World Health Organization. Zika virus and complications: 2016 Public Health Emergency of International Concern: World Health Organization; 2017. http://www.who.int/emergencies/zika-virus/en/ Accessed 17 Sept 2017
Pan American Health Organization. Zika virus infection: Pan American Health Organization; 2017. https://goo.gl/oABMtf Accessed 17 Sept 2017
Centers for Disease Control and Prevention. Zika virus: Centers for Disease Control and Prevention; 2017. https://www.cdc.gov/zika/index.html Accessed 17 Sept 2017
Walker WL. Zika virus disease cases—50 states and the District of Columbia, January 1–July 31, 2016. Morb Mortal Wkly Rep. 2016;65(36):983.
Article
Google Scholar
Reynolds MR, Jones AM, Petersen EE, Lee EH, Rice ME, Bingham A, Ellington SR, Evert N, Reagan-Steiner S, Oduyebo T, et al. Vital signs: update on Zika virus-associated birth defects and evaluation of all US infants with congenital Zika virus exposure-US Zika Pregnancy Registry, 2016. Morb Mortal Wkly Rep. 2017;66(13):366–73.
Article
Google Scholar
Honein MA, Dawson AL, Petersen EE, Jones AM, Lee EH, Yazdy MM, Ahmad N, Macdonald J, Evert N, Bingham A, et al. Birth defects among fetuses and infants of US women with evidence of possible Zika virus infection during pregnancy. JAMA. 2017;317(1):59–68.
Article
Google Scholar
Centers for Disease Control and Prevention. Advice for people living in or traveling to Brownsville, Texas: Centers for Disease Control and Prevention; 2017. https://www.cdc.gov/zika/intheus/texas-update.html Accessed 17 Sept 2017
Centers for Disease Control and Prevention. Advice for people living in or traveling to South Florida: Centers for Disease Control and Prevention; 2017. https://www.cdc.gov/zika/intheus/florida-update.html Accessed 17 Sept 2017
Lee BY, Alfaro-Murillo JA, Parpia AS, Asti L, Wedlock PT, Hotez PJ, Galvani AP. The potential economic burden of Zika in the continental United States. PLoS Negl Trop Dis. 2017;11(4):0005531.
Google Scholar
Keegan LT, Lessler J, Johansson MA. Quantifying Zika: advancing the epidemiology of Zika with quantitative models. J Infect Dis. 2017;216(suppl 10):884–90.
Article
Google Scholar
Monaghan AJ, Morin CW, Steinhoff DF, Wilhelmi O, Hayden M, Quattrochi DA, Reiskind M, Lloyd AL, Smith K, Schmidt CA, et al. On the seasonal occurrence and abundance of the Zika virus vector mosquito Aedes aegypti in the contiguous United States. PLoS Curr. 2016;8. https://doi.org/10.1371/currents.outbreaks.50dfc7f46798675fc63e7d7da563da76.
Messina JP, Kraemer MU, Brady OJ, Pigott DM, Shearer FM, Weiss DJ, Golding N, Ruktanonchai CW, Gething PW, Cohn E, et al. Mapping global environmental suitability for Zika virus. Elife. 2016;5:15272.
Article
Google Scholar
Bogoch II, Brady OJ, Kraemer MU, German M, Creatore MI, Brent S, Watts AG, Hay SI, Kulkarni MA, Brownstein JS, et al. Potential for Zika virus introduction and transmission in resource-limited countries in Africa and the Asia-Pacific region: a modelling study. Lancet Infect Dis. 2016;16(11):1237–45.
Article
Google Scholar
Perkins TA, Siraj AS, Ruktanonchai CW, Kraemer MU, Tatem AJ. Model-based projections of Zika virus infections in childbearing women in the Americas. Nat Microbiol. 2016;1:16126.
Article
CAS
Google Scholar
Alfaro-Murillo JA, Parpia AS, Fitzpatrick MC, Tamagnan JA, Medlock J, Ndeffo-Mbah ML, Fish D, Ávila-Agüero ML, Marín R, Ko AI, et al. A cost-effectiveness tool for informing policies on Zika virus control. PLoS Negl Trop Dis. 2016;10(5):0004743.
Article
Google Scholar
Dinh L, Chowell G, Mizumoto K, Nishiura H. Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016. Theor Biol Med Model. 2016;13(1):20.
Article
Google Scholar
Rocklöv J, Quam MB, Sudre B, German M, Kraemer MU, Brady O, Bogoch II, Liu-Helmersson J, Wilder-Smith A, Semenza JC, et al. Assessing seasonal risks for the introduction and mosquito-borne spread of Zika virus in Europe. EBioMedicine. 2016;9:250–6.
Article
Google Scholar
Lourenço J, de Lima MM, Faria NR, Walker A, Kraemer MU, Villabona-Arenas CJ, Lambert B, de Cerqueira EM, Pybus OG, Alcantara LC, et al. Epidemiological and ecological determinants of Zika virus transmission in an urban setting. eLife. 2017;6:e29820.
