Skip to main content

Functional connectivity changes in cerebral small vessel disease - a systematic review of the resting-state MRI literature

Abstract

Background

Cerebral small vessel disease (CSVD) is a common neurological disease present in the ageing population that is associated with an increased risk of dementia and stroke. Damage to white matter tracts compromises the substrate for interneuronal connectivity. Analysing resting-state functional magnetic resonance imaging (fMRI) can reveal dysfunctional patterns of brain connectivity and contribute to explaining the pathophysiology of clinical phenotypes in CSVD.

Materials and methods

This systematic review provides an overview of methods and results of recent resting-state functional MRI studies in patients with CSVD. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol, a systematic search of the literature was performed.

Results

Of 493 studies that were screened, 44 reports were identified that investigated resting-state fMRI connectivity in the context of cerebral small vessel disease. The risk of bias and heterogeneity of results were moderate to high. Patterns associated with CSVD included disturbed connectivity within and between intrinsic brain networks, in particular the default mode, dorsal attention, frontoparietal control, and salience networks; decoupling of neuronal activity along an anterior–posterior axis; and increases in functional connectivity in the early stage of the disease.

Conclusion

The recent literature provides further evidence for a functional disconnection model of cognitive impairment in CSVD. We suggest that the salience network might play a hitherto underappreciated role in this model. Low quality of evidence and the lack of preregistered multi-centre studies remain challenges to be overcome in the future.

Peer Review reports

Background

Cerebral small vessel disease (CSVD) is a term that describes clinical, neuroimaging, and pathological features assumed to arise from compromised blood flow in the intrinsic cerebral arteriolar system [1]. In its later stages, CSVD is associated with neurological symptoms, in particular lacunar ischaemic stroke, and cognitive impairment ranging from mild deficits to vascular dementia [2, 3]. Small vessel disease is estimated to be the main etiological factor in up to 23% of all ischaemic strokes [4] and to be the second most common contributing factor to dementia after Alzheimer’s pathology [5] and is thus responsible for a growing disease burden in ageing societies.

Even in its pre-symptomatic stage, CSVD is associated with structural brain changes on neuroimaging, in particular white matter hyperintensities (WMH) of presumed vascular origin, lacunes, cerebral microbleeds, enlarged perivascular spaces, and brain atrophy [6]. Cardiovascular risk factors, such as hypertension, diabetes, smoking, or dyslipidaemia, are associated with both WMH and the clinical sequelae associated with CSVD [7, 8].

In recent years, the network perspective on the human brain has revolutionised neuroscience and advanced our understanding of neurological and psychiatric disorders [9,10,11,12]. The network paradigm posits that different brain regions, while spatially remote, are structurally and functionally linked and interact to facilitate brain functions. Analysis of structural brain networks by magnetic resonance diffusion tensor imaging revealed that WMH disrupts the topological organisation of the brain connectome and that the associated loss of network efficiency links vascular risk burden and cognitive impairment [13,14,15,16]. Nevertheless, there remains considerable variability in clinical phenotypes, such as cognitive impairment or affective functions, that is not explained by structural markers alone [17,18,19].

Functional connectivity (FC), on the other hand, is defined as the pattern of synchronous neuronal activation [20], which, in turn, can be probed in vivo using the blood-oxygen level-dependent (BOLD) signal in magnetic resonance imaging (MRI) [21]. Functional connectivity can be analysed either in response to tasks and external stimuli or in the resting-state which minimises the cognitive and behavioural demand on subjects [21]. The latter provides a description of the spatiotemporal organisation of brain activity, from which discrete modes can be extracted as intrinsic resting-state networks that correspond to specific cognitive domains [22].

Recently, the benefits of such a shift of perspective toward a more global understanding of brain function have also been recognised for cerebral small vessel disease [23]. While the clinical benefits of understanding patterns of disrupted FC associated with CSVD might seem, at the moment, very limited, our vision is that, ultimately, it might contribute to designing and implementing patient-specific interventions in the form of neuropsychological training or electromagnetic stimulation to help ameliorate cognitive impairment. Evidence for the relevance of disturbed connectivity especially in the default mode, dorsal attention, and frontoparietal control networks to cognitive impairment in CSVD has been reviewed previously, covering the literature up to 2014 [24]. In the present article, we provide an overview over the rapidly expanding recent literature on altered resting-state connectivity patterns associated with CSVD. In contrast to previous work, we include studies of both clinically healthy individuals and patients with manifest CSVD and consider both distributed networks and point-to-point connectivity. In order to keep the review focused, we restrict attention to resting-state functional MRI studies and do not review studies using a task-based design or different imaging modalities, such as electro- or magnetoencephalography. The goal is to take stock of the current literature, review methodological advances in recent years, and update our understanding of the neural mechanisms underlying the cognitive deficits that patients with CSVD face.

Methods

A systematic review of the literature was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement [25]; the protocol for the review was not preregistered.

Literature search and study selection

Inclusion criteria for articles considered in this review were as follows: (1) written in English, (2) analysing exclusively human study participants, (3) published after January 2010, (4) radiological evidence of sporadic cerebral small vessel disease with structural brain imaging showing manifestations of CSVD in the form of white matter hyperintensities in at least a subset of the study population, and (5) analysis of resting-state functional connectivity using functional MRI. We excluded review articles; descriptions of ongoing studies; functional imaging studies using only electroencephalography, magnetoencephalography, or positron emission tomography; and reports concentrating exclusively on patients with non-sporadic CSVD, e.g. of genetic origin, or non-vascular dementias, e.g. Alzheimer’s disease.

Following a prespecified search strategy, the PubMed online database was queried for studies published between January 2010 and November 2020 using the conjunction of keywords specific for pathology (‘small vessel disease’, ‘white matter lesion’, ‘leukoaraiosis’, ‘microangiopathy’), network science (‘connectivity’, ‘network’, ‘graph’, ‘module’), and imaging modality (‘MRI’, ‘BOLD’, ‘resting state’) as search criteria (see Additional file 1 for the exact search strategy). In addition, references of search results were screened for further eligible articles. Studies were discarded if the title or abstract indicated failure to meet all the specified inclusion or satisfaction of at least one exclusion criterion. The remaining articles were read in full and evaluated according to the stated criteria.

The risk of methodological bias in individual studies (PRISMA items 12 and 19) was assessed using the Appraisal tool for Cross-Sectional Studies (AXIS tool) [26], modified to not contain items related to presentation of the Results, the Discussion of findings, or the Funding of the study [27]. Detailed descriptions of individual items are presented in Additional file 1: Table S1. Based on the number of quality criteria satisfied, each study was assigned an integer score from 0 (no criteria satisfied) to 11 (all criteria satisfied). Trichotomising this ordinal scale, we classified the risk of bias as high (score 0–3), moderate (4–7), or low (8–11). We strived to cover the literature comprehensively, and even a high risk of basis was therefore not defined as an exclusion criterion for this review.

Data extraction and analysis

After screening, the following data were extracted from the articles: year of publication; sample size; average age and clinical characteristics of study populations including measures undertaken to minimise confounding by comorbidities; the employed operationalisation of cerebral small vessel disease and severity grading of WMH; details of the scanning parameters and pre-processing steps including the controversial topics of motion scrubbing and global signal regression; the analytical approach to functional connectivity; and key results regarding patterns of altered connectivity in patients with CSVD and, if reported, their relation to cognitive performance.

For ease of presentation, studies were classified according to clinical characteristics of the study population—manifest CSVD, healthy participants, or others, not primarily vascular clinical conditions—and their main approach to quantifying and analysing connectivity. These predefined analytical categories included short-range connectivity within a part of the brain, long-range connectivity between pairs of remote brain areas defined either a priori or using a data-driven approach, and global analyses of topological properties of the functional connectome. We also reviewed the cognitive tests applied in these studies and associations of cognitive ability with functional connectivity measurements.

Results

Study characteristics

The results of the search and selection process are summarised in Fig. 1. We identified a total of 493 potentially relevant papers, 471 of which were obtained by searching PubMed and 22 through personal communication or as references cited in other works. Four hundred seventeen papers were excluded based on their title or abstract. Of the remaining 76 studies, which were read in full by both MS and ES, 44 were included in this review. Details of individual studies are summarised in Table 1.

Fig. 1
figure1

Systematic literature search and article screening results. The PubMed electronic database was searched on 1 December 2019, on 28 June 2020, and again on 22 November 2020. Together with articles obtained through other sources (personal communication, cited articles), 493 papers were identified, screened by M. S., and assessed based on inclusion and exclusion criteria. Full texts were obtained for 76 articles; these were assessed against the stated criteria by M. S. and E. S. The included 44 articles were classified on the basis of characteristics of the study population

Table 1 Summary of included articles analysing resting-state functional connectivity in patients with manifest cerebral small vessel disease (CSVD). We report imaging and clinical characteristics of patients included in each study, key steps in the acquisition and pre-processing of BOLD data, analysis of functional connectivity, and FC patterns found to be associated with CSVD. Descriptive statistics as extracted from articles are reported as mean ± standard deviation. Missing information is indicted by empty brackets ([]). Arrows indicate increased (↑) or reduced (↓) values, as well as positive () and negative () associations

The number of subjects, including both patients with small vessel disease and controls depending on study design, varied between 11 and 1584 with a median sample size of 72.5 (interquartile range [IQR] 50.8–106.8). Mean age across studies ranged from 50.0 to 76.4 years, with a median of 66.0 years (IQR 62.4–69.8 years).

Regarding the underlying research questions, roughly half of the included studies (24/44) reported the investigation of altered functional connectivity patterns in the presence of cerebral small vessel disease and its relation to cognitive ability as their primary research objective. Of these, six reports focused on patients with CSVD exclusively, whereas the study designs of the remaining reports involved comparing groups of healthy controls, patients with non-vascular cognitive impairment, or both. Twelve studies reported measures of cerebral small vessel disease, often as part of a more comprehensive assessment of structural brain parameters, and functional connectivity in populations of healthy participants without clinically manifest vascular pathology or cognitive impairment. Eight articles addressed functional connectivity in the context of other clinical conditions not directly related to vascular pathology, such as tau pathology-associated cognitive impairment or depression, but included markers of small vessel disease as covariates.

Operationalisation of CSVD and associated cognitive impairment

All of the 24 MRI studies reporting on resting-state functional connectivity in the context of clinically overt CSVD defined the presence of white matter hyperintensities on T2-weighted cerebral MR imaging as one of their inclusion criteria. In more than half of the studies (14/24), these were evaluated according to the ordinal Fazekas scale [55, 56]; in three studies, authors chose the Wahlund scale to assess age-related white matter changes [32]; white matter lesion load was also quantified volumetrically in eight studies; no precise definition of imaging criteria was reported in five articles.

When white matter disease was reported as a structural covariate in the investigation of functional connectivity, the extent of structural changes was quantified using either absolute or relative white matter hyperintensity volumes. Techniques for segmenting WMH on either T2 or FLAIR sequences included manual, semi-manual, and fully automated approaches; in one case, the algorithm was not described [57].

Beyond the presence of white matter lesions, evidence of lacunes or recent lacunar infarcts was considered in 13/24 studies; the distinction between the two entities was often imprecise, with only three articles referring to the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE, [6]) consensus statement in this context [31, 50, 51]. Reflecting their conceptualisation as fluid-filled cavities, lacunes were defined as hypointense ovoid regions on T2- or FLAIR-weighted imaging with a diameter ranging from [2–3] to [15–20] mm. Three studies required patients with CSVD to have evidence of at least one lacuna or recent lacunar infarct [28, 42, 52], while one report excluded such patients [36]. Information on the number of lacunes contributed to the definition of a compositive CSVD score in one study [49]; in the remaining cases, it was either reported descriptively or used as a covariate in statistical analyses [50]. While most studies specified cortical or large subcortical infarcts as an exclusion criterion, one article included such patients specifically [43].

