Karczewski KJ, Snyder MP. Integrative omics for health and disease. Nat. Rev. Genet. 2018;19:299–310. https://doi.org/10.1038/nrg.2018.4.
Everson TM, Marsit CJ. Integrating -omics approaches into human population-based studies of prenatal and early-life exposures. Curr. Environ. Heal. 2018;5(3):328–37. https://doi.org/10.1007/s40572-018-0204-1.
Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, et al. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites. 2019;9(4):76. https://doi.org/10.3390/metabo9040076.
Zhan X, Long Y, Lu M. Exploration of variations in proteome and metabolome for predictive diagnostics and personalized treatment algorithms: innovative approach and examples for potential clinical application. J. Proteomics. 2018;188:30–40. https://doi.org/10.1016/j.jprot.2017.08.020.
Barker DJP. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7. https://doi.org/10.1111/j.1365-2796.2007.01809.x.
Maitre L, de Bont J, Casas M, Robinson O, Aasvang GM, Agier L, et al. Human Early Life Exposome (HELIX) study: a European population-based exposome cohort. BMJ Open. 2018;8:e021311.
Article
PubMed
PubMed Central
Google Scholar
Georgiadis P, Hebels DG, Valavanis I, Liampa I, Bergdahl IA, Johansson A, et al. Omics for prediction of environmental health effects: blood leukocyte-based cross-omic profiling reliably predicts diseases associated with tobacco smoking. Sci Rep. 2016;6:1–15.
Article
CAS
Google Scholar
Kan M, Shumyatcher M, Himes BE. Using omics approaches to understand pulmonary diseases. Respir. Res. 2017;18(1):149. https://doi.org/10.1186/s12931-017-0631-9.
Zhang L, McHale CM, Rothman N, Li G, Ji Z, Vermeulen R, et al. Systems biology of human benzene exposure. Chem. Biol. Interact. 2010;184(1-2):86–93. https://doi.org/10.1016/j.cbi.2009.12.011.
Lee I, Kim S, Park S, Mok S, Jeong Y, Moon HB, et al. Association of urinary phthalate metabolites and phenolics with adipokines and insulin resistance related markers among women of reproductive age. Sci Total Environ. 2019;688:1319–26.
Article
CAS
PubMed
Google Scholar
Shao C, Zhao M, Chen X, Sun H, Yang Y, Xiao X, et al. Comprehensive analysis of individual variation in the urinary proteome revealed significant gender differences. Mol Cell Proteomics. 2019;18:1110–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strimbu K, Tavel JA. What are biomarkers? Curr. Opin. HIV AIDS. 2010;5(6):463–6. https://doi.org/10.1097/COH.0b013e32833ed177.
Shvetsov YB, Song MA, Cai Q, Tiirikainen M, Xiang YB, Shu XO, et al. Intraindividual variation and short-term temporal trend in DNA methylation of human blood. Cancer Epidemiol Biomarkers Prev. 2015;24:490–7.
Article
CAS
PubMed
Google Scholar
Jung M, Pfeifer GP. Aging and DNA methylation. BMC Biol. 2015;13(7). https://doi.org/10.1186/s12915-015-0118-4.
Wehby GL, Prater K, McCarthy AM, Castilla EE, Murray JC. The impact of maternal smoking during pregnancy on early child neurodevelopment. J Hum Cap. 2011;5(2):207–54. https://doi.org/10.1086/660885.
Article
PubMed
PubMed Central
Google Scholar
Zaimi I, Pei D, Koestler DC, Marsit CJ, De Vivo I, Tworoger SS, et al. Variation in DNA methylation of human blood over a 1-year period using the Illumina MethylationEPIC array. Epigenetics. 2018;13:1056–71.
Article
PubMed
PubMed Central
Google Scholar
Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, et al. Intra-individual change over time in DNA methylation with familial clustering. JAMA. 2008;299(24):2877–83. https://doi.org/10.1001/jama.299.24.2877.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong CCY, Caspi A, Williams B, Craig IW, Houts R, Ambler A, et al. A longitudinal study of epigenetic variation in twins. Epigenetics. 2010;5:516–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Liu X, Zhou Y, Xie H, Hong X, Tsai HJ, et al. Individual variation and longitudinal pattern of genome-wide DNA methylation from birth to the first two years of life. Epigenetics. 2012;7:594–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karlovich C, Duchateau-Nguyen G, Johnson A, McLoughlin P, Navarro M, Fleurbaey C, et al. A longitudinal study of gene expression in healthy individuals. BMC Med Genomics. 2009;2:33.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dopico XC, Evangelou M, Ferreira RC, Guo H, Pekalski ML, Smyth DJ, et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat Commun. 2015;6:1–13.
