Chau I, Kelleher MT, Cunningham D, Norman AR, Wotherspoon A, Trott P, et al. Rapid access multidisciplinary lymph node diagnostic clinic: analysis of 550 patients. Br J Cancer. 2003;88(3):354–61.
Article
CAS
Google Scholar
Sakr, Mahmoud: Head and neck and endocrine surgery. Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-27532-1.
Bandoh N, Goto T, Akahane T, Ohnuki N, Yamaguchi T, Kamada H, et al. Diagnostic value of liquid-based cytology with fine needle aspiration specimens for cervical lymphadenopathy. Diagn Cytopathol. 2016;44(3):169–76.
Article
Google Scholar
Frederiksen JK, Sharma M, Casulo C, Burack WR. Systematic review of the effectiveness of fine-needle aspiration and/or core needle biopsy for subclassifying lymphoma. Arch Pathol Lab Med. 2015;139(2):245–51.
Article
Google Scholar
Kim BM, Kim EK, Kim MJ, Yang WI, Park CS, Park SI. Sonographically guided core needle biopsy of cervical lymphadenopathy in patients without known malignancy. J Ultrasound Med. 2007;26(5):585–91.
Article
Google Scholar
Han F, Xu M, Xie T, Wang JW, Lin QG, Guo ZX, et al. Efficacy of ultrasound-guided core needle biopsy in cervical lymphadenopathy: A retrospective study of 6,695 cases. Eur Radiol. 2018;28(5):1809–17.
Article
Google Scholar
West H, Jin J. Lymph nodes and lymphadenopathy in cancer. JAMA Oncol. 2016;2(7):971.
Article
Google Scholar
Choi SH, Terrell JE, Fowler KE, McLean SA, Ghanem T, Wolf GT, et al. Socioeconomic and other demographic disparities predicting survival among head and neck cancer patients. PLoS One. 2016;11(3):e0149886.
Article
Google Scholar
Pynnonen MA, Gillespie MB, Roman B, Rosenfeld RM, Tunkel DE, Bontempo L, et al. Clinical practice guideline: evaluation of the neck mass in adults. Otolaryngol Head Neck Surg. 2017;157(2_suppl):355.
Article
Google Scholar
Andrea K, David C, Margaret H, Clare P, Hamoun R, Federica M, et al. Rapid access clinic for unexplained lymphadenopathy and suspected malignancy: prospective analysis of 1000 patients. BMC Hematol. 2018;18(1):1–7.
Article
Google Scholar
Loh Z, Hawkes EA, Chionh F, Azad A, Chong G. Use of ultrasonography facilitates noninvasive evaluation of lymphadenopathy in a lymph node diagnostic clinic. Clin Lymphoma Myeloma Leuk. 2021;21(2):e179–84.
Article
Google Scholar
Rettenbacher T. Sonography of peripheral lymph nodes part 2: Doppler criteria and typical findings of distinct entities. Ultraschall Med. 2014;35(1):10–27 quiz 28-32.
CAS
PubMed
Google Scholar
Yeh MW, Bauer AJ, Bernet VA, Ferris RL, Loevner LA, Mandel SJ, et al. American Thyroid Association statement on preoperative imaging for thyroid cancer surgery. Thyroid. 2015;25(1):3–14.
Article
Google Scholar
Strassen U, Geisweid C, Hofauer B, Knopf A. Sonographic differentiation between lymphatic and metastatic diseases in cervical lymphadenopathy. Laryngoscope. 2018;128(4):859–63.
Article
Google Scholar
Cheng SCH, Ahuja AT, Ying M. Quantification of intranodal vascularity by computer pixel-counting method enhances the accuracy of ultrasound in distinguishing metastatic and tuberculous cervical lymph nodes. Quant Imaging Med Surg. 2019;9(11):1773–80.
Article
Google Scholar
Chorath K, Prasad A, Luu N, Go B, Moreira A, Rajasekaran K. Critical review of clinical practice guidelines for evaluation of neck mass in adults. Braz J Otorhinolaryngol. 2021. https://doi.org/10.1016/j.bjorl.2021.03.005.
Wang K, Lu X, Zhou H, Gao Y, Zheng J, Tong M, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut. 2019;68(4):729–41.
Article
CAS
Google Scholar
Tong T, Gu J, Xu D, Song L, Zhao Q, Cheng F, et al. Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis. BMC Med. 2022;20(1):74.
Article
Google Scholar
Akkus Z, Cai J, Boonrod A, Zeinoddini A, Weston AD, Philbrick KA, et al. A survey of deep-learning applications in ultrasound: artificial intelligence-powered ultrasound for improving clinical workflow. J Am Coll Radiol. 2019;16(9 Pt B):1318–28.
Article
Google Scholar
Li X, Zhang S, Zhang Q, Wei X, Pan Y, Zhao J, et al. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol. 2019;20(2):193–201.
Article
Google Scholar
Chang YJ, Huang TY, Liu YJ, Chung HW, Juan CJ. Classification of parotid gland tumors by using multimodal MRI and deep learning. NMR Biomed. 2021;34(1):e4408.
