Klug A, Schwabe JW: Protein motifs 5. Zinc fingers. FASEB J. 1995, 9: 597-604.
CAS
PubMed
Google Scholar
Pavletich NP, Pabo CO: Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science (New York, NY). 1991, 252: 809-817.
Article
CAS
Google Scholar
Jamieson AC, Kim SH, Wells JA: In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry. 1994, 33: 5689-5695. 10.1021/bi00185a004.
Article
CAS
PubMed
Google Scholar
Rebar EJ, Pabo CO: Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science (New York, NY). 1994, 263: 671-673.
Article
CAS
Google Scholar
Desjarlais JR, Berg JM: Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proceedings of the National Academy of Sciences of the United States of America. 1992, 89: 7345-7349. 10.1073/pnas.89.16.7345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desjarlais JR, Berg JM: Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proceedings of the National Academy of Sciences of the United States of America. 1993, 90: 2256-2260. 10.1073/pnas.90.6.2256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA, Cathomen T, Voytas DF, Joung JK: Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. 2008, 5: 374-375. 10.1038/nmeth0508-374.
Article
CAS
PubMed
Google Scholar
Isalan M, Choo Y, Klug A: Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proceedings of the National Academy of Sciences of the United States of America. 1997, 94: 5617-5621. 10.1073/pnas.94.11.5617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isalan M, Klug A, Choo Y: Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry. 1998, 37: 12026-12033. 10.1021/bi981358z.
Article
CAS
PubMed
Google Scholar
Elrod-Erickson M, Rould MA, Nekludova L, Pabo CO: Zif268 protein-DNA complex refined at 1.6 A: a model system for understanding zinc finger-DNA interactions. Structure. 1996, 4 (10): 1171-1180. 10.1016/S0969-2126(96)00125-6.
Article
CAS
PubMed
Google Scholar
Wolfe SA, Grant RA, Elrod-Erickson M, Pabo CO: Beyond the "recognition code": structures of two Cys2His2 zinc finger/TATA box complexes. Structure. 2001, 9 (8): 717-723. 10.1016/S0969-2126(01)00632-3.
Article
CAS
PubMed
Google Scholar
Greisman HA, Pabo CO: A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science (New York, NY). 1997, 275: 657-661.
Article
CAS
Google Scholar
Hurt JA, Thibodeau SA, Hirsh AS, Pabo CO, Joung JK: Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proceedings of the National Academy of Sciences of the United States of America. 2003, 100: 12271-12276. 10.1073/pnas.2135381100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isalan M, Klug A, Choo Y: A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol. 2001, 19: 656-660. 10.1038/90264.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cornu TI, Thibodeau-Beganny S, Guhl E, Alwin S, Eichtinger M, Joung JK, Cathomen T: DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. 2008, 16: 352-358. 10.1038/sj.mt.6300357.
Article
CAS
PubMed
Google Scholar
Pruett-Miller SM, Connelly JP, Maeder ML, Joung JK, Porteus MH: Comparison of zinc finger nucleases for use in gene targeting in mammalian cells. Mol Ther. 2008, 16: 707-717. 10.1038/mt.2008.20.
Article
CAS
PubMed
Google Scholar
Joung JK, Ramm EI, Pabo CO: A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97: 7382-7387. 10.1073/pnas.110149297.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Müller-Lerch F, Fu F, Pearlberg J, Göbel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB, Cathomen T, Voytas DF, Joung JK: Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification. Molecular Cell. 2008, 31: 294-301. 10.1016/j.molcel.2008.06.016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK: Oligomerized pool engineering (OPEN): an 'open-source' protocol for making customized zinc-finger arrays. Nat Protoc. 2009, 4: 1471-1501. 10.1038/nprot.2009.98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD: Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009, 459: 437-441. 10.1038/nature07992.
