Skip to main content
  • Research article
  • Open access
  • Published:

Cost-effectiveness of the screen-and-treat strategies using HPV test linked to thermal ablation for cervical cancer prevention in China: a modeling study

Abstract

Background

Self-sampling HPV test and thermal ablation are effective tools to increase screening coverage and treatment compliance for accelerating cervical cancer elimination. We assessed the cost-effectiveness of their combined strategies to inform accessible, affordable, and acceptable cervical cancer prevention strategies.

Methods

We developed a hybrid model to evaluate costs, health outcomes, and incremental cost-effectiveness ratios (ICER) of six screen-and-treat strategies combining HPV testing (self-sampling or physician-sampling), triage modalities (HPV genotyping, colposcopy or none) and thermal ablation, from a societal perspective. A designated initial cohort of 100,000 females born in 2015 was considered. Strategies with an ICER less than the Chinese gross domestic product (GDP) per capita ($10,350) were considered highly cost-effective.

Results

Compared with current strategies in China (physician-HPV with genotype or cytology triage), all screen-and-treat strategies are cost-effective and self-HPV without triage is optimal with the most incremental quality-adjusted life-years (QALYs) gained (220 to 440) in rural and urban China. Each screen-and-treat strategy based on self-collected samples is cost-saving compared with current strategies (−$818,430 to −$3540) whereas more costs are incurred using physician-collected samples compared with current physician-HPV with genotype triage (+$20,840 to +$182,840). For screen-and-treat strategies without triage, more costs (+$9404 to +$380,217) would be invested in the screening and treatment of precancerous lesions rather than the cancer treatment compared with the current screening strategies. Notably, however, more than 81.6% of HPV-positive women would be overtreated. If triaged with HPV 7 types or HPV16/18 genotypes, 79.1% or 67.2% (respectively) of HPV-positive women would be overtreated with fewer cancer cases avoided (19 cases or 69 cases).

Conclusions

Screen-and-treat strategy using self-sampling HPV test linked to thermal ablation could be the most cost-effective for cervical cancer prevention in China. Additional triage with quality-assured performance could reduce overtreatment and remains highly cost-effective compared with current strategies.

Peer Review reports

Background

The global action towards the elimination of cervical cancer can be considered as a historic milestone in our fight against cancer. In 2020, World Health Organization (WHO) launched the global strategy to accelerate cervical cancer elimination with ambitious intermediate targets on screening and treatment by 2030, i.e., achieving 70% screening coverage with a high-performance test and 90% of women with a positive screening test or a cervical lesion managed appropriately [1]. Several modeling studies have demonstrated the indispensable role of scaling-up screening and treatment in achieving the target of cervical cancer elimination, since vaccination against human papillomaviruses (HPV) alone will not be adequate to achieve the desired milestones [2,3,4].

A huge gap exists between the current status of cervical screening and 2030 targets in the developing countries. The wide variation in the prevalence of cervical cancer screening was reported from 57 countries worldwide and majority (67.3%) of low- and middle-income countries (LMICs) are far away from the target of 70% cervical screening coverage [5]. According to the WHO NCD Country Capacity Survey, only 50% of the middle-income countries have the ability to provide comprehensive cancer diagnosis and treatment services; the proportion being even less in low-income countries [6]. Identifying strategies, which are effective as well as affordable and acceptable to be rolled up nationwide, should be key areas of focus to increase the accessibility of the cervical screening and treatment to reach the 2030 targets.

HPV testing on self-collected samples (self-sampling), thermal ablation to treat cervical intraepithelial neoplasia (CIN), and screen-and-treat strategies using these technologies have the potential to increase screening coverage and treatment compliance of cervical cancer screening programs [7, 8]. Our previous studies have reported the effectiveness and feasibility in applying them in the population-based cervical cancer screening program in China [9, 10]. However, limited analyses have demonstrated its cost-effectiveness when introduced into the current health system for cervical cancer prevention. In the present research, we will model and assess the cost-effectiveness of a series of screen-and-treat algorithms using HPV tests linked to thermal ablation in comparison with currently used strategies in China, providing scientific evidence for its introduction in the global screening strategy for cervical cancer elimination.

Methods

Overview

We conducted a model-based economic evaluation to assess the cost-effectiveness of six screen-and-treat strategies combining primary HPV testing (self-sampling or physician-sampling), triage modalities (HPV genotyping, colposcopy or no triage) and thermal ablation treatment in comparison with currently used screening strategies in China, from a societal perspective. For these strategies, we simulated a single cohort of 100,000 females born in 2015 from birth to death (life expectancy 85 years), as the specified screen and treatment pathways, to obtain the estimates of costs and health outcomes. Screening was included as the intervention for cervical cancer prevention and the vaccination was not considered in the model due to the negligible HPV vaccination coverage in China currently [11].

Model

We updated our previously developed hybrid model, and its structure is shown in the Additional file: Fig. S1 [4, 12]. Briefly, the model consisted of a dynamic model and a natural history model. We used the dynamic model to simulate the HPV transmission between males and females, and another model to simulate the natural history of cervical cancer and to obtain the number of cervical precursors or cancer cases and deaths associated with HPV infections. The two-stage hybrid model was concatenated by the force of infection—i.e., the age-specific HPV incidence from the dynamic model served as inputs to the natural history model. Each individual was entered into the model at their birth age and randomly allocated to a new state, based on the transition probabilities (Additional file: Table S1) [13,14,15,16,17,18,19,20,21]. Individuals were transitioned among states representing HPV infection, CIN grade 1, CIN2, CIN3, and cervical cancer. Cervical cancer screening fitted in the natural history model where individuals were randomly assigned to screening. In the absence of screening, women with CINs or cervical cancer would be diagnosed when the related symptoms develop. Diagnosed individuals would receive treatment specific to the stage of the disease. We assumed that women with cervical cancer are subjected to the stage-specific mortality rates in addition to all-cause mortality rates. The model was built with a cycle length of one year.

