WHO. Diabetes, Fact Sheet. WHO; 2016. http://www.who.int/mediacentre/factsheets/fs312/en/. Accessed Sept 2016.
Cappuccio FP, D'Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2010;33(2):414–20.
Article
PubMed
Google Scholar
Teixeira PJ, Carraca EV, Marques MM, Rutter H, Oppert JM, De Bourdeaudhuij I, et al. Successful behavior change in obesity interventions in adults: a systematic review of self-regulation mediators. BMC Med. 2015;13:84.
Article
PubMed
PubMed Central
Google Scholar
Van Holle V, Deforche B, Van Cauwenberg J, Goubert L, Maes L, Van de Weghe N, et al. Relationship between the physical environment and different domains of physical activity in European adults: a systematic review. BMC Public Health. 2012;12:807.
Article
PubMed
PubMed Central
Google Scholar
Sallis JF, Cerin E, Conway TL, Adams MA, Frank LD, Pratt M, et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet. 2016;387(10034):2207–17.
Article
PubMed
Google Scholar
Osei-Kwasi HA, Nicolaou M, Powell K, Terragni L, Maes L, Stronks K, et al. Systematic mapping review of the factors influencing dietary behaviour in ethnic minority groups living in Europe: a DEDIPAC study. Int J Behav Nutr Phys Act. 2016;13:85.
Article
PubMed
PubMed Central
Google Scholar
Popkin BM. Nutrition transition and the global diabetes epidemic. Curr Diab Rep. 2015;15(9):64.
Article
PubMed
PubMed Central
Google Scholar
Cho N, Whiting D, et al. Diabetes Atlas, 7th ed. International Diabetes Federation; 2015. http://www.oedg.at/pdf/1606_IDF_Atlas_2015_UK.pdf.
Caspi CE, Sorensen G, Subramanian S, Kawachi I. The local food environment and diet: a systematic review. Health Place. 2012;18(5):1172–87.
Article
PubMed
PubMed Central
Google Scholar
Fraser LK, Edwards KL, Cade J, Clarke GP. The geography of fast food outlets: a review. Int J Environ Res Public Health. 2010;7(5):2290–308.
Article
PubMed
PubMed Central
Google Scholar
Ising H, Braun C. Acute and chronic endocrine effects of noise: review of the research conducted at the Institute for Water. Soil Air Hygiene Noise Health. 2000;2(7):7–24.
PubMed
Google Scholar
Pirrera S, De Valck E, Cluydts R. Nocturnal road traffic noise: a review on its assessment and consequences on sleep and health. Environ Int. 2010;36(5):492–8.
Article
PubMed
Google Scholar
Angkurawaranon C, Jiraporncharoen W, Chenthanakij B, Doyle P, Nitsch D. Urbanization and non-communicable disease in Southeast Asia: a review of current evidence. Public health. 2014;128(10):886–95.
Schulz M, Romppel M, Grande G. Built environment and health: a systematic review of studies in Germany. J Public Health. 2016. https://doi.org/10.1093/pubmed/fdw141.
Malambo P, Kengne AP, De Villiers A, Lambert EV, Puoane T. Built environment, selected risk factors and major cardiovascular disease outcomes: a systematic review. PLoS One. 2016;11(11):e0166846.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dzhambov AM. Long-term noise exposure and the risk for type 2 diabetes: a meta-analysis: erratum. Noise Health. 2015;17(75):123.
Article
PubMed
PubMed Central
Google Scholar
Mackenbach JD, Rutter H, Compernolle S, Glonti K, Oppert JM, Charreire H, et al. Obesogenic environments: a systematic review of the association between the physical environment and adult weight status, the SPOTLIGHT project. BMC Public Health. 2014;14:233.
Article
PubMed
PubMed Central
Google Scholar
World Bank list of economies, 2016. http://www.ispo2017.org/wp-content/uploads/2016/11/World-Bank-List-of-Economies.pdf. Accessed Sept 2016.
Booth GL, Creatore MI, Moineddin R, Gozdyra P, Weyman JT, Matheson FI, et al. Unwalkable neighborhoods, poverty, and the risk of diabetes among recent immigrants to Canada compared with long-term residents. Diabetes Care. 2013;36:302–5.