Article
CAS
Google Scholar
De Jong S, Neeleman M, Luykx JJ, Ten Berg MJ, Strengman E, Den Breeijen HH, et al. Seasonal changes in gene expression represent cell-type composition in whole blood. Hum Mol Genet. 2014;23(10):2721–8. https://doi.org/10.1093/hmg/ddt665.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knobbe CB, Revett TJ, Bai Y, Chow V, Jeon AHW, Bohm C, et al. Choice of biological source material supersedes oxidative stress in its influence on DJ-1 in vivo interactions with Hsp90. J Proteome Res. 2011;10(10):4388–404. https://doi.org/10.1021/pr200225c.
Article
CAS
PubMed
PubMed Central
Google Scholar
De Boever P, Wens B, Forcheh AC, Reynders H, Nelen V, Kleinjans J, et al. Characterization of the peripheral blood transcriptome in a repeated measures design using a panel of healthy individuals. Genomics. 2014;103:31–9.
Article
PubMed
CAS
Google Scholar
Hughes DA, Kircher M, He Z, Guo S, Fairbrother GL, Moreno CS, et al. Evaluating intra- and inter-individual variation in the human placental transcriptome. Genome Biol. 2015;16:54.
Article
PubMed
PubMed Central
CAS
Google Scholar
Keller A, Rounge T, Backes C, Ludwig N, Gislefoss R, Leidinger P, et al. Sources to variability in circulating human miRNA signatures. RNA Biol. 2017;14:1791–8.
Article
PubMed
PubMed Central
Google Scholar
Yoon H, Belmonte KC, Kasten T, Bateman R, Kim J. Intra-and inter-individual variability of microRNA levels in human cerebrospinal fluid: critical implications for biomarker discovery. Sci Rep. 2017;7:1–13.
Article
CAS
Google Scholar
Zhong W, Gummesson A, Tebani A, Karlsson MJ, Hong MG, Schwenk JM, et al. Whole-genome sequence association analysis of blood proteins in a longitudinal wellness cohort. Genome Med. 2020;12:1–16.
Article
CAS
Google Scholar
Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HYK, Chen R, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell. 2012;148:1293–307.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piening BD, Zhou W, Contrepois K, Röst H, Gu Urban GJ, Mishra T, et al. Integrative personal omics profiles during periods of weight gain and loss. Cell Syst. 2018;6:157–70 e8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright J, Small N, Raynor P, Tuffnell D, Bhopal R, Cameron N, et al. Cohort Profile: The Born in Bradford multi-ethnic family cohort study. Int J Epidemiol. 2012;42:978–91.
Article
PubMed
Google Scholar
Heude B, Forhan A, Slama R, Douhaud L, Bedel S, Saurel-Cubizolles M-J, et al. Cohort Profile: The EDEN mother-child cohort on the prenatal and early postnatal determinants of child health and development. Int J Epidemiol. 2015;45:353–63.
Article
PubMed
Google Scholar
Guxens M, Ballester F, Espada M, Fernández MF, Grimalt JO, Ibarluzea J, et al. Cohort Profile: the INMA--INfancia y Medio Ambiente--(Environment and Childhood) Project. Int J Epidemiol. 2012;41(4):930–40. https://doi.org/10.1093/ije/dyr054.
Article
PubMed
Google Scholar
Grazuleviciene R, Danileviciute A, Nadisauskiene R, Vencloviene J. Maternal smoking, GSTM1 and GSTT1 polymorphism and susceptibility to adverse pregnancy outcomes. Int J Environ Res Public Health. 2009;6(3):1282–97. https://doi.org/10.3390/ijerph6031282.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magnus P, Birke C, Vejrup K, Haugan A, Alsaker E, Daltveit AK, et al. Cohort Profile Update: The Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol. 2016;45:382–8 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27063603. [cited 2017 Dec 4].
Article
PubMed
Google Scholar
Chatzi L, Leventakou V, Vafeiadi M, Koutra K, Roumeliotaki T, Chalkiadaki G, et al. Cohort Profile: The Mother-Child Cohort in Crete, Greece (Rhea Study). Int J Epidemiol. 2017;46:1392–1393 k Available from: http://www.ncbi.nlm.nih.gov/pubmed/29040580. [cited 2017 Dec 4].