The model was calibrated using epidemiological data of HPV prevalence, cervical cancer incidence and mortality in 2015, HPV genotype distributions in women with normal cervical cytology, low-grade squamous intraepithelial lesion, high-grade squamous intraepithelial lesion, and invasive cervical cancer [22,23,24,25,26]. The model was validated using the reported prevalent risk and 5-year cumulative risk of CIN2 or worse (CIN2+) after one positive HPV test, and 10-year cumulative detection rate of CIN2+ in Chinese women (Additional file: Fig. S2) [27]. The model tracked disease progression and regression, clinical events, lifetime economic outcomes, and health outcomes. Further details of this model were described in the Additional file and article published earlier [4, 12].

Screening scenarios

The assumed standard-of-care strategy included screening women with HPV testing using samples collected by physicians, followed by triaging with HPV16/18 genotyping or cytology (at a threshold of atypical squamous cell of undetermined significance or ASCUS), and treatment for the histologically confirmed CIN2+ lesions with loop electrosurgical excision procedure (LEEP). We considered six screen-and-treat strategies as alternative scenarios. These included combinations of HPV testing (either self-sampled or physician-sampled), triage modalities (HPV genotyping and colposcopy in various combinations), and thermal ablation of screen-positive or triage-positive women (Table 1 and please see Additional file for more details ).

Table 1 Scenarios for all screen-and-treat and currently used strategies in China

The target population for cervical cancer screening was women aged 30−65 years in urban and rural China, with a 5-year screening interval. The screening, triage, and treatment procedures were shown in the supplementary file (Additional file: Fig. S3a−h, Fig. S4). We assumed that the anticipated screening coverage would reach 70% with physician-collected samples, and 89.6% (95% CI 63.0 to 100.0%) with self-collected samples according to the ratio of screening uptake reported in a meta-analysis (self-sampling participation versus physician-sampling, RR=1.28, 95% CI 0.90 to 1.82) [28]. Triage, diagnostic, and treatment compliance were also included in the model, which was assumed to reduce by 15% for each additional visit [29].

Inputs and assumptions

Base-case estimates and ranges for all parameters were listed in Table 2 and Additional file [4, 9, 10, 12,13,14,15,16,17,18,19,20,21, 23,24,25,26, 28,29,30,31,32,33]. Natural history parameters of cervical cancer were extracted from the national statistical databases and literature reviews (Additional file: Table S1) [13,14,15,16,17,18,19,20,21]. The proportion of residents with several sexual partners were extracted from a national representative longitudinal study [34]. The prevalence of high-risk HPV infections was extracted from a pooled study in China [35]. The sensitivity and specificity of different strategies were calculated based on large-scale population-based studies in China [9, 31, 32]. The efficacy of thermal ablation and LEEP treatment was collected from open-source publications [10, 33].

Table 2 Parameters used in the model analysis

Costs of cervical cancer screening scenario included the costs of screening, treatment, and administration (Table 2 and Additional file: Table S2a−h, Table S3) [4, 10, 22, 35,36,37,38, 41,42,43,44]. Cervical screening costs were calculated according to the government-provided cost calculation table and our population-based pooled data [36, 41,42,43,44]. The cost of thermal ablation treatment was calculated using micro-costing approach considering the cost and life span of the equipment as well as the personnel cost for each treatment, since the technology has not been introduced to the routine clinical practice in China (see Additional file for more details). The cost of LEEP treatment was derived from the average charges in the secondary facilities in China [36]. All components of direct medical cost, direct non-medical costs, and indirect costs for women receiving screening and treatment were considered in the model [36,37,38]. Costs were converted into US dollars using exchange rates for early 2020 (i.e., 1.00 US dollar = 7.00 Chinese yuan).

Utility scores stratified by the thermal ablation or LEEP treatment were obtained from a multicenter population-based cervical cancer screening program using the quality-of-life (QOL) assessments questionnaire, which was conducted in both rural and urban settings in 2021 (Table 2 and Additional file: Table S4) [39, 40].

Outcomes

Using the calibrated model, we estimated the lifetime costs and health benefits for each strategy in rural and urban China. The cost of implementing each strategy was estimated from a societal perspective. The health outcomes of each strategy were evaluated in quality-adjusted life-years (QALYs), taking into account health state utility weights. Both costs and health outcomes were discounted at an annual rate of 3% with a range of 0% to 5% tested in a sensitivity analysis [45]. We calculated the incremental cost-effectiveness ratio (ICER), defined as the incremental cost per QALY gained for each strategy compared with the currently used screening strategy, to identify the cost-effective strategy. Here, we applied the Chinese gross domestic product (GDP) per capita ($10,350 in 2020) as the cost-effectiveness frontier (highly cost-effective, cost-effective, or not cost-effective with an ICER <1, 1−3, or >3-times the per-capita GDP) [46]. We also evaluated the harm-and-benefit tradeoff of each screening strategy (presented by the numbers of over-treatment versus the numbers of CIN1+, CIN2+, or CIN3+ detected). Overtreatment rate was defined as the proportion of women treated by thermal ablation who did not have any CIN on histopathology.

