China. Update on the doses of COVID-19 vaccine administration. http://www.nhc.gov.cn/xcs/yqjzqk/list_gzbd.shtml. Accessed November 12 2021.
Google Scholar
Britton T, Ball F, Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science. 2020;369(6505):846–9. https://doi.org/10.1126/science.abc6810.
Article
CAS
PubMed
PubMed Central
Google Scholar
May RM, Anderson RM. Spatial heterogeneity and the design of immunization programs. Math Biosci. 1984;72(1):83–111. https://doi.org/10.1016/0025-5564(84)90063-4.
Article
Google Scholar
Zhang J, Klepac P, Read JM, Rosello A, Wang X, Lai S, et al. Patterns of human social contact and contact with animals in Shanghai, China. Sci Rep. 2019;9(1):15141. https://doi.org/10.1038/s41598-019-51609-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu S, Wang W, Wang Y, Litvinova M, Luo K, Ren L, et al. Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China. Nat Commun. 2021;12(1):1533. https://doi.org/10.1038/s41467-021-21710-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xin H, Li Y, Wu P, Li Z, Lau EHY, Qin Y, et al. Estimating the latent period of coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2021. https://doi.org/10.1093/cid/ciab746.
Zhao S, Tang B, Musa SS, Ma S, Zhang J, Zeng M, et al. Estimating the generation interval and inferring the latent period of COVID-19 from the contact tracing data. Epidemics. 2021;36:100482. https://doi.org/10.1016/j.epidem.2021.100482.
Article
PubMed
PubMed Central
Google Scholar
Sun K, Wang W, Gao L, Wang Y, Luo K, Ren L, et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science. 2021;371(6526). https://doi.org/10.1126/science.abe2424.
Pang XH, Ren LL, Wu SS, Ma WT, Yang J, Di L, et al. Cold-chain food contamination as the possible origin of COVID-19 resurgence in Beijing. Natl Sci Rev. 2020;7(12):1861–4. https://doi.org/10.1093/nsr/nwaa264.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Chen Z, Azman AS, Deng X, Sun R, Zhao Z, et al. Serological evidence of human infection with SARS-CoV-2: a systematic review and meta-analysis. Lancet Glob Health. 2021;9(5):e598–609. https://doi.org/10.1016/S2214-109X(21)00026-7.
Article
PubMed
PubMed Central
Google Scholar
National Bureau of Statistics. China Population & Employment Statistics Yearbook 2019. https://navi.cnki.net/knavi/yearbooks/YZGRL/detail. Accessed March 8 2021.
Google Scholar
United Nations. World Population Prospects 2019. https://population.un.org/wpp/Download/Standard/Population/. Accessed March 8 2021.
Google Scholar
Wang HH, Wang JJ, Wong SY, Wong MC, Li FJ, Wang PX, et al. Epidemiology of multimorbidity in China and implications for the healthcare system: cross-sectional survey among 162,464 community household residents in southern China. BMC Med. 2014;12(1):188. https://doi.org/10.1186/s12916-014-0188-0.
Article
PubMed
PubMed Central
Google Scholar
World Health Organization. WHO SAGE values framework for the allocation and prioritization of COVID-19 vaccination. https://www.who.int/publications/i/item/who-sage-values-framework-for-the-allocation-and-prioritization-of-covid-19-vaccination. Accessed March 8 2021.
Google Scholar
World Health Organization. Interim recommendations for use of the Pfizer–BioNTech COVID-19 vaccine, BNT162b2, under Emergency Use Listing. https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-BNT162b2-2021.1. Accessed March 8 2021.
Google Scholar
World Health Organization. Pfizer BioNTech COVID-19 vaccine: What you need to know. https://www.who.int/news-room/feature-stories/detail/who-can-take-the-pfizer-biontech-covid-19%2D%2Dvaccine. Accessed March 8 2021.
World Health Organization. Interim recommendations for use of the ChAdOx1-S [recombinant] vaccine against COVID-19 (AstraZeneca COVID-19 vaccine AZD1222, SII Covishield, SK Bioscience). https://www.who.int/publications/i/item/WHO-2019-nCoV-vaccines-SAGE_recommendation-AZD1222-2021.1. Accessed March 8 2021.