In addition to imaging findings, clinical characteristics were used to define patient cohorts. This was done to either separate patients and participants with and without cognitive impairment; to differentiate patients with CSVD from patients with non-vascular cognitive impairment, especially Alzheimer’s disease; or to grade the severity of vascular cognitive impairment, ranging from cognitively normal (CN) over mildly affected (variably called subcortical vascular mild cognitive impairment [svMCI], or vascular cognitive impairment no dementia [VICND]) to subcortical vascular dementia (SVaD). In addition to dedicated diagnostic criteria for different dementias [58, 59], cognitive assessment was based predominantly on scales such as the Mini Mental State Examination (MMSE), Montreal Cognitive Assessment battery (MoCA), or Clinical Dementia Rating scale (CDR). A minority of studies used the Petersen criteria and included functional activities and temporal evolution of cognitive abilities in their definition of mild cognitive impairment [60, 61]. Only three studies employed positron emission tomography (PET) to distinguish tau and/or amyloid pathology from purely vascular disease [49, 62, 63], and the risk of confounding by mixed disease seems therefore high in the majority of reported studies.

Functional MRI acquisition and pre-processing

Magnetic resonance imaging was performed on scanners from a variety of vendors (Siemens, Philips, GE), usually at 3 Tesla. The use of specialised receiver head coils, multi-band, or multi-echo techniques was rarely reported. Repetition time (TR) and echo time (TE) were predominantly set at 2000 ms and 30 ms, respectively, with exceptional values ranging from 700 to 4500 ms and 13 to 84 ms, respectively. Reconstructed voxel sizes in the BOLD scans varied in the range [1.7–4] × [1.7–4] × [2–6] mm3, arranged in a three-dimensional matrix of dimensions varying in the range [64–128] × [64–128] × [20–64]. The number of acquired BOLD volumes varied between 100 and 700 (median 230, IQR 180–240). Participants were asked to keep their eyes open in 12 and closed in 20 of the reviewed studies; 12 articles provided no information. Description of functional MRI acquisition parameters was incomplete in 26 of the 44 analysed studies (61%); methods were judged as not-repeatable in these cases (AXIS item 11). Hemodynamic lags were not considered.

Pre-processing steps common to most studies included slice-time correction; realignment to a reference volume to correct for head motion; normalisation to a template space (usually MNI EPI [64]) including resampling; temporal band-pass filtering (lower end 0.005–0.01 Hz; upper end 0.08–0.15 Hz); and smoothing with a Gaussian filter of full-width at half maximum (FWHM) between 4 and 8 mm.

Confound regression and motion scrubbing were performed and reported less uniformly, as detailed in Tables 1 and 2. Specifically, global signal regression (GSR), that is orthogonalisation of voxel-wise timeseries with respect to the average BOLD signals from the white and grey matter, or the whole brain, was undertaken in 27/44 studies. Twenty-five studies employed subject-wise censoring in which participants were excluded from further analysis if the maximum or average head translation or rotation during the scan exceeded a certain threshold ranging from 0.5 to 3 mm translation and 0.5 to 3° rotation. Ten studies performed volume censoring according to a framewise displacement (FD) or framewise translation/rotation cut-off, excluding participants with too few remaining uncontaminated volumes [31, 49]. Two studies used spike regression [39, 65].

Connectivity analysis

The majority of studies investigated large-scale functional connectivity between remote brain areas, choosing full or partial temporal correlations between the BOLD time courses as a measure of connectivity. Regions of interest were defined a priori using external brain parcellations in 16 cases. Twenty-seven studies used a data-driven approach such as independent component analysis (ICA), seed-based connectivity analysis (SCA), or local BOLD activity (amplitudes of low-frequency fluctuations [ALFF]) to define regions of interest for further analysis. Many authors interpreted alterations in functional connectivity in the context of a small number of large-scale resting-state brain networks (RSNs), in particular the default mode (DMN) and frontoparietal control (FPCN) networks, but also the dorsal attention (DAN) and salience (SN) networks [22]. Eight reports used graph theoretical approaches, including global network parameters such as efficiency and clustering coefficient [31, 42, 43, 52, 53]; analysis of modularity structures [45, 50]; and self-referential quantification of region-specific centrality [35] to summarise the patterns of connectivity between multiple regions and to thus reflect global organisational principles of the brain networks.

Three studies investigated short-range connectivity [38, 66, 67], using regional homogeneity (ReHo) to quantify the similarity between BOLD signals as a marker of local connectivity [68].

The main findings of individual studies with respect to alterations in resting-state functional connectivity in the context of cerebral small vessel disease are summarised in Table 1. Patterns of altered connectivity were expressed either in comparison to healthy controls or along a gradient of increasing severity of CSVD imaging markers. For clinically or radiologically manifest CSVD, reduced functional connectivity dominated the findings on a global scale [43, 45, 53]. Within resting-state networks, lower functional coupling was repeatedly reported between components of the default mode network [28, 35, 44, 46, 47, 51], which is further supported by the co-occurrence of reduced DMN connectivity and increased WMH burden in patients with non-vascular cognitive impairment [62]. Within the FPCN, reduced connectivity was found in the left insula [46], whereas the right inferior parietal cortex appeared to be more strongly coupled to the rest of this network [51]. The average coupling between the DMN and FPCN was found to be reduced in patients with CSVD [51], even though a small number of inter-network edges showed increased connectivity [39]. The connectivity of the DAN was altered in relation to other networks with increased coupling to the FPCN and reduced coupling to the posterior DMN [39, 51]. The same pattern of altered inter-network connectivity was reported for the salience network [48]; intrinsic connectivity in the SN was increased in patients with CSVD and in association with the extent of white matter disease [83]. In healthy individuals or patients without symptomatic CSVD (Table 2), most studies did not report significant associations between FC and WMH burden [66, 79, 82, 86, 92]. Two studies found an association between higher FC, especially in occipital and frontal areas, and WMH burden [87, 93], whereas in patients with late-life depression the pattern was more similar to the one seen in patients with CSVD [69, 71].

Table 2 Summary of included articles analysing resting-state functional connectivity in healthy participants or patients without vascular cognitive impairment. We report imaging and clinical characteristics of patients included in each study, key steps in the acquisition and pre-processing of BOLD data, analysis of functional connectivity, and FC patterns found to be associated with CSVD. Descriptive statistics as extracted from articles are reported as range (min–max) and/or mean ± standard deviation. Missing information is indicted by empty brackets ([]). Reported are clinical characteristics of patients included in each study, details about the quantification of white matter hyperintensities, key steps in the analysis of functional connectivity, and FC patterns found to be associated with CSVD. Arrows indicate increased (↑) or reduced (↓) values, as well as positive () and negative () associations

Assessment of cognitive impairment

In the majority of studies, cognitive testing on participants was performed and investigated in association with the extent of white matter disease and functional connectivity. In addition to scales covering the global level of cognitive functions and deficits (MMSE, MoCA, and CDR), impairments in specific cognitive domains were quantified by sub-scores of these global scales or specialised neuropsychological test batteries, operationalising, in particular, executive function, processing speed, and memory. Table 3 summarises key findings of individual studies in these different domains. Most studies were able to confirm known associations between CSVD and cognitive impairment on the one hand, and, albeit less robustly, between functional connectivity and cognitive impairment on the other hand. Only few articles, however, addressed the question of how structural white matter damage and functional connectivity interact to affect cognition. In one analysis of 127 clinically healthy participants of the Harvard Ageing Brain Study, it was shown that the extent of WMH-associated decoupling of structural and functional connectivity in the default mode network correlated with both executive function and memory [81]. Moreover, in a combined analysis of 140 healthy participants and 90 patients with both vascular and non-vascular cognitive impairment, the authors demonstrated that the association of higher WMH load with poorer executive function and memory scores was moderated by global functional connectivity in the FPCN and by local FC in the salience network [65].

Table 3 Summary of reported associations between altered FC patterns in CSVD and cognitive ability. Arrows indicate positive () and negative () associations

Risk of bias and confounding

Risk of bias was assessed using the AXIS tool for all 24 studies recruiting patients with clinical CSVD. We did not formally assess the risk of bias in studies reporting results on FC and WMH in the context of conditions different from vascular cognitive impairment or in longitudinal studies. According to the AXIS tool, all studies thus assessed had an at least moderate risk of bias (10/24 moderate, 14/24 high). The distribution of assessments of individual quality items of the tool is depicted in Fig. 2 a. The overall aim or objective of the study (Item 1) was deemed unclear in 14 studies, often because of a lack of distinctions between exploratory and confirmatory, and causal and correlational approaches. In 9 cases, where aims included the inference of causal effects or were too broad to be assessed, a cross-sectional design was judged as inappropriate (Item 2). The sample size was not satisfactorily justified in any study. The reference population (Item 4) was mostly adequately specified as patients with CSVD, qualified by lists of inclusion and exclusion criteria. In five studies, the definition of the target population was unclear or contradictory. All but one article reported results from single-centre studies that recruited a convenience sample from a clinical setting; in these cases, the sample frame (Item 5) was judged as inappropriate and the selection process (Item 6) as non-representative. The exceptions were an analysis of a formal clinical register [84, 99]. No article addressed non-responders. Risk factors and outcomes (Item 7) were mostly valid (see above); exceptions included one unvalidated method to quantify WMH load [87] and the use of global graph parameters such as efficiency and path length. Reliability of outcome measures (Item 9) was generally judged to be low given the poor reproducibility of FC estimates in the context of CSVD, except for studies who explicitly estimated reliability as part of the study design [31, 42]. There were two main problems with the statistical methods used: firstly, confusion of exploratory and confirmatory approaches (cf. Item 1) led to a lack of clearly specified hypotheses and thus to inappropriately controlled type-I error rates in the case of multiple testing; secondly, many papers employed multi-scale approaches, in which results from the first, often global, analyses informed hypotheses tested in later, often more local, analyses. It is known that this method can inflate the rate of false-positive findings if the entire analysis pipeline is not accounted for properly, for example in a bootstrap loop [100]. The quality of the description of methods varied considerably. No article provided links to the program code used in the analysis, but this was not required to satisfy Item 12. Specific shortcoming included incomplete reporting of MRI acquisition parameters, lack of description of structural image pre-processing, and lack of detail in the description of statistical methods, such as choice of covariates, method to determine of p-values, or correction for multiple testing. The distribution of aggregate AXIS scores is shown in Fig. 2b. Given that none of the included studies had a low risk of bias or was preregistered, the overall risk of bias in the reviewed literature seems high.

Fig. 2
figure2

Assessment of risk of bias of 24 reviewed articles using the Appraisal tool for Cross-Sectional Studies (AXIS). a Distribution of per-item scores, indicating, for each item, the number of articles satisfying its definition. A detailed description of AXIS items and shortcomings of individual articles is presented in Additional file 1: Tables S1 and S2. b Distribution of aggregate AXIS scores computed as the number of items satisfied by any given reviewed article. Trichotomisation of the theoretical range 0–11 leads to the risk of bias being judged as high (0–3), moderate (4–7), or low (8–11)

Cardiovascular risk factors such as age, hypertension, diabetes mellitus, and dyslipidaemia are known to be associated with imaging markers of CSVD [101]. They also affect cerebrovascular reactivity and the circulatory autoregulation in response to neuronal activity (neurovascular coupling) [29] and are thus potential confounders of the relation between WMH and BOLD-derived functional connectivity. Similarly, vasoactive medications, in particular antihypertensives, which are commonly prescribed to patients with CSVD as well as substances like nicotine or caffeine may alter neurovascular coupling [102]. Despite this, reporting of and adjustment for comorbidities and medication was poor in the reviewed studies. While information on the demographic variables age and sex was provided in all reviewed articles, only about half reported results of analyses adjusted for these factors. Nine articles gave details on cardiovascular risk factors, yet none attempted to control for their potential confounding effect. Effects of prescribed medication or caffeine intake were not considered.