Sensitivity analysis

We did one-way deterministic sensitivity analyses by varying each input value in the model over a plausible range to examine the impact of uncertainty in individual input parameters on the results. We conducted probabilistic sensitivity analysis by performing 10,000 Monte Carlo simulations to sample parameter values from their distributions and estimate outcomes. Cost-effectiveness acceptability curves were conducted to compare screen-and-treat strategies with currently used strategies across a wide range of willing-to-pay (WTP) thresholds.

Results

First for all of China, in comparison to the currently used strategies (physician-collected HPV test with genotype and cytology triage), all screen-and-treat strategies are highly cost-effective with the discounted ICERs ranging from −$3214.1 to 8900.2 per QALY gained (Fig. 1 and Additional file: Table S5a−b ). Compared with the physician-collected HPV test with cytology triage strategy, all screen-and-treat strategies are cost-saving (−$586,290 to −$112,540) with more QALYs yielded (200 to 420), and self-collected HPV test without triage is regarded as the optimal strategy with the most incremental QALYs gained (420 QALYs; ICER= −$1401.7 per QALY), followed by the physician-collected HPV test without triage, self-HPV 7 types triage, physician-HPV 7 types triage, self-HPV16/18 triage, and physician-HPV16/18 triage. The situation is basically the same when regarding physician-HPV with genotype triage as the reference, more QALYs gained (20 to 240) at lower costs (−$295,890 to −$146,630) with self-collected samples whereas at higher costs (+$80,030 to +$177,860) with physician-collected samples.

Fig. 1
figure 1

Cost-effectiveness analysis for all screen-and-treat strategies versus the currently used strategies. HPV, human papillomavirus; QALY, quality-adjusted life-years; phy, physician; ICER, incremental cost-effectiveness ratio

For urban and rural areas, likewise, each screen-and-treat strategy is highly cost-effective in urban areas (ICERs= −$4791.7 to 6964.9 per QALY) with more QALYs yielded at a slightly higher cost than that in rural areas. Self-HPV without triage is the optimal strategy for both urban and rural areas with the most incremental QALYs gained (220 to 440). Physician-HPV16/18 triage leads to the most incremental costs compared with the current strategies but still cost-effective in urban and rural areas (ICERs= $6964.9 and 15,504.5 per QALY).

The discounted costs of each cervical screening strategy over the lifetime are shown in Fig. 2, which is broken down by the components of screening costs, treatment costs for HPV infection, CINs, and cervical cancer. The lifetime costs range from $3.6 to 3.7 million for screen-and-treat strategies with self-collected samples, $4.0–4.1 million for screen-and-treat strategies with physician-collected samples, $3.9 million for current physician-HPV with genotype triage, to $4.2 million for current physician-HPV with cytology triage. It is estimated that 41.1% and 46.0% of costs are attributed to cervical cancer treatment with current physician-HPV with genotype triage or cytology triage strategies, which reduce by 5.1–7.6% and 10.0–12.5% for screen-and-treat strategies without triage, 2.1–5.1% and 7.0–10.0% for screen-and-treat strategies with 7 types triage, accompanying with the increasing HPV and CINs treatment costs. Yet, the cervical cancer treatment costs remain high for screen-and-treat strategies with HPV16/18 triage. Similar patterns are observed for urban and rural areas.

Fig. 2
figure 2

Discounted costs of each cervical screening strategy over the lifetime, broken down by component. Note: Solid bars represent rural areas, and shaded bars represent urban areas. HPV, human papillomavirus; CIN, cervical intraepithelial neoplasia; phy, physician

We assess overtreatment rates as well as the number of women overtreated per CINs or worse lesion detected in each screen-and-treat strategy to identify the benefits and harms tradeoff (Fig. 3). More than 6379 (67.2%) women would be overtreated using the screen-and-treat strategies in rural and urban China, with the highest overtreatment rates of more than 81.6% in strategies without triage (self- or physician-sampled; more than 16,622 women overtreated). If triaged with respect to HPV 7 types or HPV16/18 genotypes, 79.1% (13,093 women) or 67.2% (6,379 women) of HPV-positive women would be overtreated with fewer cancer cases avoided (19 cases or 69 cases). Accordingly, the largest number of women would be overtreated per CIN2+ or CIN3+ detected using screen-and-treat strategies without triage (5 to 9 overtreated), followed by strategies with HPV 7 types triage (4 to 7 overtreated) and HPV16/18 triage (2 to 3 overtreated). A similar number of overtreatment per CIN1+ detected could be observed between strategies without triage and with HPV 7 types triage (2 to 3 overtreated), which is higher than strategies with HPV16/18 triage (1 overtreated).

Fig. 3
figure 3

Overtreatment rates and harm-and-benefit tradeoff for each screen-and-treat strategy. HPV, human papillomavirus; CIN, cervical intraepithelial neoplasia; phy, physician

Figure 4 shows the cost-effectiveness acceptability curves for all screen-and-treat strategies at a range of WTP thresholds between 0 and three times per-capita GDP. At a WTP threshold of three times per-capita GDP, at least a 97.6% probability of being cost-effective for all the screen-and-treat strategies, which remain at least 93.8% when the WTP reduce to one time per-capita GDP.

Fig. 4
figure 4

Cost-effectiveness acceptability curves for all screen-and-treat strategies. HPV, human papillomavirus; GDP, gross domestic product; phy, physician

The findings of our analysis are most sensitive to the participation rates of a cervical screening program with self-collected samples and physician-collected samples, as well as the discount rate. Input to which the results are most sensitive was participation rates with self-collected samples in both urban and rural areas, which potentially increase the ICER to -$1357.0 per QALY in urban areas and −$247.4 per QALY in rural areas (Fig. 5 and Additional file: Fig. S5a−b ).