Article
CAS
PubMed
Google Scholar
Kim JS, Lee HJ, Carroll D: Genome editing with modularly assembled zinc-finger nucleases. Nat Methods. 2010, 7: 91-10.1038/nmeth0210-91a. author reply 91-92
Article
CAS
PubMed
Google Scholar
Joung JK, Voytas DF, Cathomen T: Genome editing with modularly assembled zinc-finger nucleases. Nat Methods. 2010, 7: 91-92. 10.1038/nmeth0210-91b.
Article
CAS
PubMed Central
Google Scholar
Choo Y, Sanchez-Garcia I, Klug A: In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature. 1994, 372: 642-645. 10.1038/372642a0.
Article
CAS
PubMed
Google Scholar
Liu Q, Segal DJ, Ghiara JB, Barbas CF: Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proceedings of the National Academy of Sciences of the United States of America. 1997, 94: 5525-5530. 10.1073/pnas.94.11.5525.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beerli RR, Dreier B, Barbas CF: Positive and negative regulation of endogenous genes by designed transcription factors. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97: 1495-1500. 10.1073/pnas.040552697.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Spratt SK, Liu Q, Johnstone B, Qi H, Raschke EE, Jamieson AC, Rebar EJ, Wolffe AP, Case CC: Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. The Journal of biological chemistry. 2000, 275: 33850-33860. 10.1074/jbc.M005341200.
Article
CAS
PubMed
Google Scholar
Liu PQ, Rebar EJ, Zhang L, Liu Q, Jamieson AC, Liang Y, Qi H, Li PX, Chen B, Mendel MC, Zhong X, Lee YL, Eisenberg SP, Spratt SK, Case CC, Wolffe AP: Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. The Journal of Biological Chemistry. 2001, 276: 11323-11334. 10.1074/jbc.M011172200.
Article
CAS
PubMed
Google Scholar
Ren D, Collingwood TN, Rebar EJ, Wolffe AP, Camp HS: PPARgamma knockdown by engineered transcription factors: exogenous PPARgamma2 but not PPARgamma1 reactivates adipogenesis. Genes & development. 2002, 16: 27-32.
Article
CAS
Google Scholar
Falke D, Fisher M, Ye D, Juliano RL: Design of artificial transcription factors to selectively regulate the pro-apoptotic bax gene. Nucleic Acids Res. 2003, 31: e10-10.1093/nar/gng010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jamieson AC, Guan B, Cradick TJ, Xiao H, Holmes MC, Gregory PD, Carroll PM: Controlling gene expression in Drosophila using engineered zinc finger protein transcription factors. Biochemical and Biophysical Research Communications. 2006, 348: 873-879. 10.1016/j.bbrc.2006.07.137.
Article
CAS
PubMed
Google Scholar
Reik A, Zhou Y, Collingwood TN, Warfe L, Bartsevich V, Kong Y, Henning KA, Fallentine BK, Zhang L, Zhong X, Jouvenot Y, Jamieson AC, Rebar EJ, Case CC, Korman A, Li XY, Black A, King DJ, Gregory PD: Enhanced protein production by engineered zinc finger proteins. Biotechnol Bioeng. 2007, 97: 1180-1189. 10.1002/bit.21304.
Article
CAS
PubMed
Google Scholar
Jamieson AC, Miller JC, Pabo CO: Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. 2003, 2: 361-368. 10.1038/nrd1087.
Article
CAS
PubMed
Google Scholar
Rebar EJ, Huang Y, Hickey R, Nath AK, Meoli D, Nath S, Chen B, Xu L, Liang Y, Jamieson AC, Zhang L, Spratt SK, Case CC, Wolffe A, Giordano FJ: Induction of angiogenesis in a mouse model using engineered transcription factors. Nat Med. 2002, 8: 1427-1432. 10.1038/nm795.
Article
CAS
PubMed
Google Scholar
Rebar EJ: Development of pro-angiogenic engineered transcription factors for the treatment of cardiovascular disease. Expert Opin Investig Drugs. 2004, 13: 829-839. 10.1517/13543784.13.7.829.