Discussion

For this systematic review, we identified 44 articles published in the previous 10 years reporting on MRI-derived resting-state functional brain connectivity in patients with white matter hyperintensities of presumed vascular origin as a marker of cerebral small vessel disease. Based on patient characteristics and research objective, studies could be divided into three groups: (1) group comparisons of patients with clinically and/or radiologically manifest CSVD, often involving a control group of healthy participants or patients with CSVD at different levels of cognitive impairment; (2) cohort studies of clinically healthy individuals in which white matter hyperintensities are reported as one of several parameters, often with the aim of characterising structure–function relationships or patterns of brain ageing; (3) investigations of resting-state connectivity in clinical conditions not primarily related to vascular pathology, in which measures of white matter disease were reported as covariates.

The overall median sample size of included studies was 68. There was a stark contrast in sample size between studies of patients with symptomatic CSVD (median 58, IQR 46–84, n = 24) and studies of clinically healthy participants (median 145, IQR 73–293, n = 12). Samples in studies focusing on non-vascular clinical conditions were of intermediate size (median 73, IQR 55–95, n = 8). These differences might be due to increased complexities associated with recruiting patients in a clinical context or the fact that some of the larger studies used data from comprehensive population-based research efforts, such as the Rotterdam Study [84, 103], the Harvard Brain Ageing Study [81, 82, 104], or the UK Biobank [93, 105].

Operationalisation of CSVD is study-context dependent

In addition to sample size, groups of studies also differed in their approaches to quantifying the severity of white matter disease. Clinically focused studies tended to rely on validated rating scales, such as the Fazekas or Wahlund scale, which assign an ordinal score based on the extent and distribution of white matter hyperintensities on T2-weighted MR imaging. A minority of studies considered the presence of lacunar infarcts as an additional marker for CSVD. The population-based studies of healthy participants, on the other hand, employed the cumulative volume of WMH as a continuous measure of disease burden. Numerical lesion load has the advantage of providing better resolution of inter-individual differences in groups of mildly affected participants; in addition, it can be determined reasonably reliably using automatic or semi-automatic image processing methods, although some degree of manual post-processing was usually done in the studies reviewed here [106]. Brain atrophy as a structural marker of both CSVD and neurodegenerative disease is known to be associated with changes in intrinsic brain connectivity [107]; it was included in many of the population-based studies using either the total intracranial volume to normalise observed WMH loads or region-specific grey matter volume, such as can be obtained from voxel-based morphometry (VBM) or cortical thickness measurements. Although methods have been developed to segment perivascular spaces (PVS) and cerebral microbleeds in an automated fashion [108,109,110,111,112,113,114], none of the reviewed articles utilised enlarged PVS, and only one used microbleeds [49] as a marker of CSVD.

The variety of qualitative and quantitative analysis methods reflects the clinical heterogeneity of study populations comprising patients with CSVD at different stages of the disease. An attempt at standardising the assessment and reporting of imaging markers of CSVD was made in the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE) position paper [6]. However, despite being published in 2013, the definitions and recommendations outlined in the STRIVE were referenced in only six of the 33 reviewed papers published after 2013 [31, 50,51,52, 62, 108].

Functional connectivity methods reflect clinical heterogeneity

The analysis of recorded BOLD signals has not been standardised, with a broad variety of coupling measures and dimensionality reduction techniques being at the disposal of the researcher [20]. All reviewed studies used Pearson’s correlation coefficient to quantify the synchrony between BOLD time series in different parts of the brain. No clear distinction between full and partial correlations was often made, thus making the interpretation of direct or indirect connectivities difficult [115]. Similarly, the handling and interpretation of negative correlations was rarely reported or discussed [116,117,118]. None of the included articles attempted to estimate directed [119,120,121] or time-varying functional connectivities [122,123,124], or to quantify patterns of synchronous activity involving more than two regions [125, 126]. Analytical approaches included whole-brain analyses (eigenvector centrality, connectivity density); the investigation of functional connectivities between region of interests, often components of well-defined intrinsic resting-state networks, which were either derived from the data themselves (independent component analysis) or specified a priori by an external brain parcellation; and combinations of the two (seed-based correlation analysis).

Brain parcellations for the region-of-interest-based analyses were mostly based on anatomically defined atlases, such as the automatic anatomical labelling (AAL) atlas [127], the Desikan–Killiany parcellation [128], or the H-1024 random parcellation [129], which do not take into account the functional architecture of the brain. Only three very recent articles [31, 49, 66] used the multimodal brain parcellations of Power [130] or Schaefer [131], or the Brainnetome atlas [132], which have been shown to better respect the functional organisation of the brain [22]. In addition to interpreting changes in functional connectivity directly, a few studies attempted to summarise patterns of FC by measures of global network organisation using graph theory. These approaches have been instrumental in the study of complex brain networks and include parameters to reflect the notions of integration, such as efficiency or characteristic path length; segregation, such as clustering coefficients; or community structure, quantified by modularity scores and participation coefficients [9, 133, 134]. With the exception of community detection, however, these network parameters have been defined only for structural brain networks and lack validation for networks derived from functional connectivity [135].

Structure–function coupling shapes the impact of CSVD

The large-scale temporospatial organisation of neuronal activity in the brain is known to be supported and constrained by the anatomy of axonal projections that form structural connections between both adjacent and remote brain areas [136, 137]. This coupling between structure and function is particularly pronounced in the default mode network [138], possibly reflecting the long periods of time that the brain is engaged in inward-directed thought, memory formation and retrieval, or social estimation [139]. While the structural connectome thus contributes to maintaining stable neural activity patterns, it also means that normal functional connectivity is vulnerable to damage to white matter pathways as occurring in CSVD [140]. Most articles included in this review quantified the extent of white matter damage by using either neuroradiological rating scales or total lesion volume, as detailed above. Such global approaches are, however, not able to differentiate between lesions in functionally silent brain areas that can more easily be compensated by rerouting information through alternative redundant pathways, and lesions in functionally critical, strategic locations, where even spatially limited damage can be associated with substantial behavioural sequelae. In the context of cognition, damage to subcortical nuclei and tracts with a high density of neuromodulatory projections such as the dorsomedial and anterior thalamic nuclei or the anterior limb of the internal capsule appears to be particularly consequential [24, 52, 87, 141]. Advanced diffusion-weighted structural imaging modalities allow the spatial mapping of fibre tracts and the quantification of tract-specific white matter lesion loads [142, 143]. In combination with resting-state BOLD imaging, this approach has been used to show that leukoaraiosis disrupts functional connectivity in a spatio-topological non-uniform way that is shaped by the anatomy of the brain’s white matter scaffold [84]. The strongest association between tract-specific ischaemic damage and reduced FC was observed in the fronto-occipital fasciculus, which supports connectivity between the salience and frontoparietal control networks [144]. In addition to affecting functional connectivity directly, ischaemic white matter disease also seems to exert an indirect effect by modulating the coupling between structural and functional connectivity. Specifically, the association between mean diffusivity in the cingulum bundle and functional connectivity between the medial prefrontal and posterior cingulate cortices was significantly attenuated in patients with higher WMH burden, thus contributing to decoupling the anterior and posterior parts of the default mode network [81].

Both structural and functional connectomes share properties of complex networks, such as the presence of network communities, high-clustering with short path length (small-worldness), and hierarchical organisation [11, 145]. With cognition considered an emergent property of distributed neuronal activity in the brain [146, 147], understanding the behavioural sequelae of CSVD requires an understanding of how ischaemic lesions disturb not only specific fibre tracts and functional connections but also the global organisation of synchronous activity. Graph theoretical analyses have suggested that the global topology of functional brain networks in the presence of CSVD exhibits increased path length and modularity and reduced small-worldness that correlated with cognition [45, 53]. A similar effect was also observed in the structural networks of patients with CSVD and ischaemic stroke [13, 15, 148,149,150].

An intriguing open question is the differentiation between altered functional connectivity as a direct consequence of damage to the supporting fibre tracts, and compensatory changes. The latter are thought to contribute to maintaining normal cognitive function in the early stages of the disease [83]. Indeed, increased coupling between brain areas has repeatedly been reported in cognitively normal individual with white matter hyperintensities [78, 87, 93].

Resting-state FC informs an updated disconnection hypothesis

The association of white matter hyperintensities of presumed vascular origin with cognition has been extensively described [151,152,153], and indeed, cognitive impairment is one of the clinical hallmarks of manifest cerebral small vessel disease [154]. On the other hand, resting-state fMRI connectivity has been found useful in extracting neural correlates of cognitive function and mood disorders [155, 156]. Under normal physiological circumstances, patterns of coordinated activity within and between a small number of large-scale intrinsic brain networks have emerged as particularly relevant [146], including activation of the default mode network in brain states characterised by self-referential thought or rest that is anti-correlated with activation of the dorsal attention network; deactivation of the default mode network during focused attention on external stimuli [157]; and a modulating role of a frontoparietal control network with increased connectivity to the DMN as a correlate of working memory performance [158, 159]. Building upon these ‘cornerstones’ of functional connectivity under normal physiological circumstances, a disconnection hypothesis has been developed that postulates reduced DMN and FPCN connectivity, decoupling of neuronal activity along the anterior–posterior axis, and functional disconnection of the prefrontal cortex as neuronal correlates of cognitive impairment in CSVD [24]. This model is supported by several recent studies that reported decreased functional connectivity between the medial PFC and posterior components of the DMN in patients with CSVD [28, 44, 47], and observed an association with reaction times in the Stroop test [35]. A behaviorally relevant dissociation in functional resting-state fMRI activity and local connectivity was found between the anterior and posterior parts of the DMN with lower ReHo and ALFF values in the medial PFC and higher values in the precuneus and posterior cingulate cortex in patients with CSVD compared to healthy controls [38, 44]. Both increases and decreases of FC within the FPCN and DAN as well as their coupling with the DMN have been reported to be associated with CSVD [39, 46, 51], but the heterogeneity of these results and limited correlation with cognitive test scores makes it difficult to distinguish primary effects of disconnection from compensatory changes or sampling variability without physiological relevance.

In addition to these established networks, connectivity patterns of the salience network (SN) have recently been investigated, with increased SN-FPCN and SN-DMN couplings associated with small vessel disease [51]; additionally, increased connectivity within the SN in patients with CSVD was associated with worse performance in the Stroop interference test [83]. In patients with mild cognitive impairment, the association between white matter disease and executive function was attenuated in the presence of increased local connectivity of the salience network [65]. The salience network includes the anterior insula, the dorsal anterior cingulate cortex, and subcortical components. Similar to the FPCN, it has a critical role in switching activity between different brain networks and has been implicated as a key component in network models of neuropsychiatric disorders [160,161,162]. Specifically, increased connectivity within the SN and altered SN-DMN and SN-FPCN coupling have been described in patients with Alzheimer’s disease and mild cognitive impairment [163,164,165].

Community-dwelling adults with early CSVD often perform normally on neuropsychological tests and only report mild subjective cognitive deficits [166]. This preclinical stage has been linked to compensatory mechanisms especially in patients who benefit from a larger cognitive reserve [167, 168]. Three recent studies provide further evidence for this hypothesis, linking increased functional connectivity to frontal and temporal areas to ischaemic white matter lesion load in cognitively normal subjects [78, 83, 93].

Current knowledge is limited by the risk of bias, confounding, and methodological constraints

While it is possible to extract consistent themes from the reviewed articles that point toward physiologically relevant patterns of altered FC in the context of CSVD and cognitive impairment, the current literature is characterised by a high degree of heterogeneity of individual results. As discussed above, this may partly reflect variability in pre-processing and analytical approaches as well as heterogeneity in the clinical populations under investigation. However, given the absence of preregistered reports or high-quality multi-centre studies and the predominantly moderate-to-high risk of bias in individual studies, it must be assumed that selective reporting allowed the literature to be contaminated by a substantial number of false-positive findings, reflecting spurious associations and group differences. In addition, it is possible that reported results are confounded by the presence of other age-related pathology or neurodegenerative comorbidities, such as Alzheimer’s disease [169], which were considered specifically in only a small minority of studies.