Fig. 5
figure 5

Tornado diagram analysis for optimal strategy (self-HPV without triage) versus traditional strategy (physician-HPV with cytology) in China. QALY, quality-adjusted life-years; TA, thermal ablation; CIN, cervical intraepithelial neoplasia; LEEP, loop electrosurgical excision procedure; phy, physician

Discussion

Our research comprehensively analyzed, the cost-effectiveness of the screen-and-treat strategies combining self-sampling HPV test and thermal ablation to identify the effective, affordable as well as acceptable strategy for cervical screening and treatment. We found that compared with the currently used strategies, all screen-and-treat strategies were cost-effective and self-HPV without triage, i.e., primary HPV testing with self-collected samples followed by the immediate thermal ablation treatment for the HPV-positive women, was the optimal strategy with the most QALYs gained and the most costs saved in both rural and urban China. Further, the costs for cervical cancer treatment among the whole population could be significantly reduced by the screen-and-treat strategies without triage or with HPV 16/18/31/33/45/52/58 triage, and the resources may be better utilized towards implementing screening and precancer treatment.

Health economic evaluation is essential to select the most appropriate strategies among the “cafeteria” of different choices currently available from a decision-making perspective. However, such evaluation has not been modeled on utilizing the screen-and-treat strategy with self-sampling HPV test linked to thermal ablation into the population-based program. In 2021, the WHO updated guidelines recommended HPV test-based screen-and-treat strategies for screening and treatment of cervical precancer lesions in the general population. Meanwhile, HPV testing by self-sampling and thermal ablation treatment were recommended as possible approaches to further scale up the services [47]. Our analysis took full account of costs incurred in the practical implementation of the self-sampling HPV test-based screen-and-treat program with thermal ablation, as well the effectiveness derived from the local population-based studies [9, 10]. Compared with the currently used strategies in most of the countries, including China, we found that all the HPV test-based screen-and-treat strategies with self-collected samples and thermal ablation showed obvious advantages in not only for cost-saving but more QALYs gained simultaneously. Further considering its advantages in high screening and treatment performance, portability of equipment, conserving health resources and manpower, achieving adequate population coverage as well as providing timely management of screen-positive results for the cervical screening program, such strategy has the great potential to help reach the 2030 targets with maximizing the accessibility of the health care services for cervical cancer prevention [8, 48, 49].

Notably, in our study, we used GDP per capita as a cost-effectiveness threshold, which was commonly used worldwide and adopted in the WHO guidelines on Choosing Interventions that are Cost Effective (WHO-CHOICE) [46]. Currently, there is a move to use opportunity cost-based thresholds to assess cost-effectiveness of interventions, which was regarded as more in accord with countries’ realities than the GDP per capita in low- and middle-income countries [50]. If using half of GDP per capita, a conservative opportunity cost-based threshold, the screen-and-treat strategy of physician sampling HPV16/18 triage strategy would not be cost-effective. That might remind us that the adoption of this intervention should be paid more attention to investigate whether it is in practice locally affordable.

In the context of the fight against cancer, prevention is always better than cure, and never has the opportunity been greater, especially for cervical cancer prevention [51]. The biggest challenge that we face is ensuring that opportunities for health gain are delivered to the largest number who could benefit. A modeling study has reported that, under the Chinese current screening strategy with low coverage, the cervical cancer incidence is projected to increase with more expenditures mainly spent on the treatment of invasive cervical cancer [4, 12]. After more investments in the HPV vaccine and scaling-up of cervical screening, more than 7.5 million cervical cancer cases would be further averted before 2100, and the total cost for cervical cancer prevention would drop sharply due to the cost reduction in cervical cancer treatment [4]. Likewise, our research reported that the costs for the cervical cancer treatment can be reduced by 2.1–12.5% in utilizing the screen-and-treat strategies without triage or triaging with the most common high-risk HPV genotypes in the population, permitting more resources to be allocated to screening and CINs treatment. The findings indicated that expanding screening based on self-collected samples while strengthening its link to the immediate thermal ablation treatment could contribute to the cost-saving as well as the cancer control strategy moving from cancer treatment towards cancer prevention.

A certain amount of overtreatment is inevitable in the screen-and-treat approach, which constitutes the major concern impeding its implementation in some countries, such as China [52]. Encouragingly, thermal ablation, as a promising method used in the screen-and-treat strategies, has been demonstrated similar treatment success to cryotherapy as well as loop excision with few adverse effects and complications [8, 10]. Additionally, our 3-year prospective study has indicated that thermal ablation could clear HPV infection by 73% among HPV-positive women [53]. Thus, treatment of HPV-positive women may not be considered as ‘overtreatment’ but a simple and safe means to prevent future risk of cervical cancer. Our analysis took into account the impacts of the overtreatments on QOL, and the final results demonstrated that the benefits outweighed the harms arising from the overtreatment in utilizing the thermal ablation in the screen-and-treat strategies. But up until now, the long-term effect (more than 3 years) of the overtreatment on women’s health with the thermal ablation treatment remains unclear. In this regard, triage to reduce overtreatment by identifying the high-risk population in developing cervical cancer is generally regarded as the most effective measure. Our study reported that five to nine women would be overtreated per CIN2+ or CIN3+ detected using screen-and-treat strategies, which could be further reduced by HPV genotyping triage with a few CIN2+ being missed. In practice, local health-related decision-makers may determine the acceptable overtreatment threshold and select the triage strategy most affordable and feasible in the local setting. Further, prospective follow-up is required to better understand the benefits and harms tradeoff among all the screen-and-treat strategies.