Ajelli M. Modeling mosquito-borne diseases in complex urban environments. Acta Trop. 2017;176:332–4.
Article
Google Scholar
Ajelli M, Moise IK, Hutchings TCS, Brown SC, Kumar N, Johnson NF, Beier JC. Host outdoor exposure variability affects the transmission and spread of Zika virus: insights for epidemic control. PLoS Negl Trop Dis. 2017;11(9):0005851.
Article
Google Scholar
Castro LA, Fox SJ, Chen X, Liu K, Bellan SE, Dimitrov NB, Galvani AP, Meyers LA. Assessing real-time Zika risk in the United States. BMC Infect Dis. 2017;17(1):284.
Article
Google Scholar
Fox SJ, Bellan SE, Perkins TA, Johansson MA, Meyers LA. Downgrading disease transmission risk estimates using terminal importations. bioRxiv. 2018:265942. https://doi.org/10.1101/265942.
Zhang Q, Sun K, Chinazzi M, y Piontti AP, Dean NE, Rojas DP, Merler S, Mistry D, Poletti P, Rossi L, et al. Spread of Zika virus in the Americas. Proc Natl Acad Sci. 2017;114(22):4334–43.
Article
Google Scholar
Centers for Disease Control and Prevention. Guidance for areas with local Zika virus transmission in the continental United States and Hawaii: Centers for Disease Control and Prevention; 2017. https://www.cdc.gov/zika/geo/domestic-guidance.html Accessed 17 Sept 2017
The International Civil Aviation Organization (ICAO): The world of air transport in 2016 (2016). https://www.icao.int/annual-report-2016/Pages/the-world-of-air-transport-in-2016.aspx Accessed 17 Sept 2017.
Centers for Disease Control and Prevention. Estimated range of Aedes aegypti and Aedes albopictus in the United States, 2017: Centers for Disease Control and Prevention; 2017. https://www.cdc.gov/zika/vector/range.html Accessed 17 Sept 2017
Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, Moore CG, Carvalho RG, Coelho GE, Van Bortel W, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife. 2015;4:08347.
Article
Google Scholar
Sissoko D, Moendandze A, Malvy D, Giry C, Ezzedine K, Solet JL, Pierre V. Seroprevalence and risk factors of chikungunya virus infection in Mayotte Indian Ocean, 2005-2006: a population-based survey. PLoS One. 2008;3(8):3066. https://doi.org/10.1371/journal.pone.0003066.
Article
CAS
Google Scholar
Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, et al. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis. 2003;9(1):86.
Article
Google Scholar
Nordhaus, W.D., Chen, X.: Global gridded geographically based economic data (G-econ), version 4 (2016).
Google Scholar
Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, et al. Zika virus outbreak on Yap Island, federated states of Micronesia. N Engl J Med. 2009;360(24):2536–43.
Article
CAS
Google Scholar
Russell SP, Ryff KR, Gould CV, Martin SW, Johansson MA. Detecting local Zika virus transmission in the continental United States: a comparison of surveillance strategies. PLOS Currents Outbreaks. 2017:145102. Edition 1. https://doi.org/10.1371/currents.outbreaks.cd76717676629d47704170ecbdb5f820.
Moghadas SM, Shoukat A, Espindola AL, Pereira RS, Abdirizak F, Laskowski M, Viboud C, Chowell G. Asymptomatic transmission and the dynamics of Zika infection. Sci Rep. 2017;7(1):5829.
Article
Google Scholar
Marini G, Guzzetta G, Rosà R, Merler S. First outbreak of Zika virus in the continental United States: a modelling analysis. Euro Surveill. 2017;22(37).
Grubaugh ND, Ladner JT, Kraemer MU, Dudas G, Tan AL, Gangavarapu K, Wiley MR, White S, Thézé J, Magnani DM, et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature. 2017;546(7658):401–5.
Article
CAS
Google Scholar
Bogoch II, Brady OJ, Kraemer M, German M, Creatore MI, Kulkarni MA, Brownstein JS, Mekaru SR, Hay SI, Groot E, et al. Anticipating the international spread of Zika virus from Brazil. Lancet. 2016;387(10016):335–6.
Article
Google Scholar
Foy BD, Kobylinski KC, Foy JLC, Blitvich BJ, da Rosa AT, Haddow AD, Lanciotti RS, Tesh RB. Probable non–vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis. 2011;17(5):880.
Article
Google Scholar
Russell K, Hills SL, Oster AM, Porse CC, Danyluk G, Cone M, Brooks R, Scotland S, Schiffman E, Fredette C, et al. Male-to-female sexual transmission of Zika virus—United States, January–April 2016. Clin Infect Dis. 2016;64(2):211–3.
Article
Google Scholar
McCarthy M. Zika virus was transmitted by sexual contact in Texas, health officials report. BMJ. 2016;352:i720.
Gao D, Lou Y, He D, Porco TC, Kuang Y, Chowell G, Ruan S. Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis. Sci Rep. 2016;6:28070.