Comparison and synthesis of individual study findings is further hampered by differences in data cleaning techniques, which are known to influence functional connectivity estimates [170]. Two important dimensions of BOLD pre-processing relate to removal of the global signal from the whole brain or tissue type compartments, and handling of subjects or frames with high motion. Global signal regression is known to be effective at mitigating the widespread inflation of connectivity estimates induced by subject motion, resulting in an elevated distance-dependence of residual motion artefacts [171]. Despite this theoretical prediction and the observation that GSR might improve associations between FC and behavioural measures [172], the use of GSR was not associated with specific patterns of altered connectivity or stronger relations with cognitive measures in the reviewed papers. Similarly, no clear effect of different motion scrubbing strategies, i.e. the censoring of subjects or individual volumes due to excessive average or framewise displacement, could be recognised. It seems likely that the myriad of unstandardised pre-processing choices is contributing to the heterogeneity of published results and that findings which have not been shown to be robust with respect to such choices should therefore be interpreted with great care.

Even ignoring potential biases inherent in study design and publication practice, the study of FC in the context of CSVD may be limited by more fundamental obstructions. One concern is that the reliability of estimating functional connectivity may be negatively affected by the presence of white matter lesions itself. Two of the reviewed studies reported results from repeated measurements on participants in longitudinal designs [31, 42]. Worryingly, in both cases, resting-state fMRI measures were found to be poorly reproducible, indicating a further need to evaluate their robustness as an imaging biomarker. In one case, this might have been a consequence, in part, of using a brain parcellation that does not respect the functional boundaries between brain areas, which is known to be damaging to network estimation [119]. However, the persistence of low reliability measures for a range of network characteristics across network densities and atlas resolutions, as well as the particularly poor reproducibility of functional network measures in patients with CSVD compared to controls, suggests more fundamental problems beyond the choice of parcellation. The finding of poor reproducibility of RSNs and graph metrics in CSVD contrasts with high reproducibility reported in healthy participants [173,174,175,176] and patients with stable multiple sclerosis [177,178,179]. It has been suggested that age and confounding age-related pathologies could be responsible for reduced reliability of functional connectivity estimates [180, 181]; however, specific methodological challenges arise in patients with cerebral small vessel disease as a consequence of microvascular pathology, that are absent in other conditions.

As a measure of synchronous brain activity, the interpretation of BOLD-derived functional connectivity is contingent upon an understanding of the relation between neuronal activity and local blood flow. This neurovascular coupling, however, is known to be altered in normal ageing as well as the presence of ischaemic disease [102, 182, 183], and attributing differences in BOLD-derived measures of connectivity to either vascular or neuronal factors is therefore challenging [184]. More specifically, white matter lesions of presumed vascular origin are known to be associated with subcortical hypoperfusion [185], possibly reflecting observed rarefaction of the microcirculation in a mouse genetic model of CSVD [186]. The later stages of neurovascular coupling involve dynamic upregulation of regional blood flow mediated by increased CO2 concentration in areas of increased neuronal activity [102]. This mechanism appears to be affected in the presence of CSVD as demonstrated by a diminished cerebrovascular response to hypercapnia in an early study involving 24 patients with leukoaraiosis [187], and an association between WMH load and sonographically assessed measures of pulsatility and dynamic autoregulation in a cohort of elderly patient with cardiovascular risk factors [188]. These findings are further complicated by differences in age-related changes in cerebrovascular reactivity between grey and white matter [189]. BOLD-derived functional connectivity is a function of BOLD activity in remote brain areas, and spatial variations in age- or disease-related changes in neurovascular coupling might therefore affect FC estimates in unpredictable ways [190]. A small study of 25 subjects with WMH found that while cardiovascular risk factors are associated with cerebrovascular reactivity, no such association was observed for resting-state functional connectivity in the default mode network [29]. One potentially testable hypothesis about the effects of impaired neurovascular coupling on functional connectivity estimates derives from the observation that BOLD-derived measures of synchronous brain activity are a composite of true coincident neuronal activation (‘signal’) and shared noise, where the latter tends to be more dominant for short-range connections [171]. Reduced ‘signal’ strength as a consequence of a lower vascular response would therefore be expected to result in weaker and less precise FC estimates, especially in long-range connections.

Limitations

While being comprehensive in our inclusion of primary research articles from electronic databases and other sources, we cannot exclude the possibility that additional findings from the grey literature, such as blogs or unpublished conference abstracts, have not been covered by this review. In order to keep the scope of the work focused, we have not included reports of task-based connectivity or resting-state connectivity derived from electrophysiological recordings. Findings obtained using these alternative paradigms and modalities might lend further support to the themes of disturbed connectivity patterns outlined above. This review attempted a qualitative synthesis of the recent literature; the heterogeneity of study designs and populations did not permit the extraction and quantitative analysis of numerical effect estimates beyond sample size and age of participants. From a meta-analytical perspective, it can be noted, however, that all studies of patients with clinically manifest CSVD report significant FC alterations, while that is the case for only 30% of the population-based studies despite larger sample sizes. This discrepancy could reflect larger effect sizes in clinically preselected patients or indicate selective reporting in the sense of publication bias [191].

For conciseness, we have concentrated our attention on cognitive impairment as one of the main clinical sequelae of CSVD. Associations of altered patterns of functional connectivity with depressive symptoms, apathy, or gait imbalance were rarely reported and have not systemically been explored here. As an entry point to the recent literature, we note that abnormal functional coupling has been observed as a correlate of late-life depression in the context of the vascular depression hypothesis [192,193,194,195]; while apathy has been investigated using resting-state fMRI in various clinical contexts [196,197,198], results on gait disorders are scarce [34, 199]. Functional connectivity does not seem to interact with race or socio-economic status as possible contributing factors to neurodegeneration [200].

Conclusion

The large number of recent studies investigating resting-state fMRI connectivity in the presence of cerebral small vessel disease reflects an active ongoing interest to understand the interplay between structural brain damage, associated changes in the spatiotemporal organisation of neural activity, and clinical sequelae. The literature documents accumulating evidence for a network disruption model underlying cognitive impairment in CSVD that is characterised by disordered connectivity patterns in the DMN and FPCN and a decoupling of neuronal activity along the anterior–posterior axis, mediated by structural damage to long association tracts and cortico-subcortical connections. In addition, evidence is emerging that altered connectivity of the salience network might be a novel neuronal correlate of cognitive deficits in patients with CSVD.

The synthesis of population-based studies involving healthy participants with low white matter disease burden and clinical studies recruiting patients with manifest CSVD suggests a pattern of increased functional connectivity in various frontal and temporal brain areas consistent with compensatory upregulation at low white matter disease burden in the early stages of the disease, and dysfunctional patterns of functional connectivity among distributed brain networks in more severely affected patients, possibly reflecting a break-down of compensatory mechanisms as the disease progresses and cognitive symptoms develop.

Further research is needed to address the problem of poor reproducibility of resting-state functional brain networks in patients with CSVD and to establish interacting effects of white matter damage of presumed vascular origin and functional reorganisation on cognition in preregistered, sufficiently powered, longitudinal studies. We expect particularly useful insights from multimodal investigations that combine resting-state and task functional MRI with electrophysiological recordings or metabolic imaging to improve temporal resolution and infer cellular processes relating to pathology.

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information files.

Abbreviations

AAL:

Automatic anatomical labelling

ACC:

Anterior cingulate cortex

AD:

Alzheimer’s disease

AFNI:

Analysis of Functional NeuroImages

ALFF:

Amplitude of low-frequency fluctuations

AN:

Auditory network

ANTs:

Advanced Normalisation Tools

AROMA:

Automatic Removal of Motion Artifacts

AVLT:

Auditory verbal learning test

AXIS:

Appraisal tool for Cross-Sectional Studies

BRAMILA:

BRAin and MInd LAb

CADASIL:

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

CDR:

Clinical Dementia Rating scale

CERAD:

Consortium to Establish a Registry for Alzheimer’s Disease

CN:

Cognitively normal

compCor:

Component-based noise correction

CONN:

Functional connectivity toolbox

CSF:

Cerebrospinal fluid

CSVD:

Cerebral small vessel disease

DAN:

Dorsal attention network

DARTEL:

Diffeomorphic Anatomical Registration using Exponentiated Lie algebra

DMN:

Default mode network

DPABI:

Data Processing & Analysis for Brain Imaging

DPARSF:

Data Processing Assistant for Resting-State fMRI

DTI:

Diffusion tensor imaging

EEG :

Electroencephalography

fALFF:

Fractional ALFF

FC:

Functional connectivity

FD:

Framewise displacement

FLAIR:

Fluid-attenuated inversion recovery

FPCN:

Frontoparietal control network

FSL:

Functional Magnetic Resonance Imaging of the Brain Software Library

GIFT:

Group ICA Of fMRI Toolbox

GRETNA:

GRaph thEoreTical Network Analysis

GSR:

Global Signal Regression

HC:

Healthy control

ICA:

Independent component analysis

MCC:

Middle cingulate cortex

MCI:

Mild cognitive impairment

MMSE:

Mini Mental State Exam

MoCA:

Montreal Cognitive Assessment

MRI:

Magnetic resonance imaging

NBS:

Network-based statistics

PET:

Positron emission tomography

PCC:

Posterior cingulate cortex

PFC:

Prefrontal cortex

PiB:

Pittsburgh compound B

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analysis

ReHo:

Regional homogeneity

REST:

REsting State fMRI data analysis Toolkit

ROI:

Region of interest

RSN:

Resting-state network

RT:

Reaction time

SC:

Structural connectivity

SCA:

Seed-based connectivity analysis

SMA:

Supplementary motor area

SMN:

Somatomotor network

SN:

Salience network

SPM:

Statistical Parametric Mapping

STRIVE:

STandards for ReportIng Vascular changes on nEuroimaging

SVaD:

Subcortical vascular dementia

svMCI:

Subcortical vascular MCI

T:

Tesla

TE:

Echo time

THA LAC:

Thalamus lacune

TMT:

Trail making test

TR:

Repetition time

VBM:

Voxel-based morphometry

VN:

Visual network

WAIS:

Wechsler Adult Intelligence Scale

WM:

White matter

WMH:

White matter hyperintensity

References

  1. 1.

    Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12:483–97. https://doi.org/10.1016/S1474-4422(13)70060-7.

    Article  PubMed  Google Scholar 

  2. 2.

    Rensma SP, van Sloten TT, Launer LJ, Stehouwer CDA. Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;90:164–73.

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Hu HY, Ou YN, Shen XN, Qu Y, Ma YH, Wang ZT, et al. White matter hyperintensities and risks of cognitive impairment and dementia: a systematic review and meta-analysis of 36 prospective studies. Neurosci Biobehav Rev. 2021;120:16–27.

    PubMed  Article  Google Scholar 

  4. 4.

    Feigin VL, Lawes CMM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003;2:43–53.

    PubMed  Article  Google Scholar 

  5. 5.

    Fitzpatrick AL, Kuller LH, Ives DG, Lopez OL, Jagust W, Breitner JCS, et al. Incidence and prevalence of dementia in the cardiovascular health study. J Am Geriatr Soc. 2004;52:195–204. https://doi.org/10.1111/j.1532-5415.2004.52058.x.

    Article  PubMed  Google Scholar 

  6. 6.

    Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822–38. https://doi.org/10.1016/S1474-4422(13)70124-8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Veldsman M, Kindalova P, Husain M, Kosmidis I, Nichols TE, Nichols E, et al. Spatial distribution and cognitive impact of cerebrovascular risk-related white matter hyperintensities. BioRxiv. 2020;28:2020.06.12.147934. https://doi.org/10.1101/2020.06.12.147934.

    Article  Google Scholar 

  8. 8.