In China, the traditional multi-visit strategy with screening, colposcopy, and biopsy for diagnosis, and treatment for pathological confirmed CIN2+ has been widely implemented in the national cervical cancer screening program [54]. But the comprehensive requirements for resources and capacity building precludes its roll-up in economically underdeveloped areas [55]. Under such circumstances, screen-and-treat strategies, as a supplement of the current screening practice, should be considered to apply in the low-recourse areas and delivered by the local primary care system. The Chinese government has released favorable policies in promoting investment and enhancing the construction of the primary health care (PHC) system since 2009. As of 2017, the subsidies as a proportion of total PHC income increased from 12.3% to 32.5% [56]. The related actions signal the government’s attention to universal health as well as provide unprecedented opportunities in delivering screen-and-treat services in the primary facilities, further reducing the national disparities and inequity in cervical cancer prevention. Therefore, for countries with established national cervical cancer screening programs, such as China, the simple and labor-saving screen-and-treat strategies would further scale up the current screening services to achieve the 70% and 90% targets. Meanwhile, for the other 35% of the countries which are lack of national cervical cancer screening programs worldwide [6], such strategies contribute to accelerate the initiation of national cervical cancer screening and treatment services.

Regarding to cost-effectiveness studies of screen-and-treat strategies, the most widely evaluated strategies were based on HPV testing with physician-collected samples followed by cryotherapy. In a comparative study in El Salvador, HPV-based screening followed by cryotherapy treatment is considered cost-effective [57]. Another modeling study indicated that the one-visit screen-and-treat strategy (HPV test followed by same-day cryotherapy) facilitated by point-of-care technology generated greater benefits than the two-visit approach (requiring a return visit for treatment), especially in areas with high loss to follow-up [58]. Likewise, a cost-effectiveness study conducted in Kenya also showed that HPV screening may become less expensive than a visual inspection with acetic acid (VIA) if it could be reduced to a single visit. Preventative cryotherapy was the least expensive strategy and led to the highest projected life expectancy [59]. However, no study ever evaluated the cost-effectiveness of screen-and-treat strategies based on self-sampling HPV tests combined with thermal ablation up until now. Some triage methods, such as VIA, have been assessed in health economics evaluation studies. In a cost-effectiveness analysis, HPV with VIA triage cost more but was less effective than HPV alone in settings with high cervical cancer burden, due to the VIA triage missing some precancers that were destined to progress [60]. Self-sampling HPV test alone followed by immediate thermal ablation may achieve greater health benefits with relatively lower costs. However, limited information is available about its evaluations on health economics.

To the best of our knowledge, our study is the first attempt to evaluate the cost-effectiveness of the screen-and-treat strategies combining self-sampling HPV test and thermal ablation in China, which makes strong evidence for supporting its use in cervical cancer prevention. Further, our analysis has considered costs, effects as well as overtreatments over the full spectrum of the screening program, which provides a comprehensive and objective information to inform the policy marking on cancer prevention. Meanwhile, our research has several limitations. First, the parameters included in the model analysis were mostly derived from the local population-based research in China, restricting the generalization of the relevant findings in other countries to some extent. Second, long-term health consequences such as fertility and obstetrical outcomes resulting from the treatment were not considered in the analysis due to the absence of related evidence on thermal ablation globally. Third, we did not consider the costs of training for thermal ablation treatment, which is relatively minimal due to the procedure is simple to perform that can be done by trained midwives, nurses, and other medical personnel without anesthesia [10]. Last, HPV vaccination was not considered in the model analysis. In our study, we aim to evaluate the cost-effectiveness of six screen-and-treat strategies based on the current cervical cancer prevention setting in China. Currently, China has not introduced the HPV vaccination into its national program, and the vaccination coverage in China is very low [11]. However, we do admit that China may initiate its national HPV vaccination program in the future. Not considering the HPV vaccination may lead to an overestimate of the burden that can be prevented by screening and treatment over the long term.

Conclusions

Our research has demonstrated that the screen-and-treat strategy linking self-sampling HPV test with the immediate thermal ablation treatment for the screen-positive women was the most cost-effective strategy for managing cervical precancer in China. Additional triage approach with quality-assured performance could reduce the overtreatment and remains highly cost-effective in cervical cancer prevention. Screen-and-treat strategies would contribute to initiate screening and treatment services for the countries without national cervical cancer screening program rapidly, and meanwhile, scale up the screening and treatment coverage for the countries with the national program but have yet achieved 70% and 90% targets. The actions taking such strategies into the national program would promote health equity and accelerate the elimination of cervical cancer worldwide.

Availability of data and materials

Chinese Cancer Registry data used in this paper are held by the National Cancer Center of China. Data for the parameters in the model are held by the model research team. Access to the data can be requested by contacting the corresponding author. Information of population size data is freely downloadable from the National Bureau of Statistics of China.

Abbreviations

ASCUS:

Atypical squamous cell of undetermined significance

CIN:

Cervical intraepithelial neoplasia

GDP:

Gross domestic product

HPV:

Human papillomaviruses

ICER:

Cost-effectiveness ratios

LEEP:

Loop electrosurgical excision procedure

LMICs:

Low- and middle-income countries

PHC:

Primary health care

QALYs:

Quality-adjusted life-years

QOL:

Quality-of-life

VIA:

Visual inspection with acetic acid

WHO:

World Health Organization

WTP:

Willing to pay

References

  1. World Health Organization. Global strategy to accelerate the elimination of cervical cancer as a public health problem. Geneva, Switzerland. 2020. https://apps.who.int/iris/handle/10665/336583. Accessed 18 Oct 2022.