Article
CAS
PubMed
Google Scholar
Pollock R, Giel M, Linher K, Clackson T: Regulation of endogenous gene expression with a small-molecule dimerizer. Nat Biotechnol. 2002, 20: 729-733. 10.1038/nbt0702-729.
Article
CAS
PubMed
Google Scholar
Dent CL, Lau G, Drake EA, Yoon A, Case CC, Gregory PD: Regulation of endogenous gene expression using small molecule-controlled engineered zinc-finger protein transcription factors. Gene Ther. 2007, 14: 362-1369.
Google Scholar
Snowden AW, Gregory PD, Case CC, Pabo CO: Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol. 2002, 12: 2159-2166. 10.1016/S0960-9822(02)01391-X.
Article
CAS
PubMed
Google Scholar
Xu GL, Bestor TH: Cytosine methylation targetted to pre-determined sequences. Nature Genetics. 1997, 17: 376-378. 10.1038/ng1297-376.
Article
CAS
PubMed
Google Scholar
Nomura W, Barbas CF: In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase. J Am Chem Soc. 2007, 129: 8676-8677. 10.1021/ja0705588.
Article
CAS
PubMed
Google Scholar
Kim YG, Chandrasegaran S: Chimeric restriction endonuclease. Proceedings of the National Academy of Sciences of the United States of America. 1994, 91: 883-887. 10.1073/pnas.91.3.883.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wah DA, Bitinaite J, Schildkraut I, Aggarwal AK: Structure of FokI has implications for DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95: 10564-10569. 10.1073/pnas.95.18.10564.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I: FokI dimerization is required for DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America. 1998, 95: 10570-10575. 10.1073/pnas.95.18.10570.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D: Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 2000, 28: 3361-3369. 10.1093/nar/28.17.3361.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S: Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and Cellular Biology. 2001, 21: 289-297. 10.1128/MCB.21.1.289-297.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bibikova M, Golic M, Golic KG, Carroll D: Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002, 161: 1169-1175.
CAS
PubMed
PubMed Central
Google Scholar
Porteus MH, Baltimore D: Chimeric nucleases stimulate gene targeting in human cells. Science (New York, NY). 2003, 300: 763.
Article
Google Scholar
Lloyd A, Plaisier CL, Carroll D, Drews GN: Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 2005, 102: 2232-2237. 10.1073/pnas.0409339102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morton J, Davis MW, Jorgensen EM, Carroll D: Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103: 16370-16375. 10.1073/pnas.0605633103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartlerode AJ, Scully R: Mechanisms of double-strand break repair in somatic mammalian cells. The Biochemical Journal. 2009, 423: 157-168. 10.1042/BJ20090942.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bozas A, Beumer KJ, Trautman JK, Carroll D: Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics. 2009, 182: 641-651. 10.1534/genetics.109.101329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008, 26: 808-816. 10.1038/nbt1410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rago C, Vogelstein B, Bunz F: Genetic knockouts and knockins in human somatic cells. Nat Protoc. 2007, 2: 2734-2746. 10.1038/nprot.2007.408.
Article
CAS
PubMed
Google Scholar
Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN: Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105: 5809-5814. 10.1073/pnas.0800940105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu PQ, Chan E, Cost GJ, Zhang L, Wang J, Miller JC, Guschin DY, Reik A, Holmes MC, Mott JE, Collingwood TN, Gregory PD: Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol Bioeng. 2010, 106: 97-105.
CAS
PubMed
Google Scholar
Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC: Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005, 435: 646-651. 10.1038/nature03556.
