Kronborg O, Fenger C, Worm J, Pedersen SA, Hem J, Bertelsen K, et al. Causes of death during the first 5 years of a randomized trial of mass screening for colorectal cancer with fecal occult blood test. Scand J Gastroenterol. 1992;27(1):47–52.
Article
CAS
Google Scholar
Hardcastle JD, Chamberlain JO, Robinson MH, Moss SM, Amar SS, Balfour TW, et al. Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet. 1996;348(9040):1472–7.
Article
CAS
Google Scholar
Mandel JS, Bond JH, Church TR, Snover DC, Bradley GM, Schuman LM, et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N Engl J Med. 1993;328(19):1365–71.
Article
CAS
Google Scholar
Shaukat A, Mongin SJ, Geisser MS, Lederle FA, Bond JH, Mandel JS, et al. Long-term mortality after screening for colorectal cancer. N Engl J Med. 2013;369(12):1106–14.
Article
CAS
Google Scholar
Scholefield JH, Moss SM, Mangham CM, Whynes DK, Hardcastle JD. Nottingham trial of faecal occult blood testing for colorectal cancer: a 20-year follow-up. Gut. 2012;61(7):1036–40.
Article
CAS
Google Scholar
Shaukat A, Kaalby L, Baatrup G, Kronborg O, Duval S, Shyne M, et al. Effects of screening compliance on long-term reductions in all-cause and colorectal cancer mortality. Clin Gastroenterol Hepatol. 2021;19(5):967–75.e2.
Article
Google Scholar
Cardoso R, Guo F, Heisser T, Hackl M, Ihle P, De Schutter H, et al. Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era: an international population-based study. Lancet Oncol. 2021;22(7):1002–13.
Article
Google Scholar
Bretthauer M, Løberg M, Wieszczy P, Kalager M, Emilsson L, Garborg K, et al. Effect of colonoscopy screening on risks of colorectal cancer and related death. N Engl J Med. 2022;387(17):1547–56.
Article
Google Scholar
Lee MW, Pourmorady JS, Laine L. Use of fecal occult blood testing as a diagnostic tool for clinical indications: a systematic review and meta-analysis. Am J Gastroenterol. 2020;115(5):662–70.
Article
Google Scholar
Danish Colorectal Cancer Screening Database. Dansk tarmkræftscreeningsdatabase årsrapport 2018 [Annual report of the Danish Colorectal Cancer Screening Database 2018]. 2020. Available from: https://www.rkkp.dk/siteassets/forside/databaser/arsrapporter/dts-arsrapport2018_anonymiseret_endelig_marts2020.pdf.
Kaminski MF, Robertson DJ, Senore C, Rex DK. Optimizing the quality of colorectal cancer screening worldwide. Gastroenterology. 2020;158(2):404–17.
Article
Google Scholar
Barnett KN, Clark GRC, Steele RJC, Fraser CG. Faecal haemoglobin estimated by faecal immunochemical tests-an indicator of systemic inflammation with real clinical potential. Diagnostics. 2021;11(11):2093.
Article
CAS
Google Scholar
Nakajima K, Suwa K. Association between positive fecal occult blood test and diabetes in a population undergoing health screening. Clin Biochem. 2017;50(1-2):97–100.
Article
Google Scholar
Libby G, Barnett KN, Fraser CG, Steele RJC. Association between faecal occult bleeding and medicines prescribed for chronic disease: a data linkage study. J Clin Pathol. 2021;74(10):664–7.
Article
CAS
Google Scholar
Kaalby L, Al-Najami I, Deding U, Berg-Beckhoff G, Steele RJC, Kobaek-Larsen M, et al. Cause of death, mortality and occult blood in colorectal cancer screening. Cancers. 2022;14(1):246.
Article
CAS
Google Scholar
Libby G, Fraser CG, Carey FA, Brewster DH, Steele RJC. Occult blood in faeces is associated with all-cause and non-colorectal cancer mortality. Gut. 2018;67(12):2116–23.