Google Scholar
Chen X, Chen Z, Azman AS, Sun R, Lu W, Zheng N, et al. Neutralizing antibodies against SARS-CoV-2 variants induced by natural infection or vaccination: a systematic review and pooled meta-analysis. Clin Infect Dis. 2021. https://doi.org/10.1093/cid/ciab646.
Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA. 2021;326(1):35–45. https://doi.org/10.1001/jama.2021.8565.
Article
CAS
PubMed
Google Scholar
Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–11. https://doi.org/10.1038/s41591-021-01377-8.
Article
CAS
PubMed
Google Scholar
Palacios R, Batista AP, Albuquerque CSN, Patiño EG, JdP S, MTRP C, et al. Efficacy and safety of a COVID-19 inactivated vaccine in healthcare professionals in Brazil: The PROFISCOV Study. SSRN. 2021. https://doi.org/10.2139/ssrn.3822780.
Li XN, Huang Y, Wang W, Jing QL, Zhang CH, Qin PZ, et al. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: a test-negative case-control real-world study. Emerg Microbes Infect. 2021;10(1):1751–9. https://doi.org/10.1080/22221751.2021.1969291.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma K, Yi Y, Li Y, Sun L, Deng A, Hu T, et al. Effectiveness of inactivated COVID-19 vaccines against COVID-19 pneumonia and severe illness caused by the B.1.617.2 (Delta) variant: evidence from an outbreak in Guangdong, China. SSRN. 2021. https://doi.org/10.2139/ssrn.3895639.
Hu Z, Tao B, Li Z, Song Y, Yi C, Li J, et al. Effectiveness of inactive COVID-19 vaccines against severe illness in B.1.617.2 (Delta) variant-infected patients in Jiangsu, China. medRxiv. 2021;2021(21263010):2009–2. https://doi.org/10.1101/2021.09.02.21263010.
Article
CAS
Google Scholar
Sheikh A, McMenamin J, Taylor B, Robertson C. SARS-CoV-2 Delta VOC in Scotland: demographics, risk of hospital admission, and vaccine effectiveness. Lancet. 2021;397(10293):2461–2. https://doi.org/10.1016/S0140-6736(21)01358-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halloran ME, Longini IM, Struchiner CJ. Modes of action and time-varying VES. In: Design and Analysis of Vaccine Studies. New York, NY: Springer New York; 2010. p. 131–51.
Google Scholar
Yang J, Chen X, Deng X, Chen Z, Gong H, Yan H, et al. Disease burden and clinical severity of the first pandemic wave of COVID-19 in Wuhan, China. Nat Commun. 2020;11(1):5411. https://doi.org/10.1038/s41467-020-19238-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poletti P, Tirani M, Cereda D, Trentini F, Guzzetta G, Sabatino G, et al. Association of age with likelihood of developing symptoms and critical disease among close contacts exposed to patients with confirmed SARS-CoV-2 infection in Italy. JAMA Netw Open. 2021;4(3):e211085. https://doi.org/10.1001/jamanetworkopen.2021.1085.
Article
PubMed
PubMed Central
Google Scholar
Fisman DN, Tuite AR. Progressive increase in virulence of novel SARS-CoV-2 variants in Ontario, Canada. medRxiv. 2021;2021(21260050):2007–5. https://doi.org/10.1101/2021.07.05.21260050.
Article
CAS
Google Scholar
Diekmann O, Heesterbeek JA, Metz JA. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J Math Biol. 1990;28(4):365–82. https://doi.org/10.1007/BF00178324.
Article
CAS
PubMed
Google Scholar
Yang J, Marziano V, Deng X, Guzzetta G, Zhang J, Trentini F, et al. Despite vaccination, China needs non-pharmaceutical interventions to prevent widespread outbreaks of COVID-19 in 2021. Nat Hum Behav. 2021;5(8):1009–20. https://doi.org/10.1038/s41562-021-01155-z.
Article
PubMed
PubMed Central
Google Scholar
Mistry D, Litvinova M, Pastore YPA, Chinazzi M, Fumanelli L, Gomes MFC, et al. Inferring high-resolution human mixing patterns for disease modeling. Nat Commun. 2021;12(1):323. https://doi.org/10.1038/s41467-020-20544-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J, Jing R, Lai X, Zhang H, Lyu Y, Knoll MD, et al. Acceptance of COVID-19 Vaccination during the COVID-19 pandemic in China. Vaccines (Basel). 2020;8(3). https://doi.org/10.3390/vaccines8030482.