    Cox SR, Lyall DM, Ritchie SJ, Bastin ME, Harris MA, Buchanan CR, et al. Associations between vascular risk factors and brain MRI indices in UK Biobank. Eur Heart J. 2019;40:2290–9. https://doi.org/10.1093/eurheartj/ehz100.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    van den Heuvel MP, Sporns O. A cross-disorder connectome landscape of brain dysconnectivity. Nat Rev Neurosci. 2019;20:435–46. https://doi.org/10.1038/s41583-019-0177-6.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16:159–72. https://doi.org/10.1038/nrn3901.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017;20:353–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Rubinov M, Bullmore E. Fledgling pathoconnectomics of psychiatric disorders. Trends Cogn Sci. 2013;17:641–7. https://doi.org/10.1016/j.tics.2013.10.007.

    Article  PubMed  Google Scholar 

  13. 13.

    Lawrence AJ, Chung AW, Morris RG, Markus HS, Barrick TR. Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology. 2014;83:304–11. https://doi.org/10.1212/WNL.0000000000000612.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Tuladhar AM, Van Uden IWM, Rutten-Jacobs LCA, Lawrence A, Van Der Holst H, Van Norden A, et al. Structural network efficiency predicts conversion to dementia. Neurology. 2016;86:1112–9. https://doi.org/10.1212/WNL.0000000000002502.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Shen J, Tozer DJ, Markus HS, Tay J. Network efficiency mediates the relationship between vascular burden and cognitive impairment: a diffusion tensor imaging study in UK Biobank. Stroke. 2020:1682–9. https://doi.org/10.1161/STROKEAHA.119.028587.

  16. 16.

    Frey BM, Petersen M, Schlemm E, Mayer C, Hanning U, Engelke K, et al. White matter integrity and structural brain network topology in cerebral small vessel disease: the Hamburg city health study. Hum Brain Mapp. 2020:hbm.25301. doi:https://doi.org/10.1002/hbm.25301.

  17. 17.

    Gouw AA, Seewann A, Van Der Flier WM, Barkhof F, Rozemuller AM, Scheltens P, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry. 2011;82:126–35. https://doi.org/10.1136/jnnp.2009.204685.

    Article  PubMed  Google Scholar 

  18. 18.

    Stephan BC, Matthews FE, Khaw K-T, Dufouil C, Brayne C. Beyond mild cognitive impairment: vascular cognitive impairment, no dementia (VCIND). Alzheimers Res Ther. 2009;1:4. https://doi.org/10.1186/alzrt4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hermann P, Romero C, Schmidt C, Reis C, Zerr I. CSF biomarkers and neuropsychological profiles in patients with cerebral small-vessel disease. PLoS One. 2014;9:e105000. https://doi.org/10.1371/journal.pone.0105000.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Wang HE, Bénar CG, Quilichini PP, Friston KJ, Jirsa VK, Bernard C. A systematic framework for functional connectivity measures. Front Neurosci. 2014;405 https://doi.org/10.3389/fnins.2014.00405.

  21. 21.

    van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010;20:519–34. https://doi.org/10.1016/j.euroneuro.2010.03.008.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65.

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Ter Telgte A, Van Leijsen EMC, Wiegertjes K, Klijn CJM, Tuladhar AM, De Leeuw FE. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol. 2018;14:387–98. https://doi.org/10.1038/s41582-018-0014-y.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Dey AK, Stamenova V, Turner G, Black SE, Levine B. Pathoconnectomics of cognitive impairment in small vessel disease: a systematic review. Alzheimers Dement. 2016;12:831–45. https://doi.org/10.1016/j.jalz.2016.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62:e1–34. https://doi.org/10.1016/j.jclinepi.2009.06.006.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Downes MJ, Brennan ML, Williams HC, Dean RS. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open. 2016;6:e011458. https://doi.org/10.1136/bmjopen-2016-011458.

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Ma LL, Wang YY, Yang ZH, Huang D, Weng H, Zeng XT. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Military Med Res. 2020;7:1–11. https://doi.org/10.1186/s40779-020-00238-8.

    Article  Google Scholar 

  28. 28.

    Sun Y, Qin L, Zhou Y, Xu Q, Qian L, Tao J, et al. Abnormal functional connectivity in patients with vascular cognitive impairment, no dementia: a resting-state functional magnetic resonance imaging study. Behav Brain Res. 2011;223:388–94.

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Tchistiakova E, Crane DE, Mikulis DJ, Anderson ND, Greenwood CE, Black SE, et al. Vascular risk factor burden correlates with cerebrovascular reactivity but not resting state coactivation in the default mode network. J Magn Reson Imaging. 2015;42(5):1369–76.

  30. 30.

    Li R, Lai Y, Zhang Y, Yao L, Wu X. Classification of cognitive level of patients with leukoaraiosis on the basis of linear and non-linear functional connectivity. Front Neurol. 2017;8(2):12.

  31. 31.

    Gesierich B, Tuladhar AM, ter Telgte A, Wiegertjes K, Konieczny MJ, Finsterwalder S, et al. Alterations and test–retest reliability of functional connectivity network measures in cerebral small vessel disease. Hum Brain Mapp. 2020;41:2629–41. https://doi.org/10.1002/hbm.24967.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32:1318–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Kumar D, Vipin A, Wong B, Ng KP, Kandiah N. Differential effects of confluent and nonconfluent white matter hyperintensities on functional connectivity in mild cognitive impairment. Brain Connect. 2020;10:547–54. https://doi.org/10.1089/brain.2020.0784.

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Zhou X, Zhang C, Li L, Zhang Y, Zhang W, Yin W, et al. Altered brain function in cerebral small vessel disease patients with gait disorders: a resting-state functional MRI study. Front Aging Neurosci. 2020;12 https://doi.org/10.3389/fnagi.2020.00234.

  35. 35.

    Schaefer A, Quinque EM, Kipping JA, Arélin K, Roggenhofer E, Frisch S, et al. Early small vessel disease affects frontoparietal and cerebellar hubs in close correlation with clinical symptoms - a resting-state fMRI study. J Cereb Blood Flow Metab. 2014;(7):1091–5.

  36. 36.

    Wu X, Lai Y, Zhang Y, Yao L, Wen X. Breakdown of sensorimotor network communication in leukoaraiosis. Neurodegener Dis. 2015;15:322–30.

  37. 37.

    Cheng R, Qi H, Liu Y, Zhao S, Li C, Liu C, et al. Abnormal amplitude of low-frequency fluctuations and functional connectivity of resting-state functional magnetic resonance imaging in patients with leukoaraiosis. Brain Behav. 2017;7(6):e00714.

  38. 38.

    Ding X, Ding J, Hua B, Xiong X, Xiao L, Peng F, et al. Abnormal cortical functional activity in patients with ischemic white matter lesions: a resting-state functional magnetic resonance imaging study. Neurosci Lett. 2017;644:10–17.

  39. 39.

    Ding J-RR, Ding X, Hua B, Xiong X, Wen Y, Ding Z, et al. Altered connectivity patterns among resting state networks in patients with ischemic white matter lesions. Brain Imaging Behav. 2018;12:1239–50.

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. Movement-related effects in fMRI time-series. Magn Reson Med. 1996;35:346–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. Neuroimage. 2010;53:1197–207.

    PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Lawrence AJ, Tozer DJ, Stamatakis EA, Markus HS. A comparison of functional and tractography based networks in cerebral small vessel disease. NeuroImage Clin. 2018;18:425–32. https://doi.org/10.1016/j.nicl.2018.02.013.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Zhu Y, Lu T, Xie C, Wang Q, Wang Y, Cao X, et al. Functional disorganization of small-world brain networks in patients with ischemic leukoaraiosis. Front Aging Neurosci. 2020;12 https://doi.org/10.3389/fnagi.2020.00203.

  44. 44.

    Yi L, Wang J, Jia L, Zhao Z, Lu J, Li K, et al. Structural and functional changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and resting-state fMRI study. PLoS One. 2012;7:e44758. https://doi.org/10.1371/journal.pone.0044758.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Yi LY, Liang X, Liu DM, Sun B, Ying S, Yang DB, et al. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment. CNS Neurosci Ther. 2015;21:846–54.

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Kim HJ, Cha J, Lee JM, Shin JS, Jung NY, Kim YJ, et al. Distinctive resting state network disruptions among Alzheimer’s disease, subcortical vascular dementia, and mixed dementia patients. J Alzheimers Dis. 2016;50:709–18.

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Zhou X, Hu X, Zhang C, Wang H, Zhu X, Xu L, et al. Aberrant functional connectivity and structural atrophy in subcortical vascular cognitive impairment: relationship with cognitive impairments. Front Aging Neurosci. 2016;8(14):8.

  48. 48.

    Chen H, Li Y, Liu Q, Shi Q, Wang J, Shen H, et al. Abnormal interactions of the salience network, central executive network, and default-mode network in patients with different cognitive impairment loads caused by leukoaraiosis. Front Neural Circuits. 2019;13 https://doi.org/10.3389/fncir.2019.00042.

  49. 49.

    Franzmeier N, Rubinski A, Neitzel J, Kim Y, Damm A, Na DL, et al. Functional connectivity associated with tau levels in ageing, Alzheimer’s, and small vessel disease. Brain. 2019;142:1093–107. https://doi.org/10.1093/brain/awz026.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Liu R, Chen H, Qin R, Gu Y, Chen X, Zou J, et al. The altered reconfiguration pattern of brain modular architecture regulates cognitive function in cerebral small vessel disease. Front Neurol. 2019;324 https://doi.org/10.3389/fneur.2019.00324.

  51. 51.

    Liu R, Wu W, Ye Q, Gu Y, Zou J, Chen X, et al. Distinctive and pervasive alterations of functional brain networks in cerebral small vessel disease with and without cognitive impairment. Dement Geriatr Cogn Disord. 2019;47:55–67. https://doi.org/10.1159/000496455.

    Article  PubMed  Google Scholar 

  52. 52.

    Qin Y, Zhu W, Liu C, Wang Z, Zhu W. Functional brain connectome and its relation to mild cognitive impairment in cerebral small vessel disease patients with thalamus lacunes: a cross-sectional study. Med (United States). 2019;98 https://doi.org/10.1097/MD.0000000000017127.

  53. 53.

    Wang J, Chen Y, Liang H, Niedermayer G, Chen H, Li Y, et al. The role of disturbed small-world networks in patients with white matter lesions and cognitive impairment revealed by resting state function magnetic resonance images (rs-fMRI). Med Sci Monit. 2019;25:341–56.

  54. 54.

    Shi Q, Chen H, Jia Q, Yuan Z, Wang J, Li Y, et al. Altered granger causal connectivity of resting-state neural networks in patients with leukoaraiosis-associated cognitive impairment—a cross-sectional study. Front Neurol. 2020;11 https://doi.org/10.3389/fneur.2020.00457.

  55. 55.

    Fazekas F, Barkhof F, Wahlund LO, Pantoni L, Erkinjuntti T, Scheltens P, et al. CT and MRI rating of white matter lesions. Cerebrovasc Dis. 2002;13(SUPPL. 2):31–6. https://doi.org/10.1159/000049147.

    Article  PubMed  Google Scholar 

  56. 56.

    Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am J Roentgenol. 1987;149:351–6. https://doi.org/10.2214/ajr.149.2.351.

    CAS  Article  Google Scholar 

  57. 57.

    Andreescu C, Tudorascu DL, Butters MA, Tamburo E, Patel M, Price J, et al. Resting state functional connectivity and treatment response in late-life depression. Psychiatry Res. 2011;194:39–46. https://doi.org/10.1016/j.pscychresns.2011.04.003.

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Román GC, Tatemichi TK, Erkinjuntti T, Cummings JL, Masdeu JC, Garcia JH, et al. Vascular dementia: diagnostic criteria for research studies: report of the NINDS-AIREN International Workshop. Neurology. 1993;43:250–60. https://doi.org/10.1212/WNL.43.2.250.

    Article  PubMed  Google Scholar 

  59. 59.

    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology. 1984;34:939–44. https://doi.org/10.1212/wnl.34.7.939.

