Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht
W, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Prim.
2017;3:17071.
Article
PubMed
Google Scholar
Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain &
behaviour–epigenetic regulation of the gut–brain axis. Genes, Brain Behav.
2014;13(1):69–86.
Article
CAS
Google Scholar
Scheperjans F, Aho V, Pereira PAB, Koskinen K, Paulin L, Pekkonen
E, et al. Gut microbiota are related to Parkinson’s disease and clinical
phenotype. Mov Disord. 2015;30(3):350–8.
Article
PubMed
Google Scholar
Lin A, Zheng W, He Y, Tang W, Wei X, He R, et al. Gut microbiota in
patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord.
2018;53:82–8.
Article
PubMed
Google Scholar
Zhuang Z-Q, Shen L-L, Li W-W, Fu X, Zeng F, Gui L, et al. Gut
microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis.
2018;63(4):1337–46.
Article
PubMed
CAS
Google Scholar
Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to
mechanism. Nature. 2016;539(7628):197–206.
Article
PubMed
PubMed Central
Google Scholar
Chen J, Chia N, Kalari KR, Yao JZ, Novotna M, Soldan MMP, et al.
Multiple sclerosis patients have a distinct gut microbiota compared to healthy
controls. Sci Rep. 2016;6:28484.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang C, Li G, Huang P, Liu Z, Zhao B. The gut microbiota and
Alzheimer’s disease. J Alzheimers Dis. 2017;58(1):1–15.
Article
PubMed
CAS
Google Scholar
Jangi S, Gandhi R, Cox LM, Li N, Von Glehn F, Yan R, et al.
Alterations of the human gut microbiome in multiple sclerosis. Nat Commun.
2016;7:12015.
Article
PubMed
PubMed Central
CAS
Google Scholar
Longstreth WT Jr, Meschke JS, Davidson SK, Smoot LM, Smoot JC,
Koepsell TD. Hypothesis: a motor neuron toxin produced by a clostridial species
residing in gut causes ALS. Med Hypotheses. 2005;64(6):1153–6.
Article
PubMed
CAS
Google Scholar
Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U,
Dori-Bachash M, et al. Potential roles of gut microbiome and metabolites in
modulating ALS in mice. Nature. 2019;572(7770):474–80.
Article
PubMed
CAS
Google Scholar
Brenner D, Hiergeist A, Adis C, Mayer B, Gessner A, Ludolph AC, et
al. The fecal microbiome of ALS patients. Neurobiol Aging.
2018;61:132–7.
Article
PubMed
Google Scholar
Rowin J, Xia Y, Jung B, Sun J. Gut inflammation and dysbiosis in
human motor neuron disease. Physiol Rep. 2017;5(18):e13443.
https://doi.org/10.14814/phy2.13443.
Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W,
et al. A revision of the El Escorial criteria-2015. Amyotroph Lateral Scler
Front Degener. 2015;16(5–6):291–2.
Article
Google Scholar
Deidda F, Amoruso A, Nicola S, Graziano T, Pane M, Allesina S, et
al. The in vitro effectiveness of Lactobacillus fermentum against different
Candida species compared with broadly used azoles. J Clin Gastroenterol.
2016;50:S171–4.
Article
PubMed
CAS
Google Scholar
Mogna L, Del Piano M, Deidda F, Nicola S, Soattini L, Debiaggi R,
et al. Assessment of the in vitro inhibitory activity of specific probiotic
bacteria against different Escherichia coli strains. J Clin Gastroenterol.
2012;46:S29–32.
Article
PubMed
Google Scholar
Mogna L, Deidda F, Nicola S, Amoruso A, Del Piano M, Mogna G. In
vitro inhibition of Klebsiella pneumoniae by Lactobacillus delbrueckii subsp.
delbrueckii LDD01 (DSM 22106): an innovative strategy to possibly counteract
such infections in humans? J Clin Gastroenterol.
2016;50:S136–9.