Article
PubMed
PubMed Central
Google Scholar
Creatore MI, Glazier RH, Moineddin R, Fazli GS, Johns A, Gozdyra P, et al. Association of neighborhood walkability with change in overweight, obesity, and diabetes. JAMA. 2016;315(20):2211–20.
Article
CAS
PubMed
Google Scholar
Glazier RH, Creatore MI, Weyman JT, Fazli G, Matheson FI, Gozdyra P, et al. Density, destinations or both? A comparison of measures of walkability in relation to transportation behaviors, obesity and diabetes in Toronto, Canad. PLoS One. 2014;9(1):e85295.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sundquist K, Eriksson U, Mezuk B, Ohlsson H. Neighborhood walkability, deprivation and incidence of type 2 diabetes: a population-based study on 512,061 Swedish adults. Health Place. 2015;31:24–30.
Article
PubMed
Google Scholar
Cubbin C, Sundquist K, Ahlen H, Johansson SE, Winkleby MA, Sundquist J. Neighborhood deprivation and cardiovascular disease risk factors: protective and harmful effects. Scand J Public Health. 2006;34(3):228–37.
PubMed
Google Scholar
Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA. 1998;279(18):1477–82.
Article
CAS
PubMed
Google Scholar
Dar HI, Dar SH, Bhat RA, Kamili MA, Mir SR. Prevalence of type 2 diabetes mellitus and its risk factors in the age group 40 years and above in the Kashmir valley of the Indian subcontinent. JIACM. 2015;16(3–4):187–97.
Google Scholar
Mi T, Sun S, Du Y, Guo S, Cong L, Cao M, et al. Differences in the distribution of risk factors for stroke among the high-risk population in urban and rural areas of Eastern China. Brain Behav. 2016;6(5):e00461.
Article
PubMed
PubMed Central
Google Scholar
Kodaman N, Aldrich MC, Sobota R, Asselbergs FW, Poku KA, Brown NJ, et al. Cardiovascular disease risk factors in Ghana during the rural-to-urban transition: a cross-sectional study. PLoS One. 2016;11(10):e0162753.
Article
PubMed
PubMed Central
Google Scholar
Gangquiang D, Ming Y, Weiwei G, Ruying H, MacLennan R. Nutrition-related disease and death in Zhejiang Province. Asia Pacific J Clin Nutr. 2004;13(2):162–5.
Google Scholar
Azizi F, Vazirian P, Dolatshi P, Habibian S. Screening for type 2 diabetes in the Iranian national programme: a preliminary report. East Mediterr Health J. 2003;9(5–6):1122–7.
CAS
PubMed
Google Scholar
Mierzecki A, Kloda K, Gryko A, Czarnowski D, Chelstowski K, Chlabicz S. Atherosclerosis risk factors in rural and urban adult populations living in Poland. Exp Clin Cardiol. 2014;20(8):3152–7.
CAS
Google Scholar
Njelekela M, Sato T, Nara Y, Miki T, Kuga S, Noguchi T, et al. Nutritional variation and cardiovascular risk factors in Tanzania – rural–urban difference. S Afr Med J. 2003;93(4):295–9.
PubMed
Google Scholar
Ceesay MM, Morgan MW, Kamanda MO, Willoughby VR, Lisk DR. Prevalence of diabetes in rural and urban populations in southern Sierra Leone: a preliminary survey. Trop Med Int Health. 1997;2(3):272–7.
Article
CAS
PubMed
Google Scholar
Asadollahi K, Delpisheh A, Asadollahi P, Abangah G. Hyperglycaemia and its related risk factors in Ilam province, west of Iran – a population-based study. J Diabetes Metab Disord. 2015;14:81.
Article
PubMed
PubMed Central
Google Scholar
Bharati D, Pal R, Rekha R, Yamuna T, Kar S, Radjou A. Ageing in Puducherry, South India: an overview of morbidity profile. J Pharm Bioallied Sci. 2011;3(4):537–42.
Article
PubMed
PubMed Central
Google Scholar
Colleran KM, Richards A, Shafer K. Disparities in cardiovascular disease risk and treatment: demographic comparison. J Investig Med. 2007;55(8):415–22.