  2. Simms KT, Steinberg J, Caruana M, et al. Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries, 2020–99: a modelling study. Lancet Oncol. 2019;20:394–407.

    Article  PubMed  Google Scholar 

  3. Brisson M, Kim JJ, Canfell K, et al. Impact of HPV vaccination and cervical screening on cervical cancer elimination: a comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet. 2020;395:575–90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xia C, Xu XQ, Zhao XL, et al. Effectiveness and cost-effectiveness of eliminating cervical cancer through a tailored optimal pathway: a modeling study. BMC Med. 2021;19:62.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lemp JM, De Neve JW, Bussmann H, et al. Lifetime prevalence of cervical cancer screening in 55 low- and middle-income countries. JAMA. 2020;324:1532–42.

    Article  PubMed  PubMed Central  Google Scholar 

  6. World Health Organization. Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2019 global survey. Geneva, Switzerland. 2020. https://www.who.int/publications/i/item/9789240002319. Accessed 18 Oct 2022.

  7. Arrossi S, Thouyaret L, Herrero R, et al. Effect of self-collection of HPV DNA offered by community health workers at home visits on uptake of screening for cervical cancer (the EMA study): a population-based cluster-randomised trial. Lancet Glob Health. 2015;3:e85-94.

    Article  PubMed  Google Scholar 

  8. Pinder LF, Parham GP, Basu P, et al. Thermal ablation versus cryotherapy or loop excision to treat women positive for cervical precancer on visual inspection with acetic acid test: pilot phase of a randomised controlled trial. Lancet Oncol. 2020;21:175–84.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao XL, Xu XQ, Duan XZ, et al. Comparative performance evaluation of different HPV tests and triaging strategies using self-samples and feasibility assessment of thermal ablation in “colposcopy and treat” approach: A population-based study in rural China. Int J Cancer. 2020;147:1275–85.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao XL, Liu ZH, Zhao S, et al. Efficacy of point-of-care thermal ablation among high-risk human papillomavirus positive women in China. Int J Cancer. 2021;148:1419–27.

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Wu L, Bai Q, Ren J, Shao H, Huang Z. Surveillance for coverage of human papillomavirus (HPV) vaccine and adverse events following immunization with HPV vaccine in Shanghai, 2017–2019. Chin J Vaccines Immunization. 2020;26:322–5.

    Google Scholar 

  12. Xia C, Hu S, Xu X, et al. Projections up to 2100 and a budget optimisation strategy towards cervical cancer elimination in China: a modelling study. Lancet Public Health. 2019;4:e462–72.

    Article  PubMed  Google Scholar 

  13. Haeussler K, den Hout AV, Baio G. A dynamic Bayesian Markov model for health economic evaluations of interventions in infectious disease. BMC Med Res Methodol. 2018;18:82.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Haeussler KD. A dynamic Bayesian Markov model for health economic evaluations of interventions in infectious disease. London: UCL (University College London); 2017.

    Google Scholar 

  15. Liu YJ, Zhang Q, Hu SY, Zhao FH. Effect of vaccination age on cost-effectiveness of human papillomavirus vaccination against cervical cancer in China. BMC Cancer. 2016;16:164.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Canfell K, Barnabas R, Patnick J, Beral V. The predicted effect of changes in cervical screening practice in the UK: results from a modelling study. Br J Cancer. 2004;91:530–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldie SJ, Grima D, Kohli M, Wright TC, Weinstein M, Franco E. A comprehensive natural history model of HPV infection and cervical cancer to estimate the clinical impact of a prophylactic HPV-16/18 vaccine. Int J Cancer. 2003;106:896–904.

    Article  CAS  PubMed  Google Scholar 

  18. Haeussler K, Marcellusi A, Mennini FS, et al. Cost-effectiveness analysis of universal human papillomavirus vaccination using a Dynamic Bayesian Methodology: The BEST II study. Value Health. 2015;18:956–68.

    Article  PubMed  Google Scholar 

  19. Myers ER, McCrory DC, Nanda K, Bastian L, Matchar DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol. 2000;151:1158–71.

    Article  CAS  PubMed  Google Scholar 

  20. Masatoshi Y, Tsuyoshi I, Chisato N, et al. Prognostic factors associated with the clinical outcome of cervical intraepithelial neoplasia: a cohort study in Japan. Cancer Lett. 2003;192:171–9.

    Article  Google Scholar 

  21. Sawaya GF, Sanstead E, Alarid-Escudero F, et al. Estimated quality of life and economic outcomes associated with 12 cervical cancer screening strategies: A cost-effectiveness analysis. JAMA Intern Med. 2019;179:867–78.

    Article  PubMed  PubMed Central  Google Scholar 

  22. ICO/IARC Information Centre on HPV and Cancer. Human papillomavirus and related diseases in China: HPV Information Centre. 2018. https://hpvcentre.net/. Accessed 18 Oct 2022.

  23. National Health and Family Planning Commission. 2016 China health statistics yearbook. Beijing: Peking Union Medical College Press; 2016.

    Google Scholar 

  24. He J. 2018 China Cancer Registry Annual Report. Beijing: People’s Medical Publishing House; 2019.

    Google Scholar 

  25. National Bureau of Statistics of China. National data. http://data.stats.gov.cn/english/. Accessed 21 Oct 2022.

  26. National Bureau of Statistics of China. China population and employment statistics yearbook 2016. Beijing: China Statistics Press; 2017.

    Google Scholar 

  27. Dong L, Hu SY, Zhang Q, et al. Risk prediction of cervical cancer and precancers by type-specific human papillomavirus: evidence from a population-based cohort study in China. Cancer Prev Res (Phila). 2017;10:745–51.