Article
CAS
Google Scholar
Gies A, Cuk K, Schrotz-King P, Brenner H. Direct comparison of ten quantitative fecal immunochemical tests for hemoglobin stability in colorectal cancer screening. Clin Transl Gastroenterol. 2018;9(7):168.
Article
Google Scholar
Guildford Medical Device Evaluation Centre. Evaluation of quantitative faecal immunochemical tests for haemoglobin. Guildford: NHS Bowel Cancer Screening Southern Programme HUB; 2014. Available from: https://www.faecal-immunochemical-test.co.uk/wp-content/uploads/2018/06/FIT_007-Evaluation-of-Quantitative-Faecal-Immuncohemical-Tests-for-Haemoglobin.pdf
Google Scholar
Plantener E, Deding U, Madsen JB, Kroijer R, Madsen JS, Baatrup G. Using fecal immunochemical test values below conventional cut-off to individualize colorectal cancer screening. Endosc Int Open. 2022;10(4):E413–e9.
Article
Google Scholar
Njor SH, Friis-Hansen L, Andersen B, Sondergaard B, Linnemann D, Jorgensen JCR, et al. Three years of colorectal cancer screening in Denmark. Cancer Epidemiol. 2018;57:39–44.
Article
Google Scholar
Thomsen MK, Njor SH, Rasmussen M, Linnemann D, Andersen B, Baatrup G, et al. Validity of data in the Danish Colorectal Cancer Screening Database. Clin Epidemiol. 2017;9:105–11.
Article
Google Scholar
Lynge E, Sandegaard J, Rebolj M. The Danish National Patient Register. Scand J Public Health. 2011;39:4.
Article
Google Scholar
Kildemoes HW, Sørensen HT, Hallas J. The Danish National Prescription Registry. Scand J Public Health. 2011;39(7 Suppl):38–41.
Article
Google Scholar
Helweg-Larsen K. The Danish register of causes of death. Scand J Public Health. 2011;39(7 Suppl):26–9.
Article
Google Scholar
Jensen VM, Rasmussen AW. Danish education registers. Scand J Public Health. 2011;39(7 Suppl):91–4.
Article
Google Scholar
Baadsgaard M, Quitzau J. Danish registers on personal income and transfer payments. Scand J Public Health. 2011;39(7 Suppl):103–5.
Article
Google Scholar
Quan H, Li B, Couris CM, Fushimi K, Graham P, Hider P, et al. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am J Epidemiol. 2011;173(6):676–82.
Article
Google Scholar
StataCorp. Stata Statistical Software: release 17. College Station, TX: StataCorp LLC.; 2021.
Google Scholar
Pearson-Stuttard J, Bennett J, Cheng YJ, Vamos EP, Cross AJ, Ezzati M, et al. Trends in predominant causes of death in individuals with and without diabetes in England from 2001 to 2018: an epidemiological analysis of linked primary care records. Lancet Diabetes Endocrinol. 2021;9(3):165–73.
Article
Google Scholar
Jung YS, Lee J, Moon CM. Positive fecal immunochemical test results are associated with non-colorectal cancer mortality. Korean J Intern Med. 2022;37(2):313–21.
Article
Google Scholar
Chen L-S, Yen AM-F, Fraser CG, Chiu SY-H, Fann JC-Y, Wang P-E, et al. Impact of faecal haemoglobin concentration on colorectal cancer mortality and all-cause death. BMJ Open. 2013;3(11):e003740.
Article
Google Scholar
Kim KW, Lee HJ, Han K, Moon JM, Hong SW, Kang EA, et al. Risk of diabetes in subjects with positive fecal immunochemical test: a nationwide population-based study. Endocrinol Metab. 2021;36(5):1069–77.
Article
CAS
Google Scholar
Chien KL, Lin TY, Hsu CY, Chan CC, Chen TH, Chen LS. Association between faecal haemoglobin concentration and the risk of cardiovascular diseases among Taiwanese adults in a community-based screening cohort. BMJ Open. 2020;10(6):e032633.