Article
CAS
PubMed
Google Scholar
Khan MM, Gruebner O, Kraemer A. The geography of diabetes among the general adults aged 35 years and older in Bangladesh: recent evidence from a cross-sectional survey. PLoS One. 2014;9(10):e110756.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakibuuka J, Sajatovic M, Nankabirwa J, Furlan AJ, Kayima J, Ddumba E, et al. Stroke-risk factors differ between rural and urban communities: population survey in Central Uganda. Neuroepidemiology. 2015;44(3):156–65.
Article
PubMed
PubMed Central
Google Scholar
Shera AS, Jawad F, Maqsood A. Prevalence of diabetes in Pakistan. Diabetes Res Clin Pract. 2007;76(2):219–22.
Article
CAS
PubMed
Google Scholar
Valverde JC, Tormo MJ, Navarro C, Rodriguez-Barranco M, Marco R, Egea JM, et al. Prevalence of diabetes in Murcia (Spain): a Mediterranean area characterised by obesity. Diabetes Res Clin Pract. 2006;71(2):202–9.
Article
PubMed
Google Scholar
Mohamud WN, Ismail AA, Sharifuddin A, Ismail IS, Musa KI, Kadir KA, et al. Prevalence of metabolic syndrome and its risk factors in adult Malaysians: results of a nationwide survey. Diabetes Res Clin Pract. 2011;91(2):239–45.
Article
PubMed
Google Scholar
Bahendeka S, Wesonga R, Mutungi G, Muwonge J, Neema S, Guwatudde D. Prevalence and correlates of diabetes mellitus in Uganda: a population-based national survey. Trop Med Int Health. 2016;21(3):405–16.
Article
PubMed
Google Scholar
Astell-Burt T, Feng X, Kolt GS. Is neighborhood green space associated with a lower risk of type 2 diabetes? Evidence from 267,072 Australians. Diabetes Care. 2014;37(1):197–201.
Article
PubMed
Google Scholar
Shaffer K, Bopp M, Papalia Z, Sims D, Bopp CM. The relationship of living environment with behavioral and fitness outcomes by sex: an exploratory study in college-aged students. Int J Exerc Sci. 2017;10(3):330–9.
PubMed
PubMed Central
Google Scholar
Bodicoat DH, O'Donovan G, Dalton AM, Gray LJ, Yates T, Edwardson C, et al. The association between neighbourhood greenspace and type 2 diabetes in a large cross-sectional study. BMJ Open. 2014;4(12):e006076.
Article
PubMed
PubMed Central
Google Scholar
Lee H, Kang HM, Ko YJ, Kim HS, Kim YJ, Bae WK, et al. Influence of urban neighbourhood environment on physical activity and obesity-related diseases. Public Health. 2015;129(9):1204–10.
Article
CAS
PubMed
Google Scholar
Ahern M, Brown C, Dukas S. A national study of the association between food environments and county-level health outcomes. J Rural Health. 2011;27(4):367–79.
Article
PubMed
Google Scholar
Auchincloss AH, Diez Roux AV, Mujahid MS, Mingwu Shen MS, Bertoni AG, Carnethon MR. Neighborhood resources for physical activity and healthy foods and incidence of type 2 diabetes mellitus. Arch Intern Med. 2009;169(18):1698–704.
Christine PJ, Auchincloss AH, Bertoni AG, Carnethon MR, Sanchez BN, Moore K, et al. Longitudinal associations between neighborhood physical and social environments and incident type 2 diabetes mellitus: the multi-ethnic study of atherosclerosis (MESA). JAMA Intern Med. 2015;175(8):1311–20.
Article
PubMed
PubMed Central
Google Scholar
Cunningham-Myrie CA, Theall KP, Younger NO, Mabile EA, Tulloch-Reid MK, Francis DK, et al. Associations between neighborhood effects and physical activity, obesity, and diabetes: The Jamaica Health and Lifestyle Survey 2008. J Clin Epidemiol. 2015;68(9):970–8.
Article
PubMed
Google Scholar
Eichinger M, Titze S, Haditsch B, Dorner TE, Stronegger WJ. How are physical activity behaviors and cardiovascular risk factors associated with characteristics of the built and social residential environment? PLoS One. 2015;10(6):e0126010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Herrick CJ, Yount BW, Eyler AA. Implications of supermarket access, neighbourhood walkability and poverty rates for diabetes risk in an employee population. Public Health Nutr. 2016;19(11):2040–8.