Article
CAS
PubMed
Google Scholar
Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, Clappier E, Caccavelli L, Delabesse E, Beldjord K, Asnafi V, MacIntyre E, Dal Cortivo L, Radford I, Brousse N, Sigaux F, Moshous D, Hauer J, Borkhardt A, Belohradsky BH, Wintergerst U, Velez MC, Leiva L, Sorensen R, Wulffraat N, Blanche S, Bushman FD, Fischer A, Cavazzana-Calvo M: Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008, 118: 3132-3142. 10.1172/JCI35700.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kandavelou K, Ramalingam S, London V, Mani M, Wu J, Alexeev V, Civin CI, Chandrasegaran S: Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochemical and Biophysical Research Communications. 2009, 388: 56-61. 10.1016/j.bbrc.2009.07.112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alwin S, Gere MB, Guhl E, Effertz K, Barbas CF, Segal DJ, Weitzman MD, Cathomen T: Custom zinc-finger nucleases for use in human cells. Mol Ther. 2005, 12: 610-617. 10.1016/j.ymthe.2005.06.094.
Article
CAS
PubMed
Google Scholar
Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D: Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. 2006, 172: 2391-2403. 10.1534/genetics.105.052829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD, Pabo CO, Rebar EJ: An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 2007, 25: 778-785. 10.1038/nbt1319.
Article
CAS
PubMed
Google Scholar
Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T: Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 2007, 25: 786-793. 10.1038/nbt1317.
Article
CAS
PubMed
Google Scholar
Pruett-Miller SM, Reading DW, Porter SN, Porteus MH: Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet. 2009, 5: e1000376-10.1371/journal.pgen.1000376.
Article
PubMed
PubMed Central
Google Scholar
Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA: Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. 2008, 26: 695-701. 10.1038/nbt1398.
Article
CAS
PubMed
PubMed Central
Google Scholar
Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL: Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. 2008, 26: 702-708. 10.1038/nbt1409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK: Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS ONE. 2009, 4: e4348-10.1371/journal.pone.0004348.
Article
PubMed
PubMed Central
Google Scholar
Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D: Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105: 19821-19826. 10.1073/pnas.0810475105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Ménoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R: Knockout rats via embryo microinjection of zinc-finger nucleases. Science (New York, NY). 2009, 325: 433.
Article
CAS
Google Scholar
Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, Serikawa T: Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS ONE. 2010, 5: e8870-10.1371/journal.pone.0008870.
Article
PubMed
PubMed Central
Google Scholar
Bartsevich VV, Miller JC, Case CC, Pabo CO: Engineered zinc finger proteins for controlling stem cell fate. Stem Cells. 2003, 21: 632-637. 10.1634/stemcells.21-6-632.
Article
CAS
PubMed
Google Scholar
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, Dekelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R: Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009, 277: 851-7. 10.1038/nbt.1562.
Article
Google Scholar
Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L: Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. 2009, 5: 97-110. 10.1016/j.stem.2009.05.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minczuk M, Papworth MA, Miller JC, Murphy MP, Klug A: Development of a single-chain, quasi-dimeric zinc-finger nuclease for the selective degradation of mutated human mitochondrial DNA. Nucleic Acids Res. 2008, 36: 3926-3938. 10.1093/nar/gkn313.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minczuk M, Papworth MA, Kolasinska P, Murphy MP, Klug A: Sequence-specific modification of mitochondrial DNA using a chimeric zinc finger methylase. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103: 19689-19694. 10.1073/pnas.0609502103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD: BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol Bioeng. 2010, 105: 330-340. 10.1002/bit.22541.
Article
CAS
PubMed
Google Scholar
Liu PQ, Tan S, Mendel MC, Murrills RJ, Bhat BM, Schlag B, Samuel R, Matteo JJ, de la Rosa R, Howes K, Reik A, Case CC, Bex FJ, Young K, Gregory PD: Isogenic human cell lines for drug discovery: regulation of target gene expression by engineered zinc-finger protein transcription factors. J Biomol Screen. 2005, 10: 304-313. 10.1177/1087057104272663.
Article
CAS
PubMed
Google Scholar