    Article  PubMed  Google Scholar 

  28. Yeh PT, Kennedy CE, de Vuyst H, Narasimhan M. Self-sampling for human papillomavirus (HPV) testing: a systematic review and meta-analysis. BMJ Glob Health. 2019;4:e001351.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Goldie SJ, Gaffikin L, Goldhaber-Fiebert JD, et al. Cost-effectiveness of cervical-cancer screening in five developing countries. N Engl J Med. 2005;353:2158–68.

    Article  CAS  PubMed  Google Scholar 

  30. National Bureau of Statistics. China's 6th National Population Census. 2011. http://www.stats.gov.cn/tjsj/pcsj/rkpc/6rp/indexch.htm. Accessed 12 Oct 2022.

  31. Rezhake R, Chen F, Hu SY, et al. Triage options to manage high-risk human papillomavirus-positive women: A population-based cross-sectional study from rural China. Int J Cancer. 2020;147:2053–64.

    Article  CAS  PubMed  Google Scholar 

  32. Belinson JL, Qiao YL, Pretorius RG, et al. Shanxi Province cervical cancer screening study II: Self-sampling for high-risk human papillomavirus compared to direct sampling for human papillomavirus and liquid based cervical cytology. Int J Gynecol Cancer. 2003;13:819–26.

    Article  CAS  PubMed  Google Scholar 

  33. Santesso N, Mustafa RA, Wiercioch W, et al. Systematic reviews and meta-analyses of benefits and harms of cryotherapy, LEEP, and cold knife conization to treat cervical intraepithelial neoplasia. Int J Gynaecol Obstet. 2016;132:266–71.

    Article  PubMed  Google Scholar 

  34. Sexuality of Chinese 2000–2015: main results from four national population sampling surveys. Hong Kong: 1908 Company Limited: Pan S; 2017.

  35. Zhao FH, Lewkowitz AK, Hu SY, et al. Prevalence of human papillomavirus and cervical intraepithelial neoplasia in China: a pooled analysis of 17 population-based studies. Int J Cancer. 2012;131:2929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peng JR, Tao SY, Wen Y, Yang X, Ma JQ, Zhao F. Cost-effectiveness analysis of cervical cancer screening strategies in urban China. Chin J Oncol. 2019;41:154–60.

    CAS  Google Scholar 

  37. Tao SY, Peng JR, Wang Y, et al. Study on direct economic burden and influencing factors in patients with cervical cancer and precancerous lesions. Chi J Prev Med. 2018;52:1281–6.

    CAS  Google Scholar 

  38. Ma L, Wang Y, Gao X, et al. Economic evaluation of cervical cancer screening strategies in urban China. Chin J Cancer Res. 2019;31:974–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen TM, Zhao S, Zhao XL, et al. Investigation on quality of life of women with different grades of cervical lesions and treatments. Chin J Clin Obstet Gynecol 2023;24:144-8.

  40. Luo N, Liu G, Li M, Guan H, Jin X, Rand-Hendriksen K. Estimating an EQ-5D-5L Value Set for China. Value Health. 2017;20:662–9.

    Article  PubMed  Google Scholar 

  41. National Bureau of Statistics of China. Residents' income and consumption expenditure in 2019. 2020. http://www.stats.gov.cn/tjsj/zxfb/202001/t20200117_1723396.html. Accessed 11 Oct 2022.

  42. China Hainan Government Procurement. Hainan Women's and Children's Medical Center - HPV testing reagents and related services for women's common diseases and "two cancers" in 2019 -bid winning announcement. 2020. https://www.ccgp-hainan.gov.cn/cgw/cgw_show_zbgg.jsp?id=21831. Accessed 12 Oct 2022.

  43. Zhejiang Government Procurement Center. Announcement of bid winning (transaction) results of "two cancer" examination project of provincial Health Commission, HPV and TCT test reagent project. 2020. http://zfcg.czt.zj.gov.cn/innerUsed_noticeDetails/index.html?noticeId=6604290. Accessed 15 Oct 2022.

  44. Jiangsu Public Resource Trading Platform. TCT and HPV test service project of "two cancers" program in Tongzhou District, Nantong City. 2020. http://jsggzy.jszwfw.gov.cn/jyxx/003004/003004002/20200421/f67ce97c-e4f6-44b3-977e-4bc17d5930df.html. Accessed 15 Oct 2022.

  45. Haacker M, Hallett TB, Atun R. On discount rates for economic evaluations in global health. Health Policy Plan. 2020;35:107–14.

    Article  PubMed  Google Scholar 

  46. World Health Organization. Macroeconomics and health: investing in health for economic development: report of the 588 commission on macroeconomics and health. Geneva, Switzerland. 2001. https://www.who.int/publications/i/item/924154550X. Accessed 21 Oct 2022.

  47. World Health Organization. WHO guideline for screening and treatment of cervical pre-cancer lesions for cervical cancer prevention, second edition. Geneva, Switzerland.2021. https://www.who.int/publications/i/item/9789240040434. Accessed 21 Oct 2022.

  48. Arbyn M, Smith SB, Temin S, Sultana F, Castle P. Detecting cervical precancer and reaching underscreened women by using HPV testing on self-samples: updated meta-analyses. BMJ. 2018;363:k4823.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Denny L, Kuhn L, De Souza M, Pollack AE, Dupree W, Wright TCJ. Screen-and-treat approaches for cervical cancer prevention in low-resource settings: a randomized controlled trial. JAMA. 2005;294:2173–81.