Article
PubMed
Google Scholar
Marshall WE, Piatkowski DP, Garrick NW. Community design, street networks, and public health. J Transport Health. 2014;1(4):326–40.
Article
Google Scholar
Mena C, Fuentes E, Ormazabal Y, Palomo-Velez G, Palomo I. Role of access to parks and markets with anthropometric measurements, biological markers, and a healthy lifestyle. Int J Environ Health Res. 2015;25(4):373–83.
Article
PubMed
Google Scholar
Paquet C, Coffee NT, Haren MT, Howard NJ, Adams RJ, Taylor AW, et al. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort. Health Place. 2014;28:173–6.
Article
PubMed
Google Scholar
Salois MJ. Obesity and diabetes, the built environment, and the 'local' food economy in the United States, 2007. Econ Hum Biol. 2012;10(1):35–42.
Article
PubMed
Google Scholar
Schootman M, Andresen EM, Wolinsky FD, Malmstrom TK, Miller JP, Yan Y, et al. The effect of adverse housing and neighborhood conditions on the development of diabetes mellitus among middle-aged African Americans. Am J Epidemiol. 2007;166(4):379–87.
Article
PubMed
PubMed Central
Google Scholar
Braun LM, Rodriguez DA, Evenson KR, Hirsch JA, Moore KA, Diez Roux AV. Walkability and cardiometabolic risk factors: cross-sectional and longitudinal associations from the multi-ethnic study of atherosclerosis. Health Place. 2016;39:9–17.
Article
PubMed
PubMed Central
Google Scholar
Braun LM, Rodriguez DA, Song Y, Meyer KA, Lewis CE, Reis JP, et al. Changes in walking, body mass index, and cardiometabolic risk factors following residential relocation: longitudinal results from the CARDIA study. J Transp Health. 2016;3(4):426–39.
Article
PubMed
PubMed Central
Google Scholar
Dalton AM, Jones AP, Sharp SJ, Cooper AJ, Griffin S, Wareham NJ. Residential neighbourhood greenspace is associated with reduced risk of incident diabetes in older people: a prospective cohort study. BMC Public Health. 2016;16(1):1171.
Article
PubMed
PubMed Central
Google Scholar
Fujiwara T, Takamoto I, Amemiya A, Hanazato M, Suzuki N, Nagamine Y, et al. Is a hilly neighborhood environment associated with diabetes mellitus among older people? Results from the JAGES 2010 study. Soc Sci Med. 2017;182:45–51.
Article
PubMed
Google Scholar
Gebreab SY, Hickson DA, Sims M, Wyatt SB, Davis SK, Correa A, et al. Neighborhood social and physical environments and type 2 diabetes mellitus in African Americans: the Jackson Heart study. Health Place. 2017;43:128–37.
Article
PubMed
Google Scholar
Loo CK, Greiver M, Aliarzadeh B, Lewis D. Association between neighbourhood walkability and metabolic risk factors influenced by physical activity: a cross-sectional study of adults in Toronto, Canada. BMJ Open. 2017;7(4):e013889.
Article
PubMed
Google Scholar
Myers CA, Slack T, Broyles ST, Heymsfield SB, Church TS, Martin CK. Diabetes prevalence is associated with different community factors in the diabetes belt versus the rest of the United States. Obesity. 2017;25(2):452–9.
Article
PubMed
Google Scholar
Ngom R, Gosselin P, Blais C, Rochette L. Type and proximity of green spaces are important for preventing cardiovascular morbidity and diabetes–a cross-sectional study for Quebec, Canada. Int J Environ Res Public Health. 2016;13(4):423.
Article
PubMed
PubMed Central
Google Scholar
Muller-Riemenschneider F, Pereira G, Villanueva K, Christian H, Knuiman M, Giles-Corti B, et al. Neighborhood walkability and cardiometabolic risk factors in Australian adults: an observational study. BMC Public Health. 2013;13:755.
Article
PubMed
PubMed Central
Google Scholar
Maas J, Verheij RA, de Vries S, Spreeuwenberg P, Schellevis FG, Groenewegen PP. Morbidity is related to a green living environment. J Epidemiol Community Health. 2009;63(12):967–73.