Article
PubMed
CAS
Google Scholar
Deidda F, Amoruso A, Nicola S, Graziano T, Pane M, Mogna L. New
approach in acne therapy: a specific bacteriocin activity and a targeted anti
IL-8 property in just 1 probiotic strain, the L. salivarius LS03. J Clin
Gastroenterol. 2018;52:S78–81.
Article
PubMed
CAS
Google Scholar
Aloisio I, Mazzola G, Corvaglia LT, Tonti G, Faldella G, Biavati B,
et al. Influence of intrapartum antibiotic prophylaxis against group B
Streptococcus on the early newborn gut composition and evaluation of the
anti-Streptococcus activity of Bifidobacterium strains. Appl Microbiol
Biotechnol. 2014;98(13):6051–60.
PubMed
CAS
Google Scholar
Guo X, Xia X, Tang R, Wang K. Real-time PCR quantification of the
predominant bacterial divisions in the distal gut of Meishan and Landrace pigs.
Anaerobe. 2008;14(4):224–8.
Article
PubMed
CAS
Google Scholar
Hierro N, Esteve-Zarzoso B, González Á, Mas A, Guillamón JM.
Real-time quantitative PCR (QPCR) and reverse transcription-QPCR for detection
and enumeration of total yeasts in wine. Appl Environ Microbiol.
2006;72(11):7148–55.
Article
PubMed
PubMed Central
CAS
Google Scholar
Malinen E, Kassinen A, Rinttilä T, Palva A. Comparison of real-time
PCR with SYBR Green I or 5′-nuclease assays and dot-blot hybridization with
rDNA-targeted oligonucleotide probes in quantification of selected faecal
bacteria. Microbiology. 2003;149(1):269–77.
Article
PubMed
CAS
Google Scholar
Quagliariello A, Aloisio I, Bozzi Cionci N, Luiselli D, D’Auria G,
Martinez-Priego L, et al. Effect of Bifidobacterium breve on the intestinal
microbiota of coeliac children on a gluten free diet: a pilot study. Nutrients.
2016;8(10):660.
Article
PubMed Central
CAS
Google Scholar
Aloisio I, Prodam F, Giglione E, Bozzi Cionci N, Solito A, Bellone
S, et al. Three-month feeding integration with bifidobacterium strains prevents
gastrointestinal symptoms in healthy newborns. Front Nutr.
2018;5:39.
Article
PubMed
PubMed Central
Google Scholar
Lee ZM-P, Bussema C III, Schmidt TM. rrn DB: documenting the number
of rRNA and tRNA genes in bacteria and archaea. Nucleic Acids Res.
2008;37(suppl_1):D489–93.
PubMed
PubMed Central
Google Scholar
Wuyts J, Perriere G, Van de Peer Y. The European ribosomal RNA
database. Nucleic Acids Res. 2004;32(suppl_1):D101–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM. rrn DB:
improved tools for interpreting rRNA gene abundance in bacteria and archaea and
a new foundation for future development. Nucleic Acids Res.
2014;43(D1):D593–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cocolin L, Aggio D, Manzano M, Cantoni C, Comi G. An application of
PCR-DGGE analysis to profile the yeast populations in raw milk. Int Dairy J.
2002;12(5):407–11.
Article
CAS
Google Scholar
Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM,
Munro K, et al. Detection and identification of gastrointestinallactobacillus
species by using denaturing gradient gel electrophoresis and species-specific
pcr primers. Appl Environ Microbiol. 2000;66(1):297–303.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gaggìa F, Baffoni L, Stenico V, Alberoni D, Buglione E, Lilli A, et
al. Microbial investigation on honey bee larvae showing atypical symptoms of
European foulbrood. Bull Insectology. 2015;68(2):321–7.
Google Scholar
Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M.
Development of a prokaryotic universal primer for simultaneous analysis of
bacteria and archaea using next-generation sequencing. PLoS One.
2014;9(8):e105592.
Article
PubMed
PubMed Central
CAS
Google Scholar
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads
to improve genome assemblies. Bioinformatics.