Article
CAS
Google Scholar
Allard A, Althouse BM, Hébert-Dufresne L, Scarpino SV. The risk of sustained sexual transmission of Zika is underestimated. PLoS Pathog. 13(9):1006633–2017.
Yakob L, Kucharski A, Hue S, Edmunds WJ. Low risk of a sexually-transmitted Zika virus outbreak. Lancet Infect Dis. 2016;16(10):1100–2.
Article
Google Scholar
Gaskell KM, Houlihan C, Nastouli E, Checkley AM. Persistent Zika virus detection in semen in a traveler returning to the United Kingdom from Brazil, 2016. Emerg Infect Dis. 2017;23(1):137.
Article
Google Scholar
Kim CR, Counotte M, Bernstein K, Deal C, Mayaud P, Low N, Broutet N, et al. Investigating the sexual transmission of Zika virus. Lancet Glob Health. 2018;6(1):24–5.
Article
Google Scholar
Tran A, L’Ambert G, Lacour G, Benoît R, Demarchi M, Cros M, Cailly P, Aubry-Kientz M, Balenghien T, Ezanno P. A rainfall- and temperature-driven abundance model for Aedes albopictus populations. Int J Environ Res Public Health. 2013;10(5):1698–719. https://doi.org/10.3390/ijerph10051698.
Article
PubMed
PubMed Central
Google Scholar
Alto BW, Juliano SA. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): implications for range expansion. J Med Entomol. 2001;38(5):646–56.
Article
CAS
Google Scholar
Gomes AF, Nobre AA, Cruz OG. Temporal analysis of the relationship between dengue and meteorological variables in the city of Rio de Janeiro, Brazil, 2001-2009. Cad Saude Publica. 2012;28(11):2189–97.
Article
Google Scholar
Xu L, Stige LC, Chan K-S, Zhou J, Yang J, Sang S, Wang M, Yang Z, Yan Z, Jiang T, et al. Climate variation drives dengue dynamics. Proc Natl Acad Sci. 2017;114(1):113–8.
Article
CAS
Google Scholar
Barrera R, Amador M, Mackay AJ. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior. PLoS Negl Trop Dis. 2011;5(12):1378. https://doi.org/10.1371/journal.pntd.0001378.
Article
Google Scholar
Lourenço-de-Oliveira R, Castro MG, Braks MAH, Lounibos LP. The invasion of urban forest by dengue vectors in Rio de Janeiro. J Vector Ecol. 2004;29:94–100.
Reiskind M, Lounibos L. Spatial and temporal patterns of abundance of Aedes aegypti L.(Stegomyia aegypti) and Aedes albopictus (Skuse)[Stegomyia albopictus (Skuse)] in southern Florida. Med Vet Entomol. 2013;27(4):421–9.
Article
CAS
Google Scholar
Li M-T, Sun G-Q, Yakob L, Zhu H-P, Jin Z, Zhang W-Y. The driving force for 2014 dengue outbreak in Guangdong, China. PLoS One. 2016;11(11):0166211.
Google Scholar
Roiz D, Rosà R, Arnoldi D, Rizzoli A. Effects of temperature and rainfall on the activity and dynamics of host-seeking Aedes albopictus females in northern Italy. Vector Borne Zoonotic Dis. 2010. https://doi.org/10.1089/vbz.2009.0098.
Article
Google Scholar
Luciano T, Severini IF, Di Luca IM, Bella IA, ryP Roberto R. Seasonal patterns of oviposition and egg hatching rate of Aedes albopictus in Rome. J Am Mosq Control Assoc. 2003;19(1):100.
Google Scholar
Azil AH, Long SA, Ritchie SA, Williams CR. The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Tropical Med Int Health. 2010;15(10):1190–7.
Article
Google Scholar
Gardner LM, Chen N, Sarkar S. Global risk of Zika virus depends critically on vector status of Aedes albopictus. Lancet Infect Dis. 2016;16(5):522–3.
Article
Google Scholar
Johnson TL, Haque U, Monaghan AJ, Eisen L, Hahn MB, Hayden MH, Savage HM, McAllister J, Mutebi J-P, Eisen RJ. Modeling the environmental suitability for Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in the contiguous United States. J Med Entomol. 2017;54(6):1605–14.
Article
Google Scholar
Ferguson NM, Cucunubá ZM, Dorigatti I, Nedjati-Gilani GL, Donnelly CA, Basáñez M-G, Nouvellet P, Lessler J. Countering the Zika epidemic in Latin America. Science. 2016;353(6297):353–4.
Article
CAS
Google Scholar
CIESIN-Columbia University: Global population count grid time series estimates (2017). https://doi.org/10.7927/H4CC0XNV Accessed 31 Dec 2017.
Balcan D, Gonçalves B, Hu H, Ramasco JJ, Colizza V, Vespignani A. Modeling the spatial spread of infectious diseases: the GLobal Epidemic and Mobility computational model. J Comput Sci. 2010;1(3):132–45.
Article
Google Scholar