Article
CAS
PubMed
Google Scholar
Attard SM, Herring AH, Mayer-Davis EJ, Popkin BM, Meigs JB, Gordon-Larsen P. Multilevel examination of diabetes in modernising China: what elements of urbanisation are most associated with diabetes? Diabetologia. 2012;55(12):3182–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freedman VA, Grafova IB, Rogowski J. Neighborhoods and chronic disease onset in later life. Am J Public Health. 2011;101(1):79–86.
Article
PubMed
PubMed Central
Google Scholar
AlHasan DM, Eberth JM. An ecological analysis of food outlet density and prevalence of type II diabetes in South Carolina counties. BMC Public Health. 2016;16:10.
Article
PubMed
PubMed Central
Google Scholar
Mezuk B, Li X, Cederin K, Rice K, Sundquist J, Sundquist K. Beyond access: characteristics of the food environment and risk of diabetes. Am J Epidemiol. 2016;183(12):1129–37.
Article
PubMed
PubMed Central
Google Scholar
Carroll SJ, Paquet C, Howard NJ, Coffee NT, Adams RJ, Taylor AW, Niyonsenga T, et al. Local descriptive body weight and dietary norms, food availability, and 10-year change in glycosylated haemoglobin in an Australian population-based biomedical cohort. BMC Public Health. 2017;17(1):149.
Article
PubMed
PubMed Central
Google Scholar
Bodicoat DH, Carter P, Comber A, Edwardson C, Gray LJ, Hill S, et al. Is the number of fast-food outlets in the neighbourhood related to screen-detected type 2 diabetes mellitus and associated risk factors? Public Health Nutr. 2015;18(9):1698–705.
Article
PubMed
Google Scholar
Flynt A, Daepp MI. Diet-related chronic disease in the northeastern United States: a model-based clustering approach. Int J Health Geogr. 2015;14:25.
Article
PubMed
PubMed Central
Google Scholar
Frankenfeld CL, Leslie TF, Makara MA. Diabetes, obesity, and recommended fruit and vegetable consumption in relation to food environment sub-types: a cross-sectional analysis of Behavioral Risk Factor Surveillance System, United States Census, and food establishment data. BMC Public Health. 2015;15:491.
Article
PubMed
PubMed Central
Google Scholar
Morland K, Diez Roux AV, Wing S. Supermarkets, other food stores, and obesity: the atherosclerosis risk in communities study. Am J Prev Med. 2006;30(4):333–9.
Article
PubMed
Google Scholar
Babey SH, Diamant AL, Hastert TA, Harvey S. Designed for disease: the link between local food environments and obesity and diabetes. California Center for Public Health Advocacy, PolicyLink, and the UCLA Center for Health Policy Res. 2008.
Jiao J, Moudon AV, Kim SY, Hurvitz PM, Drewnowski A. Health implications of adults' eating at and living near fast food or quick service restaurants. Nutr Diabetes. 2015;5:e171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hipp JA, Chalise N. Spatial analysis and correlates of county-level diabetes prevalence, 2009–2010. Prev Chronic Dis. 2015;12:E08.
PubMed
PubMed Central
Google Scholar
Liu L, Nunez AE. Multilevel and urban health modeling of risk factors for diabetes mellitus: a new insight into public health and preventive medicine. Adv Prev Med. 2014;2014:246049.
Article
PubMed
PubMed Central
Google Scholar
Braun LM, Malizia E. Downtown vibrancy influences public health and safety outcomes in urban counties. J Transport Health. 2015;2(4):540–8.
Article
Google Scholar
Meyer KA, Boone-Heinonen J, Duffey KJ, Rodriguez DA, Kiefe CI, Lewis CE, et al. Combined measure of neighborhood food and physical activity environments and weight-related outcomes: the CARDIA study. Health Place. 2015;33:9–18.
Article
PubMed
PubMed Central
Google Scholar
Cai Y, Hansell AL, Blangiardo M, Burton PR, BioShaRe, De Hoogh K, et al. Long-term exposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts. Eur Heart J. 2017;38(29):2290–6.
PubMed
Google Scholar
Dzhambov A, Dimitrova D. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: a feasibility study in Bulgaria. Noise Health. 2016;18(82):133–42.