2011;27(21):2957–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD,
Costello EK, et al. QIIME allows analysis of high-throughput community
sequencing data. Nat Methods. 2010;7(5):335.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et
al. Chimeric 16S rRNA sequence formation and detection in Sanger and
454-pyrosequenced PCR amplicons. Genome Res.
2011;21(3):494–504.
Article
PubMed
PubMed Central
CAS
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics. 2010;26(19):2460–1.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL,
Knight R. PyNAST: a flexible tool for aligning sequences to a template
alignment. Bioinformatics. 2009;26(2):266–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al.
The SILVA ribosomal RNA gene database project: improved data processing and
web-based tools. Nucleic Acids Res. 2012;41(D1):D590–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, et al.
Intestinal dysbiosis associated with systemic lupus erythematosus. MBio.
2014;5(5):e01548–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun J, Zhan Y, Mariosa D, Larsson H, Almqvist C, Ingre C, et al.
Antibiotics use and risk of amyotrophic lateral sclerosis in Sweden. Eur J
Neurol. 2019;26(11):1355–61.
https://doi.org/10.1111/ene.13986.
Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP,
Potter H, et al. Evidence of compromised blood-spinal cord barrier in early and
late symptomatic SOD1 mice modeling ALS. PLoS One.
2007;2(11):e1205.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sokol H, Leducq V, Aschard H, Pham H-P, Jegou S, Landman C, et al.
Fungal microbiota dysbiosis in IBD. Gut. 2017;66(6):1039–48.
Article
PubMed
CAS
Google Scholar
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A
human gut microbial gene catalogue established by metagenomic sequencing.
Nature. 2010;464(7285):59.
Article
PubMed
PubMed Central
CAS
Google Scholar
Banack SA, Cox PA. Biomagnification of cycad neurotoxins in flying
foxes: implications for ALS-PDC in Guam. Neurology.
2003;61(3):387–9.
Article
PubMed
CAS
Google Scholar
Banack SA, Murch SJ, Cox PA. Neurotoxic flying foxes as dietary
items for the Chamorro people, Marianas Islands. J Ethnopharmacol.
2006;106(1):97–104.
Article
PubMed
Google Scholar
Cox PA, Sacks OW. Cycad neurotoxins, consumption of flying foxes,
and ALS-PDC disease in Guam. Neurology. 2002;58(6):956–9.
Article
PubMed
Google Scholar
Cox PA, Banack SA, Murch SJ. Biomagnification of cyanobacterial
neurotoxins and neurodegenerative disease among the Chamorro people of Guam.
Proc Natl Acad Sci. 2003;100(23):13380–3.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cox PA, Banack SA, Murch SJ. Cyanobacteria, cycads, and
neurodegenerative disease among the Chamorro people of Guam. Mem N Y Bot Gard.
2007;97:253–85.
Google Scholar
Murch SJ, Cox PA, Banack SA. A mechanism for slow release of
biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam.
Proc Natl Acad Sci. 2004;101(33):12228–31.
Article
PubMed
CAS
PubMed Central
Google Scholar
Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor--still
lethal after eight years. Trends Neurosci. 1995;18(2):57–8.
PubMed
CAS
Google Scholar
Brownson DM, Mabry TJ, Leslie SW. The cycad neurotoxic amino acid,
ß-N-methylamino-l-alanine (BMAA), elevates intracellular calcium levels in
dissociated rat brain cells. J Ethnopharmacol.
2002;82(2–3):159–67.
Article
PubMed
CAS
Google Scholar
Buenz EJ, Howe CL. Beta-methylamino-alanine (BMAA) injures
hippocampal neurons in vivo. Neurotoxicology.
2007;28(3):702–4.
Article
PubMed
CAS
Google Scholar
Rao SD, Banack SA, Cox PA, Weiss JH. BMAA selectively injures motor
neurons via AMPA/kainate receptor activation. Exp Neurol.
2006;201(1):244–52.
Article
PubMed
CAS
Google Scholar
Spencer PS, Nunn PB, Hugon J, Ludolph AC, Ross SM, Roy DN, et al.
Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant
excitant neurotoxin. Science (80- ). 1987;237(4814):517–22.