Article
PubMed
Google Scholar
Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, et al. The Human Early-Life Exposome (HELIX): project rationale and design. Environ Health Perspect. 2014; Available from: http://ehp.niehs.nih.gov/1307204. [cited 2018 Mar 12].
Donaire-Gonzalez D, Valentín A, van Nunen E, Curto A, Rodriguez A, Fernandez-Nieto M, et al. ExpoApp: An integrated system to assess multiple personal environmental exposures. Environ Int. 2019;126:494–503.
Article
PubMed
Google Scholar
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lehne B, Drong AW, Loh M, Zhang W, Scott WR, Tan S-T, et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 2015;16:37.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Iterson M, Tobi EW, Slieker RC, den Hollander W, Luijk R, Slagboom PE, et al. MethylAid: visual and interactive quality control of large Illumina 450 k datasets. Bioinformatics. 2014;30(23):3435–7. https://doi.org/10.1093/bioinformatics/btu566.
Article
CAS
PubMed
Google Scholar
Triche TJ, Weisenberger DJ, Van Den Berg D, Laird PW, Siegmund KD. Low-level processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 2013;41: e90. https://doi.org/10.1093/nar/gkt090.
Fortin JP, Fertig E, Hansen K. shinyMethyl: Interactive quality control of Illumina 450-k DNA methylation arrays in R. F1000Research. 2014;3:175. https://doi.org/10.12688/f1000research.4680.2.
Leek JT, Storey JD. Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis. PLoS Genet. 2007;3:e161.
Article
PubMed Central
CAS
Google Scholar
Chen J, Behnam E, Huang J, Moffatt MF, Schaid DJ, Liang L, et al. Fast and robust adjustment of cell mixtures in epigenome-wide association studies with SmartSVA. BMC Genomics. 2017;18:413.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bose M, Wu C, Pankow JS, Demerath EW, Bressler J, Fornage M, et al. Evaluation of microarray-based DNA methylation measurement using technical replicates: The atherosclerosis risk in communities (ARIC) study. BMC Bioinformatics. 2014;15:312.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoffman GE, Schadt EE. variancePartition: Interpreting drivers of variation in complex gene expression studies. BMC Bioinformatics. 2016;17:483.
Article
PubMed
PubMed Central
Google Scholar
Schäfer J, Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics. 2005;21(6):754–64. https://doi.org/10.1093/bioinformatics/bti062.
Article
PubMed
Google Scholar
Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Zhang Y, Storey JD TL. sva: Surrogate Variable Analysis. R package version 3.38.0. [Internet]. 2020. Available from: https://bioconductor.org/packages/release/bioc/html/sva.html
Team RC. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2014. Available from: http://www.r-project.org/
Google Scholar
Štefan L, Prosoli R, Juranko D, Čule M, Milinović I, Novak D, et al. The reliability of the mediterranean diet quality index (KIDMED) questionnaire. Nutrients. 2017;9(4):419. https://doi.org/10.3390/nu9040419.
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27. https://doi.org/10.1093/biostatistics/kxj037.
Article
PubMed
Google Scholar
Li M, Zou D, Li Z, Gao R, Sang J, Zhang Y, et al. EWAS Atlas: A curated knowledgebase of epigenome-wide association studies. Nucleic Acids Res. 2019;47(D1):D983–8. https://doi.org/10.1093/nar/gky1027.
Article
CAS
PubMed
Google Scholar
Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ. Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol. 2011;5:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altenbuchinger M, Weihs A, Quackenbush J, Grabe HJ, Zacharias HU. Gaussian and Mixed Graphical Models as (multi-)omics data analysis tools. Biochim. Biophys. Acta - Gene Regul. Mech. 2020;1863(6):194418. https://doi.org/10.1016/j.bbagrm.2019.194418.
Hawe JS, Theis FJ, Heinig M. Inferring interaction networks from multi-omics data. Front Genet. 2019;10:535.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zierer J, Pallister T, Tsai P-C, Krumsiek J, Bell JT, Lauc G, et al. Exploring the molecular basis of age-related disease comorbidities using a multi-omics graphical model. Sci Rep. 2016;6:37646 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27886242. [cited 2019 Oct 8].
Article
CAS
PubMed
PubMed Central
Google Scholar
Price ND, Magis AT, Earls JC, Glusman G, Levy R, Lausted C, et al. A wellness study of 108 individuals using personal, dense, dynamic data clouds HHS Public Access Author manuscript. Nat Biotechnol. 2017;35:747–56 Available from: http://www.nature.com/authors/editorial_policies/license.html#terms. [cited 2020 May 11].