Article
PubMed
PubMed Central
Google Scholar
Sorensen M, Andersen ZJ, Nordsborg RB, Becker T, Tjonneland A, Overvad K, et al. Long-term exposure to road traffic noise and incident diabetes: a cohort study. Environ Health Perspect. 2013;121(2):217–22.
PubMed
Google Scholar
Eriksson C, Hilding A, Pyko A, Bluhm G, Pershagen G, Ostenson CG. Long-term aircraft noise exposure and body mass index, waist circumference, and type 2 diabetes: a prospective study. Environ Health Perspect. 2014;122(7):687–94.
PubMed
PubMed Central
Google Scholar
Heidemann C, Niemann H, Paprott R, Du Y, Rathmann W, Scheidt-Nave C. Residential traffic and incidence of type 2 diabetes: the German health interview and examination surveys. Diabet Med. 2014;31(10):1269–76.
Article
CAS
PubMed
Google Scholar
Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297–322.
Article
PubMed
Google Scholar
Cao X, Mokhtarian PL, Handy SL. Examining the impacts of residential self‐selection on travel behaviour: a focus on empirical findings. Transp Rev. 2009;29(3):359–95.
Article
Google Scholar
Aekplakorn W, Chariyalertsak S, Kessomboon P, Sangthong R, Inthawong R, Putwatana P, et al. Prevalence and management of diabetes and metabolic risk factors in Thai adults. Diabetes Care. 2011;34(9):1980–5.
Article
PubMed
PubMed Central
Google Scholar
Agyemang C, Meeks K, Beune E, Owusu-Dabo E, Mockenhaupt FP, Addo J, et al. Obesity and type 2 diabetes in sub-Saharan Africans – is the burden in today's Africa similar to African migrants in Europe? The RODAM study. BMC Med. 2016;14(1):166.
Article
PubMed
PubMed Central
Google Scholar
Ali O, Tan TT, Sakinah O, Khalid BAK, Wu LL, Ng ML. Prevalence of NIDDM and impaired glucose tolerance in aborigines and Malays in Malaysia and their relationship to sociodemographic, health, and nutritional factors. Diabetes Care. 1993;16(1):68–75.
Article
CAS
PubMed
Google Scholar
Al-Moosa S, Allin S, Jemiai N, Al-Lawati J, Mossialos E. Diabetes and urbanization in the Omani population: an analysis of national survey data. Popul Health Metr. 2006;4:5.
Article
PubMed
PubMed Central
Google Scholar
Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R, et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study. Diabetologia. 2011;54(12):3022–7.
Article
CAS
PubMed
Google Scholar
Assah FK, Ekelund U, Brage S, Mbanya JC, Wareham NJ. Urbanization, physical activity, and metabolic health in sub-Saharan Africa. Diabetes Care. 2011;34(2):491–6.
Article
PubMed
PubMed Central
Google Scholar
Allender S, Wickramasinghe K, Goldacre M, Matthews D, Katulanda P. Quantifying urbanization as a risk factor for noncommunicable disease. J Urban Health. 2011;88(5):906–18.
Article
PubMed
PubMed Central
Google Scholar
Balde NM, Diallo I, Balde MD, Barry IS, Kaba L, Diallo MM, et al. Diabetes and impaired fasting glucose in rural and urban populations in Futa Jallon (Guinea): prevalence and associated risk factors. Diabetes Metab. 2007;33(2):114–20.
Article
PubMed
Google Scholar
Balogun WO, Gureje O. Self-reported incident type 2 diabetes in the Ibadan study of ageing: relationship with urban residence and socioeconomic status. Gerontology. 2013;59(1):3–7.
Article
PubMed
Google Scholar
Baltazar JC, Ancheta CA, Aban IB, Fernando RE, Baquilod MM. Prevalence and correlates of diabetes mellitus and impaired glucose tolerance among adults in Luzon, Philippines. Diabetes Res Clin Pract. 2004;64(2):107–15.
Article
PubMed
Google Scholar
Bernabe-Ortiz A, Carrillo-Larco RM, Gilman RH, Miele CH, Checkley W, Wells JC, et al. Geographical variation in the progression of type 2 diabetes in Peru: the CRONICAS cohort study. Diabetes Res Clin Pract. 2016;121:135–45.