Article
Google Scholar
Moon JM, Lee HJ, Han K, Kim DH, Hong SW, Soh H, et al. Occult blood in feces is associated with an increased risk of ischemic stroke and myocardial infarction: a nationwide population study. J Am Heart Assoc. 2021;10(1):e017783.
Article
CAS
Google Scholar
Noh C-K, Lee E, Park B, Ahn SS. A positive faecal immunochemical test result and its association with the incidence of rheumatoid arthritis, systemic lupus erythematosus, and psoriatic arthritis: an analysis of one-million national colorectal cancer screening programme results. BMC Med. 2022;20(1):226.
Article
CAS
Google Scholar
Yen AM, Lai H, Fann JC, Chiu SY, Chen SL. Relationship between community periodontal index and fecal hemoglobin concentration, an indicator for colorectal neoplasm. J Dent Res. 2014;93(8):760–6.
Article
Google Scholar
Lee HJ, Han K, Soh H, Koh SJ, Im JP, Kim JS, et al. Occult blood in feces is associated with increased risk of psoriasis. Dermatology. 2022;238(3):571–8.
Article
Google Scholar
Ku M-S, Fann JC-Y, Chiu SY-H, Chen H-H, Hsu C-Y. Elucidating bidirectional relationship between metabolic syndrome and elevated faecal haemoglobin concentration: a Taiwanese community-based cohort study. BMJ Open. 2019;9(3):e021153.
Article
Google Scholar
Ku MS, Liu CY, Hsu CY, Chiu HM, Chen HH, Chan CC. Association of ambient fine particulate matter (PM(2.5)) with elevated fecal hemoglobin concentration and colorectal carcinogenesis: a population-based retrospective cohort study. Cancer Control. 2021;28:10732748211041232.
Article
Google Scholar
Clark GRC, Strachan JA, McPherson A, Digby J, Mowat C, Steele RJC, et al. Faecal haemoglobin distributions by sex, age, deprivation and geographical region: consequences for colorectal cancer screening strategies. Clin Chem Lab Med. 2020;58(12):2073–80.
Article
CAS
Google Scholar
Nieuwenburg SAV, Vuik FER, Kruip M, Kuipers EJ, Spaander MCW. Effect of anticoagulants and NSAIDs on accuracy of faecal immunochemical tests (FITs) in colorectal cancer screening: a systematic review and meta-analysis. Gut. 2019;68(5):866–72.
Article
CAS
Google Scholar
Jung YS, Im E, Park CH. Impact of antiplatelet agents and anticoagulants on the performance of fecal immunochemical tests: a systematic review and meta-analysis. Surgical Endoscopy. 2022;36(6):4299–311.
Article
Google Scholar
Jung YS, Lee J, Moon CM. Positive fecal immunochemical test results are associated with increased risks of esophageal, stomach, and small intestine cancers. J Clin Med. 2020;9(7):2172.
Article
Google Scholar
Kim NH, Yang HJ, Park SK, Park JH, Park DI, Sohn CI, et al. Does low threshold value use improve proximal neoplasia detection by fecal immunochemical test? Dig Dis Sci. 2016;61(9):2685–93.
Article
CAS
Google Scholar
Stegeman I, de Wijkerslooth TR, Stoop EM, van Leerdam M, van Ballegooijen M, Kraaijenhagen RA, et al. Risk factors for false positive and for false negative test results in screening with fecal occult blood testing. Int J Cancer. 2013;133(10):2408–14.
Article
CAS
Google Scholar
Amitay EL, Cuk K, Niedermaier T, Weigl K, Brenner H. Factors associated with false-positive fecal immunochemical tests in a large German colorectal cancer screening study. Int J Cancer. 2019;144(10):2419–27.
Article
CAS
Google Scholar
Lu J, Xu B, Xu Y, Wu Y, Xie J, Wang J, et al. A novel insight into fecal occult blood test for the management of gastric cancer: complication, survival, and chemotherapy benefit after r0 resection. Front Oncol. 2020;10:526746.
Article
Google Scholar