Article
CAS
Google Scholar
Cestèle S, Catterall WA. Molecular mechanisms of neurotoxin action
on voltage-gated sodium channels. Biochimie.
2000;82(9–10):883–92.
Article
PubMed
Google Scholar
Llewellyn LE. Saxitoxin, a toxic marine natural product that
targets a multitude of receptors. Nat Prod Rep.
2006;23(2):200–22.
Article
PubMed
CAS
Google Scholar
Feurstein D, Stemmer K, Kleinteich J, Speicher T, Dietrich DR.
Microcystin congener–and concentration-dependent induction of murine neuron
apoptosis and neurite degeneration. Toxicol Sci.
2011;124(2):424–31.
Article
PubMed
CAS
Google Scholar
Fischer WJ, Dietrich DR. Pathological and biochemical
characterization of microcystin-induced hepatopancreas and kidney damage in carp
(Cyprinus carpio). Toxicol Appl Pharmacol. 2000;164(1):73–81.
Article
PubMed
CAS
Google Scholar
Yoshizawa S, Matsushima R, Watanabe MF, Harada K, Ichihara A,
Carmichael WW, et al. Inhibition of protein phosphatases by microcystis and
nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol.
1990;116(6):609–14.
Article
PubMed
CAS
Google Scholar
Derrien M, Van Baarlen P, Hooiveld G, Norin E, Muller M, de Vos W.
Modulation of mucosal immune response, tolerance, and proliferation in mice
colonized by the mucin-degrader Akkermansia muciniphila. Front Microbiol.
2011;2:166.
Article
PubMed
PubMed Central
Google Scholar
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et
al. Induction of colonic regulatory T cells by indigenous Clostridium species.
Science (80- ). 2011;331(6015):337–41.
Article
CAS
Google Scholar
Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney
ML, et al. Enterobacteriaceae act in concert with the gut microbiota to induce
spontaneous and maternally transmitted colitis. Cell Host Microbe.
2010;8(3):292–300.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kleessen B, Kroesen AJ, Buhr HJ, Blaut M. Mucosal and invading
bacteria in patients with inflammatory bowel disease compared with controls.
Scand J Gastroenterol. 2002;37(9):1034–41.
Article
PubMed
CAS
Google Scholar
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the
gut microbiota on brain and behaviour. Nat Rev Neurosci.
2012;13(10):701.
Article
CAS
PubMed
Google Scholar
Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal
microbiota composition in patients with major depressive disorder. Brain Behav
Immun. 2015;48:186–94.
Article
PubMed
Google Scholar
Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. Human gut
microbiome and risk for colorectal cancer. J Natl Cancer Inst.
2013;105(24):1907–11.
Article
PubMed
PubMed Central
CAS
Google Scholar
De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A,
Serrazzanetti DI, et al. Fecal microbiota and metabolome of children with autism
and pervasive developmental disorder not otherwise specified. PLoS One.
2013;8(10):e76993.
Article
PubMed
PubMed Central
CAS
Google Scholar
Parracho HMRT, Bingham MO, Gibson GR, McCartney AL. Differences
between the gut microflora of children with autistic spectrum disorders and that
of healthy children. J Med Microbiol. 2005;54(10):987–91.
Article
PubMed
Google Scholar
Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the
genetic basis of fibrolytic specialization by Lachnospiraceae and
Ruminococcaceae in diverse gut communities. Diversity.
2013;5(3):627–40.
Article
Google Scholar
Yu Z-T, Yao W, Zhu W-Y. Isolation and identification of
equol-producing bacterial strains from cultures of pig faeces. FEMS Microbiol
Lett. 2008;282(1):73–80.
Article
PubMed
CAS
Google Scholar
Yu W, Wang Y, Zhou D-X, Zhao L-M, Li G-R, Deng X-L. Equol is
neuroprotective during focal cerebral ischemia and reperfusion that involves
p-Src and gp91phox. Curr Neurovasc Res. 2014;11(4):367–77.