Article
PubMed
PubMed Central
Google Scholar
Bocquier A, Cortaredona S, Nauleau S, Jardin M, Verger P. Prevalence of treated diabetes: geographical variations at the small-area level and their association with area-level characteristics. A multilevel analysis in Southeastern France. Diabetes Metab. 2011;37(1):39–46.
Article
CAS
PubMed
Google Scholar
Christensen DL, Friis H, Mwaniki DL, Kilonzo B, Tetens I, Boit MK, et al. Prevalence of glucose intolerance and associated risk factors in rural and urban populations of different ethnic groups in Kenya. Diabetes Res Clin Pract. 2009;84(3):303–10.
Article
CAS
PubMed
Google Scholar
Dagenais GR, Gerstein HC, Zhang X, McQueen M, Lear S, Lopez-Jaramillo P, et al. Variations in diabetes prevalence in low-, middle-, and high-income countries: results from the prospective urban and rural epidemiological study. Diabetes Care. 2016;39(5):780–7.
Article
CAS
PubMed
Google Scholar
Davila EP, Quintero MA, Orrego ML, Ford ES, Walke H, Arenas MM, et al. Prevalence and risk factors for metabolic syndrome in Medellin and surrounding municipalities, Colombia, 2008–2010. Prev Med. 2013;56(1):30–4.
Article
CAS
PubMed
Google Scholar
Delisle H, Ntandou-Bouzitou G, Agueh V, Sodjinou R, Fayomi B. Urbanisation, nutrition transition and cardiometabolic risk: the Benin study. Br J Nutr. 2012;107(10):1534–44.
Article
CAS
PubMed
Google Scholar
Dong Y, Gao W, Nan H, Yu H, Li F, Duan W, et al. Prevalence of type 2 diabetes in urban and rural Chinese populations in Qingdao, China. Diabet Med. 2005;22(10):1427–33.
Article
CAS
PubMed
Google Scholar
Du GL, Su YX, Yao H, Zhu J, Ma Q, Tuerdi A, et al. Metabolic risk factors of type 2 diabetes mellitus and correlated glycemic control/complications: a cross-sectional study between rural and urban Uygur residents in Xinjiang Uygur Autonomous Region. PLoS One. 2016;11(9):e0162611.
Article
PubMed
PubMed Central
CAS
Google Scholar
Esteghamati A, Meysamie A, Khalilzadeh O, Rashidi A, Haghazali M, Asgari F, et al. Third national surveillance of risk factors of non-communicable diseases (SuRFNCD-2007) in Iran: methods and results on prevalence of diabetes, hypertension, obesity, central obesity, and dyslipidemia. BMC Public Health. 2009;9:167.
Article
PubMed
PubMed Central
Google Scholar
Georgousopoulou EN, Mellor DD, Naumovski N, Polychronopoulos E, Tyrovolas S, Piscopo S, et al. Mediterranean lifestyle and cardiovascular disease prevention. Cardiovasc Diagn Ther. 2017;7 Suppl 1:S39–47.
Article
PubMed
PubMed Central
Google Scholar
Gong H, Pa L, Wang K, Mu H, Dong F, Ya S, et al. Prevalence of diabetes and associated factors in the Uyghur and Han population in Xinjiang, China. Int J Environ Res Public Health. 2015;12(10):12792–802.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hussain A, Rahim MA, Azad Khan AK, Ali SMK, Vaaler S. Type 2 diabetes in rural and urban population: diverse prevalence and associated risk factors in Bangladesh. Diabet Med. 2005;22(7):931–6.
Article
CAS
PubMed
Google Scholar
Han SJ, Kim HJ, Kim DJ, Lee KW, Cho NH. Incidence and predictors of type 2 diabetes among Koreans: a 12-year follow up of the Korean genome and epidemiology study. Diabetes Res Clin Pract. 2017;123:173–80.
Article
PubMed
Google Scholar
Katchunga P, Masumbuko B, Belma M, Kashongwe Munogolo Z, Hermans MP, M'Buyamba-Kabangu JR. Age and living in an urban environment are major determinants of diabetes among South Kivu Congolese adults. Diabetes Metab. 2012;38(4):324–31.