Article
Google Scholar
Kann BH, Hicks DF, Payabvash S, Mahajan A, Du J, Gupta V, et al. Multi-institutional validation of deep learning for pretreatment identification of extranodal extension in head and neck squamous cell carcinoma. J Clin Oncol. 2020;38(12):1304–11.
Article
Google Scholar
Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Salama AR, Truong MT, et al. Deep learning analysis using FDG-PET to predict treatment outcome in patients with oral cavity squamous cell carcinoma. Eur Radiol. 2020;30(11):6322–30.
Article
Google Scholar
La Salvia M, Secco G, Torti E, Florimbi G, Guido L, Lago P, et al. Deep learning and lung ultrasound for Covid-19 pneumonia detection and severity classification. Comput Biol Med. 2021;136:104742.
Article
Google Scholar
Guo X, Liu Z, Sun C, Zhang L, Wang Y, Li Z, et al. Deep learning radiomics of ultrasonography: identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer. EBioMedicine. 2020;60:103018.
Article
Google Scholar
Lee JH, Baek JH, Kim JH, Shim WH, Chung SR, Choi YJ, et al. Deep learning-based computer-aided diagnosis system for localization and diagnosis of metastatic lymph nodes on ultrasound: a pilot study. Thyroid. 2018;28(10):1332–8.
Article
Google Scholar
Yong SH, Lee SH, Oh SI, Keum JS, Kim KN, Park MS, et al. Malignant thoracic lymph node classification with deep convolutional neural networks on real-time endobronchial ultrasound (EBUS) images. Transl Lung Cancer Res. 2022;11(1):14–23.
Article
Google Scholar
Rettenbacher T. Sonography of peripheral lymph nodes part 1: normal findings and B-image criteria. Ultraschall Med. 2010;31(4):344–62.
Article
CAS
Google Scholar
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016.
Culjak I, Abram D, Pribanic T, Dzapo H, Cifrek M. A brief introduction to OpenCV. In: MIPRO, 2012 Proceedings of the 35th International Convention: 2012; 2012.
Google Scholar
Jiang P, Zhang C, Hou Q, Cheng M, Wei Y. LayerCAM: exploring hierarchical class activation maps. IEEE Transactions on Image Process. 2021;30:5875-88.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016.
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier networks. In: 14th International Conference on Artificial Intelligence and Statistics (ICAIS); 2011.
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift: JMLRorg; 2015. p. 2015.
Google Scholar
Yann L, Bottou L, Bengio Y, Haffner P. Gradientbased learning applied to document recognition. Proceedings of the IEEE. 1998;86(11):2278-324.
Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations (ICLR); 2015.
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Advances in Neural Information Processing Systems. 2017;30:5998-6008.
Jie H, Li S, Gang S. Squeeze-and-excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020;42(8):2011-23.
Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: JMLR Workshop and Conference Proceedings; 2010.
Google Scholar
Kingma DP, Ba J. Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR); 2015.
Paszke A, Gross S, Chintala S, Chanan G, Yang E, Devito Z, et al. Automatic differentiation in PyTorch; 2017.
Google Scholar
Provost F, Domingos P. Tree induction for probability-based ranking. Mach Learn. 2003;52(3):199–215.
Article
Google Scholar
Ahuja AT, Ying M, Ho SY, Antonio G, Lee YP, King AD, et al. Ultrasound of malignant cervical lymph nodes. Cancer Imaging. 2008;8(1):48–56.
Article
CAS
Google Scholar
Gupta A, Rahman K, Shahid M, Kumar A, Qaseem SM, Hassan SA, et al. Sonographic assessment of cervical lymphadenopathy: role of high-resolution and color Doppler imaging. Head Neck. 2011;33(3):297–302.
PubMed
Google Scholar
Ying M, Cheng SC, Ahuja AT. Diagnostic accuracy of computer-aided assessment of intranodal vascularity in distinguishing different causes of cervical lymphadenopathy. Ultrasound Med Biol. 2016;42(8):2010–6.
Article
Google Scholar
Kim DW, Jung SJ, Ha TK, Park HK. Individual and combined diagnostic accuracy of ultrasound diagnosis, ultrasound-guided fine-needle aspiration and polymerase chain reaction in identifying tuberculous lymph nodes in the neck. Ultrasound Med Biol. 2013;39(12):2308–14.
Article
Google Scholar
Yu Y, He Z, Ouyang J, Tan Y, Chen Y, Gu Y, et al. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: a machine learning, multicenter study. EBioMedicine. 2021;69:103460.
Article
CAS
Google Scholar
Tomita H, Yamashiro T, Heianna J, Nakasone T, Kimura Y, Mimura H, et al. Nodal-based radiomics analysis for identifying cervical lymph node metastasis at levels I and II in patients with oral squamous cell carcinoma using contrast-enhanced computed tomography. Eur Radiol. 2021;31(10):7440–9.
Article
Google Scholar