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Knopman DS, Boeve BF, Petersen RC. Essentials of the proper diagnoses of mild cognitive impairment, dementia, and major subtypes of dementia. In: Mayo Clinic Proceedings. Elsevier Ltd; 2003. p. 1290–1308. doi:https://doi.org/10.4065/78.10.1290.

  61. 61.

    Petersen RC, Caracciolo B, Brayne C, Gauthier S, Jelic V, Fratiglioni L. Mild cognitive impairment: a concept in evolution. J Intern Med. 2014;275:214–28. https://doi.org/10.1111/joim.12190.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Zhou Y, Yu F, Duong TQ. White matter lesion load is associated with resting state functional MRI activity and amyloid PET but not FDG in mild cognitive impairment and early Alzheimer’s disease patients. J Magn Reson Imaging. 2015;41:102–9.

    PubMed  Article  Google Scholar 

  63. 63.

    Franzmeier N, Caballero MAA, Taylor ANW, Simon-Vermot L, Buerger K, Ertl-Wagner B, et al. Resting-state global functional connectivity as a biomarker of cognitive reserve in mild cognitive impairment. Brain Imaging Behav. 2017;11:368–82.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Evans AC, Janke AL, Collins DL, Baillet S. Brain templates and atlases. Neuroimage. 2012;62:911–22.

    PubMed  Article  Google Scholar 

  65. 65.

    Benson G, Hildebrandt A, Lange C, Schwarz C, Kobe T, Sommer W, et al. Functional connectivity in cognitive control networks mitigates the impact of white matter lesions in the elderly. Alzheimers Res Ther. 2018;10:109. https://doi.org/10.1186/s13195-018-0434-3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Staffaroni AM, Brown JA, Casaletto KB, Elahi FM, Deng J, Neuhaus J, et al. The longitudinal trajectory of default mode network connectivity in healthy older adults varies as a function of age and is associated with changes in episodic memory and processing speed. J Neurosci. 2018;38:2809–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Eavani H, Habes M, Satterthwaite TD, An Y, Hsieh M-KK, Honnorat N, et al. Heterogeneity of structural and functional imaging patterns of advanced brain aging revealed via machine learning methods. Neurobiol Aging. 2018;71:41–50. https://doi.org/10.1016/j.neurobiolaging.2018.06.013.

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Jiang L, Zuo XN. Regional homogeneity: a multimodal, multiscale neuroimaging marker of the human connectome. Neuroscientist. 2016;22:486–505.

    PubMed  Article  Google Scholar 

  69. 69.

    Wu M, Andreescu C, Butters MA, Tamburo R, Reynolds CF, Aizenstein H. Default-mode network connectivity and white matter burden in late-life depression. Psychiatry Res - Neuroimaging. 2011;194:39–46. https://doi.org/10.1016/j.pscychresns.2011.04.003.

    Article  Google Scholar 

  70. 70.

    Wu M, Rosano C, Butters M, Whyte E, Nable M, Crooks R, et al. A fully automated method for quantifying and localizing white matter hyperintensities on MR images. Psychiatry Res - Neuroimaging. 2006;148:133–42. https://doi.org/10.1016/j.pscychresns.2006.09.003.

    Article  Google Scholar 

  71. 71.

    Andreescu C, Tudorascu DL, Butters MA, Tamburo E, Patel M, Price J, et al. Resting state functional connectivity and treatment response in late-life depression. Psychiatry Res - Neuroimaging. 2013;214:313–21. https://doi.org/10.1016/j.pscychresns.2013.08.007.

    Article  Google Scholar 

  72. 72.

    Mikheev A, Nevsky G, Govindan S, Grossman R, Rusinek H. Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm. J Magn Reson Imaging. 2008;27:1235–41. https://doi.org/10.1002/jmri.21372.

    Article  PubMed  Google Scholar 

  73. 73.

    Suo C, Singh MF, Gates N, Wen W, Sachdev P, Brodaty H, et al. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol Psychiatry. 2016;21:1633–42. https://doi.org/10.1038/mp.2016.19.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Wen W, Sachdev P. The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. Neuroimage. 2004;22:144–54. https://doi.org/10.1016/j.neuroimage.2003.12.027.

    Article  PubMed  Google Scholar 

  75. 75.

    Otsu N. Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;SMC-9:62–6.

    Article  Google Scholar 

  76. 76.

    Schmidt P, Gaser C, Arsic M, Buck D, Förschler A, Berthele A, et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. Neuroimage. 2012;59:3774–83. https://doi.org/10.1016/j.neuroimage.2011.11.032.

    Article  PubMed  Google Scholar 

  77. 77.

    Lyu H, Wang J, Xu J, Zheng H, Yang X, Lin S, et al. Structural and functional disruptions in subcortical vascular mild cognitive impairment with and without depressive symptoms. Frontiers Media S.A.; 2019. doi:https://doi.org/10.3389/fnagi.2019.00241.

  78. 78.

    Zhang XD, Zhao LR, Zhou JM, Su YY, Ke J, Cheng Y, et al. Altered hippocampal functional connectivity in primary Sjögren syndrome: a resting-state fMRI study. Lupus. 2020;29:446–54. https://doi.org/10.1177/0961203320908936.

    Article  PubMed  Google Scholar 

  79. 79.

    He J, Carmichael O, Fletcher E, Singh B, Iosif A-MM, Martinez O, et al. Influence of functional connectivity and structural MRI measures on episodic memory. Neurobiol Aging. 2012;33:2612–20. https://doi.org/10.1016/j.neurobiolaging.2011.12.029.

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    DeCarli C, Massaro J, Harvey D, Hald J, Tullberg M, Au R, et al. Measures of brain morphology and infarction in the Framingham heart study: establishing what is normal. Neurobiol Aging. 2005;26:491–510. https://doi.org/10.1016/j.neurobiolaging.2004.05.004.

    Article  PubMed  Google Scholar 

  81. 81.

    Reijmer YD, Schultz AP, Leemans A, O’Sullivan MJ, Gurol ME, Sperling R, et al. Decoupling of structural and functional brain connectivity in older adults with white matter hyperintensities. Neuroimage. 2015;117:222–9. https://doi.org/10.1016/j.neuroimage.2015.05.054.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Hedden T, Schultz AP, Rieckmann A, Mormino EC, Johnson KA, Sperling RA, et al. Multiple brain markers are linked to age-related variation in cognition. Cereb Cortex. 2016;26:1388–400. https://doi.org/10.1093/cercor/bhu238.

    Article  PubMed  Google Scholar 

  83. 83.

    De Marco M, Manca R, Mitolo M, Venneri A. White matter hyperintensity load modulates brain morphometry and brain connectivity in healthy adults: a neuroplastic mechanism? Neural Plast. 2017;2017:10.

  84. 84.

    Langen CD, Zonneveld HI, White T, Huizinga W, Cremers LGM, de Groot M, et al. White matter lesions relate to tract-specific reductions in functional connectivity. Neurobiol Aging. 2017;51:97–103. https://doi.org/10.1016/j.neurobiolaging.2016.12.004.

    Article  PubMed  Google Scholar 

  85. 85.

    de Boer R, Vrooman HA, van der Lijn F, Vernooij MW, Ikram MA, van der Lugt A, et al. White matter lesion extension to automatic brain tissue segmentation on MRI. Neuroimage. 2009;45:1151–61.

    PubMed  Article  Google Scholar 

  86. 86.

    Madden DJ, Parks EL, Tallman CW, Boylan MA, Hoagey DA, Cocjin SB, et al. Sources of disconnection in neurocognitive aging: cerebral white-matter integrity, resting-state functional connectivity, and white-matter hyperintensity volume. Neurobiol Aging. 2017;54:199–213.

  87. 87.

    Shi L, Miao X, Lou W, Liu K, Abrigo J, Wong A, et al. The spatial associations of cerebral blood flow and spontaneous brain activities with white matter hyperintensities-an exploratory study using multimodal magnetic resonance imaging. Front Neurol. 2017. doi:https://doi.org/10.3389/fneur.2017.00593.

  88. 88.

    Shi L, Wang D, Liu S, Pu Y, Wang Y, Chu WCW, et al. Automated quantification of white matter lesion in magnetic resonance imaging of patients with acute infarction. J Neurosci Methods. 2013;213:138–46. https://doi.org/10.1016/j.jneumeth.2012.12.014.

    Article  PubMed  Google Scholar 

  89. 89.

    Lao Z, Shen D, Liu D, Jawad AF, Melhem ER, Launer LJ, et al. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad Radiol. 2008;15:300–13.

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Dadar M, Pascoal TA, Manitsirikul S, Misquitta K, Fonov VS, Tartaglia MC, et al. Validation of a regression technique for segmentation of white matter hyperintensities in Alzheimer’s disease. IEEE Trans Med Imaging. 2017;36:1758–68. https://doi.org/10.1109/TMI.2017.2693978.

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Avants BB, Tustison NJ, Wu J, Cook PA, Gee JC. An open source multivariate framework for N-tissue segmentation with evaluation on public data. Neuroinformatics. 2011;9:381–400. https://doi.org/10.1007/s12021-011-9109-y.

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Tsapanou A, Habeck C, Gazes Y, Razlighi Q, Sakhardande J, Stern Y, et al. Brain biomarkers and cognition across adulthood. Hum Brain Mapp. 2019;40:3832–42. https://doi.org/10.1002/hbm.24634.

    Article  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Park BY, Byeon K, Lee MJ, Kim SH, Park H. The orbitofrontal cortex functionally links obesity and white matter hyperintensities. Sci Rep. 2020;10 https://doi.org/10.1038/s41598-020-60054-x.

  94. 94.

    Griffanti L, Zamboni G, Khan A, Li L, Bonifacio G, Sundaresan V, et al. BIANCA (Brain Intensity AbNormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities. Neuroimage. 2016;141:191–205. https://doi.org/10.1016/j.neuroimage.2016.07.018.

    Article  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Rabin JS, Neal TE, Nierle HE, Sikkes SAM, Buckley RF, Amariglio RE, et al. Multiple markers contribute to risk of progression from normal to mild cognitive impairment. NeuroImage Clin. 2020;28 https://doi.org/10.1016/j.nicl.2020.102400.

  96. 96.

    Fillenbaum GG, van Belle G, Morris JC, Mohs RC, Mirra SS, Davis PC, et al. Consortium to establish a registry for Alzheimer’s disease (CERAD): the first twenty years. Alzheimer’s and Dementia. 2008;4:96–109. https://doi.org/10.1016/j.jalz.2007.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Hedden T, Van Dijk KRA, Shire EH, Sperling RA, Johnson KA, Buckner RL. Failure to modulate attentional control in advanced aging linked to white matter pathology. Cereb Cortex. 2012;22:1038–51. https://doi.org/10.1093/cercor/bhr172.

    Article  PubMed  Google Scholar 

  98. 98.

    Rey A. L’examen psychologique dans les cas d’encéphalopathie traumatique. Arch Psychol. 1941;28:215–285. doi:1943–03814-001.

  99. 99.

    Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74:201–9. https://doi.org/10.1212/WNL.0b013e3181cb3e25.

    Article  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI. Circular analysis in systems neuroscience: the dangers of double dipping. Nat Neurosci. 2009;12:535–40. https://doi.org/10.1038/nn.2303.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Van Dijk EJ, Breteler MMB, Schmidt R, Berger K, Nilsson LG, Oudkerk M, et al. The association between blood pressure, hypertension, and cerebral white matter lesions: cardiovascular determinants of dementia study. Hypertension. 2004;44(5):625–30.

  102. 102.

    D’Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci. 2003;4:863–72. https://doi.org/10.1038/nrn1246.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Hofman A, Breteler MMB, Van Duijn CM, Krestin GP, Pols HA, Stricker BHC, et al. The Rotterdam study: objectives and design update. Eur J Epidemiol. 2007;22:819–29. https://doi.org/10.1007/s10654-007-9199-x.