Article
PubMed
CAS
Google Scholar
Collins JW, Keeney KM, Crepin VF, Rathinam VAK, Fitzgerald KA,
Finlay BB, et al. Citrobacter rodentium: infection, inflammation and the
microbiota. Nat Rev Microbiol. 2014;12(9):612.
Article
PubMed
CAS
Google Scholar
Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor
EC, et al. Host-mediated inflammation disrupts the intestinal microbiota and
promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe.
2007;2(2):119–29.
Article
PubMed
CAS
Google Scholar
Louis S, Tappu R-M, Damms-Machado A, Huson DH, Bischoff SC.
Characterization of the gut microbial community of obese patients following a
weight-loss intervention using whole metagenome shotgun sequencing. PLoS One.
2016;11(2):e0149564.
Article
PubMed
PubMed Central
CAS
Google Scholar
Park Y, Park J, Kim Y, Baek H, Kim SH. Association between
nutritional status and disease severity using the amyotrophic lateral sclerosis
(ALS) functional rating scale in ALS patients. Nutrition.
2015;31(11–12):1362–7.
Article
PubMed
Google Scholar
Dinan TG, Stanton C, Cryan JF. Psychobiotics: a novel class of
psychotropic. Biol Psychiatry. 2013;74(10):720–6.
Article
PubMed
CAS
Google Scholar
Louis P, Flint HJ. Formation of propionate and butyrate by the
human colonic microbiota. Environ Microbiol. 2017;19(1):29–41.
Article
PubMed
CAS
Google Scholar
Allen SJ, Wareham K, Wang D, Bradley C, Hutchings H, Harris W, et
al. Lactobacilli and bifidobacteria in the prevention of antibiotic-associated
diarrhoea and Clostridium difficile diarrhoea in older inpatients (PLACIDE): a
randomised, double-blind, placebo-controlled, multicentre trial. Lancet.
2013;382(9900):1249–57.
Article
PubMed
Google Scholar
Gao XW, Mubasher M, Fang CY, Reifer C, Miller LE. Dose–response
efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285
and Lactobacillus casei LBC80R for antibiotic-associated diarrhea and
Clostridium difficile-associated diarrhea prophylaxis in adult patients. Am J
Gastroenterol. 2010;105(7):1636.
Article
PubMed
Google Scholar
Naaber P, Smidt I, Štšepetova J, Brilene T, Annuk H, Mikelsaar M.
Inhibition of Clostridium difficile strains by intestinal Lactobacillus species.
J Med Microbiol. 2004;53(6):551–4.
Article
PubMed
Google Scholar
Johnston BC, Ma SSY, Goldenberg JZ, Thorlund K, Vandvik PO, Loeb M,
et al. Probiotics for the prevention of Clostridium difficile–associated
diarrhea: a systematic review and meta-analysis. Ann Intern Med.
2012;157(12):878–88.
Article
PubMed
Google Scholar
Goldenberg JZ, Yap C, Lytvyn L, Lo CK, Beardsley J, Mertz D, et al.
Probiotics for the prevention of Clostridium difficile-associated diarrhea in
adults and children. Cochrane Database Syst Rev. 2017;12.
De Wolfe TJ, Eggers S, Barker AK, Kates AE, Dill-McFarland KA, Suen
G, et al. Oral probiotic combination of Lactobacillus and Bifidobacterium alters
the gastrointestinal microbiota during antibiotic treatment for Clostridium
difficile infection. PLoS One. 2018;13(9):e0204253.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR,
Wallen ZD, et al. Parkinson’s disease and Parkinson’s disease medications have
distinct signatures of the gut microbiome. Mov Disord.
2017;32(5):739–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G.
Environmental and gut bacteroidetes: the food connection. Front Microbiol.
2011;2:93.
Article
PubMed
PubMed Central
Google Scholar
Niu Q, Li P, Hao S, Zhang Y, Kim SW, Li H, et al. Dynamic
distribution of the gut microbiota and the relationship with apparent crude
fiber digestibility and growth stages in pigs. Sci Rep.
2015;5:9938.
Article
PubMed
PubMed Central
CAS
Google Scholar