    Article  CAS  PubMed  Google Scholar 

  50. Chi YL, Blecher M, Chalkidou K, et al. What next after GDP-based cost-effectiveness thresholds? Gates Open Res. 2020;4:176.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Borysiewicz LK. Prevention is better than cure. Lancet. 2010;375:513–23.

    Article  PubMed  Google Scholar 

  52. Kunckler M, Schumacher F, Kenfack B, et al. Cervical cancer screening in a low-resource setting: a pilot study on an HPV-based screen-and-treat approach. Cancer Med. 2017;6(7):1752–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao XL, Zhao S, Hu SY, et al. Effectiveness of the thermal ablation in the treatment of human papillomavirus infection and cervical intraepithelial neoplasia in Chinese women. Natl Med J China. 2021;101:1875–81.

    CAS  Google Scholar 

  54. Qiao Y. Screening technologies to advance rapid testing for cervical cancer prevention in developing countries. Chi J Prev Med. 2015;49:110–1.

    Google Scholar 

  55. Zhang M, Zhong Y, Zhao Z, et al. Cervical cancer screening rates among Chinese women - China, 2015. China CDC Weekly. 2020;2:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yip W, Fu H, Chen AT, et al. 10 years of health-care reform in China: progress and gaps in Universal Health Coverage. Lancet. 2019;394:1192–204.

    Article  PubMed  Google Scholar 

  57. Campos NG, Maza M, Alfaro K, et al. The comparative and cost-effectiveness of HPV-based cervical cancer screening algorithms in El Salvador. Int J Cancer. 2015;137:893–902.

    Article  CAS  PubMed  Google Scholar 

  58. Campos NG, Tsu V, Jeronimo J, et al. Estimating the value of point-of-care HPV testing in three low- and middle-income countries: a modeling study. BMC Cancer. 2017;17:791.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zimmermann MR, Vodicka E, Babigumira JB, et al. Cost-effectiveness of cervical cancer screening and preventative cryotherapy at an HIV treatment clinic in Kenya. Cost Eff Resour Alloc. 2017;15:13.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Campos NG, Jeronimo J, Tsu V, et al. The Cost-effectiveness of visual triage of human papillomavirus-positive women in three low- and middle-income countries. Cancer Epidemiol Biomarkers Prev. 2017;26:1500–10.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from China Medical Board (CMB) (No: 16-255) and the National Key R&D Program of China (No: 2018YFC1315504).

Disclaimer

Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy, or views of the International Agency for Research on Cancer/World Health Organization.

Funding

This work was supported by grants from the China Medical Board (CMB) and the National Key R&D Program of China.

Author information

Authors and Affiliations

Authors

Contributions

FZ obtained funding for the study. FZ and XZ conceptualized the study and developed the research protocol. SZ collected and analyzed the data. CX designed and constructed the model. XZ, SH, and FZ supervised the analysis and generation of the results. SZ and XZ drafted and finalized the manuscript. SZ, XZ, CX, SH, and FZ interpreted the results and critically revised the manuscript for intellectual content. XD, ZL, YW, TY, MG, YQ, and PB critically reviewed the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Fang-Hui Zhao.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

All authors have read and approved the final manuscript.

Competing interests

The authors declare that they have no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1:

Supplementary Materials. Fig. S1. Model structure. Fig. S2. Model outputs from the 1000 Monte Carlo simulations. Fig. S3a. Process of screening strategy with self-HPV without triage. Fig. S3b. Process of screening strategy with self-HPV16/18 triage. Fig. S3c. Process of screening strategy with self-HPV7 types triage. Fig. S3d. Process of screening strategy with physician-HPV without triage. Fig. S3e. Process of screening strategy with physician-HPV16/18 triage. Fig. S3f. Process of screening strategy with physician-HPV7 types triage. Fig. S3g. Process of screening strategy with physician-HPV with genotype triage. Fig. S3h. Process of screening strategy with physician-HPV with cytology triage. Fig. S4. Follow-up of women after treatment. Fig. S5a. Tornado diagram analysis for self-HPV without triage versus current physician-HPV with cytology strategy in urban area. Fig. S5b. Tornado diagram analysis for self-HPV without triage versus current physician-HPV with cytology strategy in rural area. Table S1. Natural history and transition probabilities parameters of cervical cancer. Table S2a. Cervical cancer screening costs for self-HPV without triage strategy. Table S2b. Cervical cancer screening costs for self-HPV16/18 triage strategy. Table S2c. Cervical cancer screening costs for self-HPV7 types triage strategy. Table S2d. Cervical cancer screening costs for physician-HPV without triage strategy. Table S2e. Cervical cancer screening costs for physician-HPV16/18 triage strategy. Table S2f. Cervical cancer screening costs for physician-HPV7 types triage strategy. Table S2g. Cervical cancer screening costs for physician-HPV with genotype triage strategy. Table S2h. Cervical cancer screening costs for physician-HPV with cytology triage strategy. Table S3. Disease status at follow-up based on combined endpoints. Table S4. Utility of women before and after thermal ablation or LEEP treatment. Table S5a. Lifetime costs, effectiveness, and incremental cost-effectiveness for all screen-and-treat strategies versus the currently used strategies (Undiscounted). Table S5b. Lifetime costs, effectiveness, and incremental cost-effectiveness for all screen-and-treat strategies versus the currently used strategies (Discounted, 3%).

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XL., Zhao, S., Xia, CF. et al. Cost-effectiveness of the screen-and-treat strategies using HPV test linked to thermal ablation for cervical cancer prevention in China: a modeling study. BMC Med 21, 149 (2023). https://doi.org/10.1186/s12916-023-02840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12916-023-02840-8

Keywords