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Dagley A, LaPoint M, Huijbers W, Hedden T, McLaren DG, Chatwal JP, et al. Harvard aging brain study: dataset and accessibility. Neuroimage. 2017;144 Pt B:255–8. doi:https://doi.org/10.1016/j.neuroimage.2015.03.069.

  105. 105.

    Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779. https://doi.org/10.1371/journal.pmed.1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Frey BM, Petersen M, Mayer C, Schulz M, Cheng B, Thomalla G. Characterization of white matter hyperintensities in large-scale MRI-studies. Front Neurol. 2019;238:16.

  107. 107.

    Lehmann M, Madison CM, Ghosh PM, Seeley WW, Mormino E, Greicius MD, et al. Intrinsic connectivity networks in healthy subjects explain clinical variability in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2013;110:11606–11. https://doi.org/10.1073/pnas.1221536110.

    Article  PubMed  PubMed Central  Google Scholar 

  108. 108.

    Park SH, Zong X, Gao Y, Lin W, Shen D. Segmentation of perivascular spaces in 7 T MR image using auto-context model with orientation-normalized features. Neuroimage. 2016;134:223–35.

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Ballerini L, Booth T, Valdés Hernández M del C, Wiseman S, Lovreglio R, Muñoz Maniega S, et al. Computational quantification of brain perivascular space morphologies: associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936. NeuroImage Clin. 2020;25:102120. doi:https://doi.org/10.1016/j.nicl.2019.102120.

  110. 110.

    Dubost F, Yilmaz P, Adams H, Bortsova G, Ikram MA, Niessen W, et al. Enlarged perivascular spaces in brain MRI: automated quantification in four regions. Neuroimage. 2019;185:534–44.

    PubMed  Article  Google Scholar 

  111. 111.

    Boespflug EL, Schwartz DL, Lahna D, Pollock J, Iliff JJ, Kaye JA, et al. MR imaging-based multimodal autoidentification of perivascular spaces (mMAPS): automated morphologic segmentation of enlarged perivascular spaces at clinical field strength. Radiology. 2018;286:632–42. https://doi.org/10.1148/radiol.2017170205.

    Article  PubMed  Google Scholar 

  112. 112.

    Chen H, Yu L, Dou Q, Shi L, Mok VCT, Heng PA. Automatic detection of cerebral microbleeds via deep learning based 3D feature representation. In: Proceedings - International Symposium on Biomedical Imaging. New York: IEEE Computer Society; 2015. p. 764–7.

  113. 113.

    Seghier ML, Kolanko MA, Leff AP, Jäger HR, Gregoire SM, Werring DJ. Microbleed detection using automated segmentation (MIDAS): a new method applicable to standard clinical MR images. PLoS One. 2011;6 https://doi.org/10.1371/journal.pone.0017547.

  114. 114.

    Morrison MA, Payabvash S, Chen Y, Avadiappan S, Shah M, Zou X, et al. A user-guided tool for semi-automated cerebral microbleed detection and volume segmentation: evaluating vascular injury and data labelling for machine learning. NeuroImage Clin. 2018;20:498–505. https://doi.org/10.1016/j.nicl.2018.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115.

    Marrelec G, Krainik A, Duffau H, Pélégrini-Issac M, Lehéricy S, Doyon J, et al. Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage. 2006;32:228–37. https://doi.org/10.1016/j.neuroimage.2005.12.057.

    Article  PubMed  Google Scholar 

  116. 116.

    Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci. 2010;4 https://doi.org/10.3389/fnsys.2010.00008.

  117. 117.

    Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. J Neurophysiol. 2009;101:3270–83. https://doi.org/10.1152/jn.90777.2008.

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118.

    Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage. 2009;44:893–905. https://doi.org/10.1016/j.neuroimage.2008.09.036.

    Article  PubMed  Google Scholar 

  119. 119.

    Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, et al. Network modelling methods for FMRI. Neuroimage. 2011;54:875–91. https://doi.org/10.1016/j.neuroimage.2010.08.063.

    Article  PubMed  Google Scholar 

  120. 120.

    Ramsey JD, Hanson SJ, Hanson C, Halchenko YO, Poldrack RA, Glymour C. Six problems for causal inference from fMRI. Neuroimage. 2010;49:1545–58. https://doi.org/10.1016/j.neuroimage.2009.08.065.

    CAS  Article  PubMed  Google Scholar 

  121. 121.

    Patel RS, Bowman FDB, Rilling JK. A Bayesian approach to determining connectivity of the human brain. Hum Brain Mapp. 2006;27:267–76. https://doi.org/10.1002/hbm.20182.

    Article  PubMed  Google Scholar 

  122. 122.

    Preti MG, Bolton TA, Van De Ville D. The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage. 2017;160:41–54.

    PubMed  Article  Google Scholar 

  123. 123.

    Calhoun VD, Miller R, Pearlson G, Adali T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron. 2014;84:262–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. 124.

    Lindquist MA, Xu Y, Nebel MB, Caffo BS. Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach. Neuroimage. 2014;101:531–46.

    PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Nolte M, Gal E, Markram H, Reimann MW. Impact of higher order network structure on emergent cortical activity. Netw Neurosci. 2019;4:292–314. https://doi.org/10.1162/netn_a_00124.

    Article  Google Scholar 

  126. 126.

    Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, et al. Networks beyond pairwise interactions: structure and dynamics. Phys Rep. 2020; https://doi.org/10.1016/j.physrep.2020.05.004.

  127. 127.

    Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. https://doi.org/10.1006/nimg.2001.0978.

    CAS  Article  PubMed  Google Scholar 

  128. 128.

    Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    PubMed  Article  Google Scholar 

  129. 129.

    Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, et al. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage. 2010;50:970–83. https://doi.org/10.1016/j.neuroimage.2009.12.027.

    Article  PubMed  Google Scholar 

  130. 130.

    Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al. Functional network organization of the human brain. Neuron. 2011;72:665–78. https://doi.org/10.1016/j.neuron.2011.09.006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex. 2018;28:3095–114. https://doi.org/10.1093/cercor/bhx179.

    Article  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, et al. The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex. 2016;26:3508–26. https://doi.org/10.1093/cercor/bhw157.

    Article  PubMed  PubMed Central  Google Scholar 

  133. 133.

    Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.

    CAS  PubMed  Article  Google Scholar 

  134. 134.

    Rubinov M, Sporns O. Weight-conserving characterization of complex functional brain networks. Neuroimage. 2011;56:2068–79. https://doi.org/10.1016/j.neuroimage.2011.03.069.

    Article  PubMed  Google Scholar 

  135. 135.

    Sporns O. Graph theory methods: applications in brain networks. Dialogues Clin Neurosci. 2018;20:111–21. http://www.ncbi.nlm.nih.gov/pubmed/30250388. Accessed 19 May 2019

    PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Suárez LE, Markello RD, Betzel RF, Misic B. Linking structure and function in macroscale brain networks. Trends Cogn Sci. 2020;24:302–15. https://doi.org/10.1016/j.tics.2020.01.008.

    Article  PubMed  Google Scholar 

  137. 137.

    Van Den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. 2009;30:3127–41. https://doi.org/10.1002/hbm.20737.

    Article  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Khalsa S, Mayhew SD, Chechlacz M, Bagary M, Bagshaw AP. The structural and functional connectivity of the posterior cingulate cortex: comparison between deterministic and probabilistic tractography for the investigation of structure-function relationships. Neuroimage. 2014;102:118–27. https://doi.org/10.1016/j.neuroimage.2013.12.022.

    Article  PubMed  Google Scholar 

  139. 139.

    Horn A, Ostwald D, Reisert M, Blankenburg F. The structural-functional connectome and the default mode network of the human brain. Neuroimage. 2014;102:142–51.

    PubMed  Article  Google Scholar 

  140. 140.

    Ye Q, Bai F. Contribution of diffusion, perfusion and functional MRI to the disconnection hypothesis in subcortical vascular cognitive impairment. Neurology. 2018;3:e000080, 131–9.

  141. 141.

    Bohnen NI, Bogan CW, Müller MLTM. Frontal and periventricular brain white matter lesions and cortical deafferentation of cholinergic and other neuromodulatory axonal projections. Eur Neurol J 2009;1:33–50. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC338799. Accessed 1 July 2020.

  142. 142.

    Egorova N, Dhollander T, Khlif MS, Khan W, Werden E, Brodtmann A. Pervasive white matter fiber degeneration in ischemic stroke. Stroke. 2020;51:1507–13. https://doi.org/10.1161/STROKEAHA.119.028143.

    Article  PubMed  Google Scholar 

  143. 143.

    Smith RE, Tournier JD, Calamante F, Connelly A. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage. 2012;62:1924–38. https://doi.org/10.1016/j.neuroimage.2012.06.005.

    Article  PubMed  Google Scholar 

  144. 144.

    Waller R, Dotterer HL, Murray L, Maxwell AM, Hyde LW. White-matter tract abnormalities and antisocial behavior: a systematic review of diffusion tensor imaging studies across development. NeuroImage: Clinical. 2017;14:201–15. https://doi.org/10.1016/j.nicl.2017.01.014.

    Article  Google Scholar 

  145. 145.

    Bassett DS, Bullmore ET. Small-world brain networks revisited. Neuroscientist. 2017;23:499–516.

    PubMed  Article  Google Scholar 

  146. 146.

    Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14:277–90.

    PubMed  Article  Google Scholar 

  147. 147.

    Postle BR. Working memory as an emergent property of the mind and brain. Neuroscience. 2006;139:23–38.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Petersen M, Frey BM, Schlemm E, Mayer C, Hanning U, Engelke K, et al. Network localisation of white matter damage in cerebral small vessel disease. Sci Rep. 2020;10:1–9. https://doi.org/10.1038/s41598-020-66013-w.

    CAS  Article  Google Scholar 

  149. 149.

    Cheng B, Schlemm E, Schulz R, Boenstrup M, Messé A, Hilgetag C, et al. Altered topology of large-scale structural brain networks in chronic stroke. Brain Commun. 2019;1 https://doi.org/10.1093/braincomms/fcz020.

  150. 150.

    Schlemm E, Schulz R, Bönstrup M, Krawinkel L, Fiehler J, Gerloff C, et al. Structural brain networks and functional motor outcome after stroke—a prospective cohort study. Brain Commun. 2020;2:fcaa001. https://doi.org/10.1093/braincomms/fcaa001.

    Article  PubMed  PubMed Central  Google Scholar 

  151. 151.

    Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9:689–701.

    PubMed  Article  Google Scholar 

  152. 152.

    Van Dijk EJ, Prins ND, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MMB. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam scan study. Stroke. 2008;39:2712–9. https://doi.org/10.1161/STROKEAHA.107.513176.

    Article  PubMed  Google Scholar 

  153. 153.

    Østergaard L, Engedal TS, Moreton F, Hansen MB, Wardlaw JM, Dalkara T, et al. Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cerebral Blood Flow Metab. 2016;36:302–25. https://doi.org/10.1177/0271678X15606723.

    CAS  Article  Google Scholar 

  154. 154.

    Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18:684–96. https://doi.org/10.1016/S1474-4422(19)30079-1.

    Article  PubMed  PubMed Central  Google Scholar 

  155. 155.

    Takamura T, Hanakawa T. Clinical utility of resting-state functional connectivity magnetic resonance imaging for mood and cognitive disorders. J Neural Transm. 2017;124:821–39. https://doi.org/10.1007/s00702-017-1710-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. 156.

    Farràs-Permanyer L, Guàrdia-Olmos J, Peró-Cebollero M. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art. Front Psychol. 2015;6:1095. https://doi.org/10.3389/fpsyg.2015.01095.

    Article  PubMed  PubMed Central  Google Scholar 

  157. 157.

    Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;16:584–92.

    PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT. Brain connectivity related to working memory performance. J Neurosci. 2006;26:13338–43. https://doi.org/10.1523/JNEUROSCI.3408-06.2006.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. 159.

    Silton RL, Heller W, Towers DN, Engels AS, Spielberg JM, Edgar JC, et al. The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. Neuroimage. 2010;50:1292–302.