Article
CAS
PubMed
Google Scholar
Keel S, Foreman J, Xie J, van Wijngaarden P, Taylor HR, Dirani M. The prevalence of self-reported diabetes in the Australian national eye health survey. PLoS One. 2017;12(1):e0169211.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mayega RW, Guwatudde D, Makumbi F, Nakwagala FN, Peterson S, Tomson G, et al. Diabetes and pre-diabetes among persons aged 35 to 60 years in eastern Uganda: prevalence and associated factors. PLoS One. 2013;8(8):e72554.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohan I, Gupta R, Misra A, Sharma KK, Agrawal A, Vikram NK, et al. Disparities in prevalence of cardiometablic risk factors in rural, urban-poor, and urban-middle class women in India. PLoS One. 2016;11(2):e0149437.
Article
PubMed
PubMed Central
CAS
Google Scholar
Msyamboza KP, Mvula CJ, Kathyola D. Prevalence and correlates of diabetes mellitus in Malawi: population-based national NCD STEPS survey. BMC Endocr Disord. 2014;14(1):41.
Article
PubMed
PubMed Central
Google Scholar
Ntandou G, Delisle H, Agueh V, Fayomi B. Abdominal obesity explains the positive rural–urban gradient in the prevalence of the metabolic syndrome in Benin. West Africa Nutr Res. 2009;29(3):180–9.
CAS
PubMed
Google Scholar
Oyebode O, Pape UJ, Laverty AA, Lee JT, Bhan N, Millett C. Rural, urban and migrant differences in non-communicable disease risk-factors in middle income countries: a cross-sectional study of WHO-SAGE data. PLoS One. 2015;10(4):e0122747.
Article
PubMed
PubMed Central
CAS
Google Scholar
Papoz L, Bamy S, Simon D, Group CS. Prevalence of diabetes mellitus in New Caledonia: ethnic and urban–rural differences. Am J Epidemiol. 1996;143(10):1018–24.
Article
CAS
PubMed
Google Scholar
Pham NM, Eggleston K. Prevalence and determinants of diabetes and prediabetes among Vietnamese adults. Diabetes Res Clin Pract. 2016;113:116–24.
Article
PubMed
Google Scholar
Raghupathy P, Antonisamy B, Fall CH, Geethanjali FS, Leary SD, Saperia J, et al. High prevalence of glucose intolerance even among young adults in south India. Diabetes Res Clin Pract. 2007;77(2):269–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ramdani N, Vanderpas J, Boutayeb A, Meziane A, Hassani B, Zoheir J, et al. Diabetes and obesity in the eastern Morocco. Mediterr J Nutr Metab. 2011;5(2):149–55.
Article
Google Scholar
Sadikot SM, Nigam A, Das S, Bajaj S, Zargar AH, Prasannakumar KM, et al. The burden of diabetes and impaired fasting glucose in India using the ADA 1997 criteria: prevalence of diabetes in India study (PODIS). Diabetes Res Clin Pract. 2004;66(3):293–300.
Article
CAS
PubMed
Google Scholar
Sobngwi E, Mbanya JC, Unwin NC, Porcher R, Kengne AP, Fezeu L, et al. Exposure over the life course to an urban environment and its relation with obesity, diabetes, and hypertension in rural and urban Cameroon. Int J Epidemiol. 2004;33(4):769–76.
Article
PubMed
Google Scholar
Stanifer JW, Egger JR, Turner EL, Thielman N, Patel UD. Neighborhood clustering of non-communicable diseases: results from a community-based study in Northern Tanzania. BMC Public Health. 2016;16:226.
Article
PubMed
PubMed Central
Google Scholar
Weng X, Liu Y, Ma J, Wang W, Yang G, Caballero B. An urban-rural comparison of the prevalence of the metabolic syndrome in Eastern China. Public Health Nutr. 2007;10(2):131–6.
Article
PubMed
Google Scholar
Wu J, Cheng X, Qiu L, Xu T, Zhu G, Han J, et al. Prevalence and clustering of major cardiovascular risk factors in China: a recent cross-sectional survey. Medicine. 2016;95(10):e2712.
Article
PubMed
PubMed Central
Google Scholar
Zhou M, Astell-Burt T, Bi Y, Feng X, Jiang Y, Li Y, et al. Geographical variation in diabetes prevalence and detection in China: multilevel spatial analysis of 98,058 adults. Diabetes Care. 2015;38(1):72–81.
Article
PubMed
Google Scholar