Chen M, Li Y, Chen J, Wen Z, Feng F, Zou H, et al. An online survey of the attitude and willingness of Chinese adults to receive COVID-19 vaccination. Hum Vaccin Immunother. 2021;17(7):1–10. https://doi.org/10.1080/21645515.2020.1853449.
Article
CAS
Google Scholar
Wang C, Han B, Zhao T, Liu H, Liu B, Chen L, et al. Vaccination willingness, vaccine hesitancy, and estimated coverage at the first round of COVID-19 vaccination in China: a national cross-sectional study. Vaccine. 2021;39(21):2833–42. https://doi.org/10.1016/j.vaccine.2021.04.020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gan L, Chen Y, Hu P, Wu D, Zhu Y, Tan J, et al. Willingness to receive SARS-CoV-2 vaccination and associated factors among Chinese adults: a cross sectional survey. Int J Environ Res Public Health. 2021;18(4). https://doi.org/10.3390/ijerph18041993.
Lazarus JV, Ratzan SC, Palayew A, Gostin LO, Larson HJ, Rabin K, et al. A global survey of potential acceptance of a COVID-19 vaccine. Nat Med. 2021;27(2):225–8. https://doi.org/10.1038/s41591-020-1124-9.
Article
CAS
PubMed
Google Scholar
Hodgson D, Flasche S, Jit M, Kucharski AJ, Group CC-W. Centre for Mathematical Modelling of Infectious Disease C-WG. The potential for vaccination-induced herd immunity against the SARS-CoV-2 B.1.1.7 variant. Euro Surveill. 2021;26(20). https://doi.org/10.2807/1560-7917.ES.2021.26.20.2100428.
Kwok KO, Lai F, Wei WI, Wong SYS, Tang JWT. Herd immunity - estimating the level required to halt the COVID-19 epidemics in affected countries. J Inf. 2020;80(6):e32–3. https://doi.org/10.1016/j.jinf.2020.03.027.
Article
CAS
Google Scholar
Omer SB, Yildirim I, Forman HP. Herd immunity and implications for SARS-CoV-2 control. JAMA. 2020;324(20):2095–6. https://doi.org/10.1001/jama.2020.20892.
Article
CAS
PubMed
Google Scholar
Centers for Disease Control and Prevention. Nationwide Commercial Laboratory Seroprevalence Survey. https://covid.cdc.gov/covid-data-tracker/#national-lab. Accessed August 8 2021.
Google Scholar
Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. 2021;21(2):181–92. https://doi.org/10.1016/S1473-3099(20)30843-4.
Article
CAS
PubMed
Google Scholar
Wang Z, Muecksch F, Schaefer-Babajew D, Finkin S, Viant C, Gaebler C, et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature. 2021;595(7867):426–31. https://doi.org/10.1038/s41586-021-03696-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavine JS, Bjornstad ON, Antia R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science. 2021;371(6530):741. https://doi.org/10.1126/science.abe6522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saad-Roy CM, Wagner CE, Baker RE, Morris SE, Farrar J, Graham AL, et al. Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science. 2020;370(6518):811–8. https://doi.org/10.1126/science.abd7343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barda N, Dagan N, Cohen C, Hernan MA, Lipsitch M, Kohane IS, et al. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet. 2021;398(10316):2093–100. https://doi.org/10.1016/S0140-6736(21)02249-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saciuk Y, Kertes J, Shamir Stein N, Ekka ZA. Effectiveness of a third dose of BNT162b2 mRNA vaccine. J Infect Dis. 2021;225(1):30–3. https://doi.org/10.1093/infdis/jiab556.
Article
Google Scholar
Rafael Araos AJ, vCovid-Ministry of Health. COVID-19 vaccine effectiveness assessment in Chile. https://cdn.who.int/media/docs/default-source/blue-print/chile_rafael-araos_who-vr-call_25oct2021.pdf?sfvrsn=7a7ca72a_7. Accessed October 10 2021.