    PubMed  Article  PubMed Central  Google Scholar 

  160. 160.

    Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    PubMed  Article  PubMed Central  Google Scholar 

  161. 161.

    Nekovarova T, Fajnerova I, Horacek J, Spaniel F. Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory. Front Behav Neurosci. 2014:171. doi:https://doi.org/10.3389/fnbeh.2014.00171.

  162. 162.

    Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008;105:12569–74. https://doi.org/10.1073/pnas.0800005105.

    Article  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Balthazar MLF, Pereira FRS, Lopes TM, da Silva EL, Coan AC, Campos BM, et al. Neuropsychiatric symptoms in Alzheimer’s disease are related to functional connectivity alterations in the salience network. Hum Brain Mapp. 2014;35:1237–46. https://doi.org/10.1002/hbm.22248.

    Article  PubMed  PubMed Central  Google Scholar 

  164. 164.

    He X, Qin W, Liu Y, Zhang X, Duan Y, Song J, et al. Abnormal salience network in normal aging and in amnestic mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp. 2014;35:3446–64. https://doi.org/10.1002/hbm.22414.

    Article  PubMed  PubMed Central  Google Scholar 

  165. 165.

    Badhwar AP, Tam A, Dansereau C, Orban P, Hoffstaedter F, Bellec P. Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimer’s Dement Diagnosis Assess Dis Monit. 2017;8:73–85.

    Google Scholar 

  166. 166.

    Dey AK, Stamenova V, Bacopulos A, Jeyakumar N, Turner GR, Black SE, et al. Cognitive heterogeneity among community-dwelling older adults with cerebral small vessel disease. Neurobiol Aging. 2019;77:183–93.

    PubMed  Article  PubMed Central  Google Scholar 

  167. 167.

    Pinter D, Enzinger C, Fazekas F. Cerebral small vessel disease, cognitive reserve and cognitive dysfunction. J Neurol. 2015;262:2411–9. https://doi.org/10.1007/s00415-015-7776-6.

    Article  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Barulli D, Stern Y. Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends Cogn Sci. 2013;17:502–9.

    PubMed  Article  PubMed Central  Google Scholar 

  169. 169.

    Kim HW, Hong J, Jeon JC. Cerebral small vessel disease and Alzheimer’s disease: a review. Front Neurol. 2020;11:927. https://doi.org/10.3389/fneur.2020.00927.

    Article  PubMed  PubMed Central  Google Scholar 

  170. 170.

    Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K, et al. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage. 2017;154:174–87.

  171. 171.

    Ciric R, Rosen AFG, Erus G, Cieslak M, Adebimpe A, Cook PA, et al. Mitigating head motion artifact in functional connectivity MRI. Nat Protoc. 2018;13:2801–26. https://doi.org/10.1038/s41596-018-0065-y.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  172. 172.

    Li J, Kong R, Liégeois R, Orban C, Tan Y, Sun N, et al. Global signal regression strengthens association between resting-state functional connectivity and behavior. Neuroimage. 2019;196:126–41. https://doi.org/10.1016/j.neuroimage.2019.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  173. 173.

    Telesford QK, Morgan AR, Hayasaka S, Simpson SL, Barret W, Kraft RA, et al. Reproducibility of graph metrics in fMRI networks. Front Neuroinform. 2010:117. doi:https://doi.org/10.3389/fninf.2010.00117.

  174. 174.

    Braun U, Plichta MM, Esslinger C, Sauer C, Haddad L, Grimm O, et al. Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. Neuroimage. 2012;59:1404–12.

    PubMed  Article  PubMed Central  Google Scholar 

  175. 175.

    Wang JH, Zuo XN, Gohel S, Milham MP, Biswal BB, He Y. Graph theoretical analysis of functional brain networks: test-retest evaluation on short- and long-term resting-state functional MRI data. PLoS One. 2011;6:e21976. https://doi.org/10.1371/journal.pone.0021976.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Zuo XN, Kelly C, Adelstein JS, Klein DF, Castellanos FX, Milham MP. Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage. 2010;49:2163–77.

    PubMed  Article  PubMed Central  Google Scholar 

  177. 177.

    Choe AS, Jones CK, Joel SE, Muschelli J, Belegu V, Caffo BS, et al. Reproducibility and temporal structure in weekly resting-state fMRI over a period of 3.5 years. PLoS One. 2015;10:e0140134. https://doi.org/10.1371/journal.pone.0140134.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  178. 178.

    Pinter D, Beckmann C, Koini M, Pirker E, Filippini N, Pichler A, et al. Reproducibility of resting state connectivity in patients with stable multiple sclerosis. PLoS One. 2016;11:e0152158. https://doi.org/10.1371/journal.pone.0152158.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Abrol A, Damaraju E, Miller RL, Stephen JM, Claus ED, Mayer AR, et al. Replicability of time-varying connectivity patterns in large resting state fMRI samples. Neuroimage. 2017;163:160–76.

    PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Song J, Desphande AS, Meier TB, Tudorascu DL, Vergun S, Nair VA, et al. Age-related differences in test-retest reliability in resting-state brain functional connectivity. PLoS One. 2012;7 https://doi.org/10.1371/journal.pone.0049847.

  181. 181.

    Guo CC, Kurth F, Zhou J, Mayer EA, Eickhoff SB, Kramer JH, et al. One-year test-retest reliability of intrinsic connectivity network fMRI in older adults. Neuroimage. 2012;61:1471–83. https://doi.org/10.1016/j.neuroimage.2012.03.027.

    Article  PubMed  PubMed Central  Google Scholar 

  182. 182.

    Shabir O, Berwick J, Francis SE. Neurovascular dysfunction in vascular dementia, Alzheimer’s and atherosclerosis. BMC Neurosci. 2018;19:62. https://doi.org/10.1186/s12868-018-0465-5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  183. 183.

    Fabiani M, Gordon BA, Maclin EL, Pearson MA, Brumback-Peltz CR, Low KA, et al. Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study. Neuroimage. 2014;85 0 1:592–607. doi:https://doi.org/10.1016/j.neuroimage.2013.04.113.

  184. 184.

    Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc B Biol Sci. 2019;376:20190631. https://doi.org/10.1098/rstb.2019.0631.

    Article  Google Scholar 

  185. 185.

    Hatazawa J, Shimosegawa E, Satoh T, Toyoshima H, Okudera T. Subcortical hypoperfusion associated with asymptomatic white matter lesions on magnetic resonance imaging. Stroke. 1997;28(10):1944–7.

  186. 186.

    Joutel A, Monet-Leprêtre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest. 2010;120(2):433–45.

  187. 187.

    Kuwabara Y, Ichiya Y, Sasaki M, Yoshida T, Fukumura T, Masuda K, et al. Cerebral blood flow and vascular response to hypercapnia in hypertensive patients with leukoaraiosis. Ann Nucl Med. 1996;10:293–8.

  188. 188.

    Purkayastha S, Fadar O, Mehregan A, Salat DH, Moscufo N, Meier DS, et al. Impaired cerebrovascular hemodynamics are associated with cerebral white matter damage. J Cereb Blood Flow Metab. 2014;34(2):228–34.

  189. 189.

    Thomas BP, Liu P, Park DC, Van Osch MJP, Lu H. Cerebrovascular reactivity in the brain white matter: magnitude, temporal characteristics, and age effects. J Cereb Blood Flow Metab. 2014;34(2):242–7.

  190. 190.

    Golestani AM, Kwinta JB, Strother SC, Khatamian YB, Chen JJ. The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: the influence of basal carbon dioxide. Neuroimage. 2016;132:301–13.

  191. 191.

    Song F, Khan KS, Dinnes J, Sutton AJ. Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy. Int J Epidemiol. 2002;31:88–95. https://doi.org/10.1093/ije/31.1.88.

    Article  PubMed  PubMed Central  Google Scholar 

  192. 192.

    Karim HT, Andreescu C, Tudorascu D, Smagula SF, Butters MA, Karp JF, et al. Intrinsic functional connectivity in late-life depression: trajectories over the course of pharmacotherapy in remitters and non-remitters. Mol Psychiatry. 2017;22:450–7. https://doi.org/10.1038/mp.2016.55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Taylor WD, Aizenstein HJ, Alexopoulos GS. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry. 2013;18:963–74. https://doi.org/10.1038/mp.2013.20.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  194. 194.

    Kenny ER, O’Brien JT, Cousins DA, Richardson J, Thomas AJ, Firbank MJ, et al. Functional connectivity in late-life depression using resting-state functional magnetic resonance imaging. Am J Geriatr Psychiatry. 2010;18:643–51.

    PubMed  Article  PubMed Central  Google Scholar 

  195. 195.

    Bohr IJ, Kenny E, Blamire A, O’Brien JT, Thomas AJ, Richardson J, et al. Resting-state functional connectivity in late-life depression: higher global connectivity and more long distance connections. Front Psychiatry. 2013;116 https://doi.org/10.3389/fpsyt.2012.00116.

  196. 196.

    Alexopoulos GS, Hoptman MJ, Yuen G, Kanellopoulos D, K. Seirup J, Lim KO, et al. Functional connectivity in apathy of late-life depression: a preliminary study. J Affect Disord 2013;149:398–405. doi:https://doi.org/10.1016/j.jad.2012.11.023.

  197. 197.

    Joo SH, Lee CU, Lim HK. Apathy and intrinsic functional connectivity networks in amnestic mild cognitive impairment. Neuropsychiatr Dis Treat. 2017;13:61–7. https://doi.org/10.2147/NDT.S123338.

    Article  PubMed  Google Scholar 

  198. 198.

    Moretti R, Signori R. Neural correlates for apathy: frontal-prefrontal and parietal cortical-subcortical circuits. Front Aging Neurosci. 2016;289 https://doi.org/10.3389/fnagi.2016.00289.

  199. 199.

    Karim HT, Rosso A, Aizenstein HJ, Bohnen NI, Studenski S, Rosano C. Resting state connectivity within the basal ganglia and gait speed in older adults with cerebral small vessel disease and locomotor risk factors. NeuroImage Clin. 2020;28 https://doi.org/10.1016/j.nicl.2020.102401.

  200. 200.

    Meeker KL, Wisch JK, Hudson D, Coble D, Xiong C, Babulal GM, et al. Socioeconomic status mediates racial differences seen using the AT(N) framework. Ann Neurol. 2021;89:254–65. https://doi.org/10.1002/ana.25948.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work was supported by a grant from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG), Sonderforschungsbereich (SFB) 936, Project C2 (MS, GT, BC, ES). Open Access funding enabled and organized by Projekt DEAL.

Author information

Affiliations

Authors

Contributions

MS searched the literature, screened articles, extracted metadata and key results, and wrote a first version of the manuscript. CM revised the manuscript for critical intellectual content. BC secured funding and revised the manuscript for critical intellectual content. GT conceptualised the study, secured funding, and revised the manuscript for critical intellectual content. ES conceptualised the study, validated the inclusion and exclusion of articles, extracted metadata and key results, performed risk-of-bias assessment, synthesised findings, wrote the manuscript, and created tables and visualisations. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Eckhard Schlemm.

Ethics declarations

Ethics approval and consent to participate

No ethical approval or consent to participate was necessary for the presented study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1:

Search strategy. Detailed description of search parameters to identify relevant literature. Risk of bias assessment. Supplementary methods and results relating to the assessment of bias in individual studies. Table S1. Description of items used to score risk of bias. Table S2. Results of risk-of-bias assessments using the AXIS tool.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schulz, M., Malherbe, C., Cheng, B. et al. Functional connectivity changes in cerebral small vessel disease - a systematic review of the resting-state MRI literature. BMC Med 19, 103 (2021). https://doi.org/10.1186/s12916-021-01962-1

Download citation

Keywords

  • Brain network
  • Cerebral small vessel disease
  • Cognition
  • Functional connectivity
  • Magnetic resonance imaging
  • Resting state
  • Risk of bias
  • Patho-connectomics
  • Systematic review