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Audouze K, Sarigiannis D, Alonso-Magdalena P, Brochot C, Casas M, Vrijheid M, et al. Integrative strategy of testing systems for identification of endocrine disruptors inducing metabolic disorders—An introduction to the oberon project. Int J Mol Sci. 2020;21:2988.
Article
CAS
PubMed Central
Google Scholar
Chaussabel D. Assessment of immune status using blood transcriptomics and potential implications for global health. Semin. Immunol. 2015;27(1):58–66. https://doi.org/10.1016/j.smim.2015.03.002.
Levenson VV. DNA methylation as a universal biomarker. Expert Rev. Mol. Diagn. 2010;10(4):481–8. https://doi.org/10.1586/erm.10.17.
Yang J, Chen Y, Xiong X, Zhou X, Han L, Ni L, et al. Peptidome analysis reveals novel serum biomarkers for children with autism spectrum disorder in China. Proteomics - Clin Appl. 2018;12:1700164. https://doi.org/10.1002/prca.201700164.
Ho SS, Wall C, Gearry RB, Keenan J, Day AS. A pilot study evaluating novel urinary biomarkers for Crohn’s disease. Inflamm Intest Dis. 2020;5(4):212–20. https://doi.org/10.1159/000510682.
Article
PubMed
PubMed Central
Google Scholar
Trøseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP, et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277:717–26.
Article
PubMed
CAS
Google Scholar
Zubair N, Conomos MP, Hood L, Omenn GS, Price ND, Spring BJ, et al. Genetic Predisposition Impacts Clinical Changes in a Lifestyle Coaching Program. Sci Rep. 2019;9:1–11.
Article
CAS
Google Scholar
Contrepois K, Wu S, Moneghetti KJ, Hornburg D, Ahadi S, Tsai M-S, et al. Molecular choreography of acute exercise. Cell. 2020;181:1112–30 e16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lever M, George PM, Slow S, Bellamy D, Young JM, Ho M, et al. Betaine and trimethylamine-N-oxide as predictors of cardiovascular outcomes show different patterns in diabetes mellitus: an observational study. PLoS One. 2014;9(12):e114969. https://doi.org/10.1371/journal.pone.0114969.
Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. Nat Med. 2013;19(5):576–85. https://doi.org/10.1038/nm.3145.
Article
CAS
PubMed
Google Scholar
Mente A, Chalcraft K, Ak H, Davis AD, Lonn E, Miller R, et al. The relationship between trimethylamine-N-oxide and prevalent cardiovascular disease in a multiethnic population living in Canada. Can J Cardiol. 2015;31:1189–94.
Article
PubMed
Google Scholar
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–65. https://doi.org/10.1038/nature09922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of trimethylamine n-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018.1;10(10):1398. https://doi.org/10.3390/nu10101398.
Hsu C-N, Chang-Chien G-P, Lin S, Hou C-Y, Lu P-C, Tain Y-L. Association of trimethylamine, trimethylamine N-oxide, and dimethylamine with cardiovascular risk in children with chronic kidney disease. J Clin Med. 2020;9:336.
Article
CAS
PubMed Central
Google Scholar
Pulgaron ER, Delamater AM. Obesity and type 2 diabetes in children: epidemiology and treatment. Curr Diab Rep. 2014;14:508.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mittelstrass K, Ried JS, Yu Z, Krumsiek J, Gieger C, Prehn C, et al. Discovery of sexual dimorphisms in metabolic and genetic biomarkers. PLoS Genet. 2011;7(8):e1002215. https://doi.org/10.1371/journal.pgen.1002215.
Jourdan C, Petersen AK, Gieger C, Döring A, Illig T, Wang-Sattler R, et al. Body fat free mass is associated with the serum metabolite profile in a population-based study. PLoS One. 2012;7(6): e40009. https://doi.org/10.1371/journal.pone.0040009.
Maitre L, Lau C-HE, Vizcaino E, Robinson O, Casas M, Siskos AP, et al. Assessment of metabolic phenotypic variability in children’s urine using 1H NMR spectroscopy. Sci Rep. 2017;7:46082.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lau C-HE, Siskos AP, Maitre L, Robinson O, Athersuch TJ, Want EJ, et al. Determinants of the urinary and serum metabolome in children from six European populations. BMC Med. 2018;16:202. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-018-1190-8. [cited 2018 Nov 20]