We aimed to shed light on RF changes between age 14 and age 17 and investigated (a) RF mean levels, (b) RF interrelations, and (c) pathways from the RFs to general distress, in adolescents with and without CA. Regarding RF mean levels (a), we found that although inter-personal RFs (e.g. friendships) seemed to stay stable, some intra-personal RFs (e.g. distress tolerance) changed between age 14 and 17. Interestingly, all RFs that in- or decreased between age 14 and 17 changed similarly in the two groups. Moreover, the CA+ group had lower RFs and higher distress at both ages. Regarding RF interrelations (b), we found that at age 14, but not at age 17, RFs were less positively interrelated in the CA+ group. This suggests that the RFs are less likely to enhance each other in the CA+ compared to the CA− network. Regarding RF-distress pathways (c), our results indicate that the strength of the pathways did neither differ between the CA+ and the CA− group, nor over time, suggesting that RFs may be similarly protective in both groups and at both ages. Below we will outline how our findings inform about the complex nature of RFs and will discuss tentative accounts for why CA not only has strong proximal effects, but is often found to have a lasting impact on mental health.
RF mean level changes
All inter-personal RFs (i.e. friendship support, family support, and family cohesion) seemed to stay stable between age 14 and 17, showing that, in this cohort, adolescents perceive their social support environment to be similar during early and later adolescence. The mean levels of some intra-personal RFs changed however between age 14 and 17 (i.e. distress tolerance, brooding, and reflection in both groups, as well as negative self-esteem in the CA− group). Adolescents reported a higher level of distress tolerance at age 17 than at age 14, which potentially may be explained by the improvement of executive functions and emotion regulation strategies. Previous literature has shown that executive functions, such as inhibitory control which facilitates the regulation of cognition and behaviour, develop and improve until adulthood [57, 58]. Similarly, the use of emotion regulation strategies is found to be significantly lower in mid-adolescence (age 15) than in young adulthood (age 19) [25].
In the literature, findings regarding changes in rumination are mixed. For example, Zimmerman and Iwanski [25] did not find a significant difference in rumination between age 13 and 17, whereas Frydenberg and Lewis [24] showed that ruminative worrying is higher at age 16 than at age 14. In line with Frydenberg and Lewis [24], our sample reported higher (more harmful) levels of reflective rumination and ruminative brooding at age 17 than at age 14. Besides the increase in rumination, our CA− group reported a decrease in negative self-esteem between age 14 and 17. Those results together suggest that although CA− adolescents may worry and reflect more about their experiences and behaviours during later adolescence, they may not attach those negative thoughts and evaluations to their self-image. Despite the fact that there was no significant decrease in negative self-esteem in the CA+ group, the change in negative self-esteem from age 14 to 17 did not differ significantly between the two groups. While further replication of our results is required, we suggest that between early and later adolescence mechanisms emerge that alter the perception of the self (e.g. negative self-esteem, rumination) and self-regulation (e.g. distress tolerance, rumination) [23,24,25, 57, 58].
Our results further showed that all changes in RF mean levels between early and later adolescence were similar in the CA+ and the CA− groups. Crucially, however, the CA+ group had lower RFs at both ages, which is in line with previous research [22]. Hence, CA does not seem to inhibit RF changes, but seems to increase the risk of persistently lower RFs. Those findings support the hypothesis that lower and therefore possibly disadvantageous RF levels after CA are transferred forward from early to later adolescence [3, 23], which underpins the importance of revealing which factors and processes lend themselves best to aid optimal development after CA [3, 23].
In sum, our findings show that individual RFs change differently between early and later adolescence, but that the change pattern is similar in groups of CA+ and CA− adolescents. Based on those results, we cautiously suggest implications for future research, while reminding the reader that our findings only allow for group-level not individual-level conclusions. The main questions that arise from our mean-level findings are threefold. Firstly, one could ask whether RFs that seem to increase naturally during adolescence (e.g. distress tolerance) are particularly amenable and therefore more efficient intervention targets for reducing distress. Similarly, one may wonder whether it may be as advantageous to intervene on worsening RFs (e.g. rumination), to reduce or prevent such a decline. Regarding RFs that stay stable (e.g. friendships, family support and family cohesion), the arising question seems different. Stable RF levels may be advantageous for adolescents with a high level of those RFs, but may be disadvantageous for adolescents with a persistently low level of those RFs. Speculatively, stable RFs may function as a “vulnerability marker” when being persistently low, and early detection may be beneficial. Replication studies and translational research are crucially needed to answer these important questions, as such knowledge may eventually shed light on which RFs should be targeted in order to aid successful mental health development in adolescents with and without CA.
RF interrelation changes
Despite the fact that the RF levels differed between the CA+ and the CA− group at both age 14 and 17, RF interrelations differed between the two groups only at age 14, not at age 17. This suggests that CA may have a more pronounced effect at age 14, as it then goes together with both differential RF levels and differential RF interrelations. One account could be proximity of CA, as CA was measured up to the age of 14. This would be in line with previous work suggesting that although CA has deleterious effects on mental health across the life course, it has a particularly strong effect on a shorter term and accordingly a decreasing effect on affective and behaviour disorders from childhood to young adulthood [2, 59].
Interestingly, on a global network structure level, taking the overall pattern of RF interrelations into account, both the CA+ and the CA− network were invariant between early and later adolescence. Moreover, neither the CA+ nor the CA− network changed in the degree to which RFs are expected to enhance each other (i.e. expected influence) between early and later adolescence. We believe that the lack of temporal changes on the global network level is unlikely to be explained by power, as we did detect a difference in expected influence in other comparisons (see example in the next paragraph). Moreover, on the local network structure level, we also identified only minor changes between early and later adolescence. In the CA+ network, one out of 45 possible RF interrelations turned more positive and one turned less positive between age 14 and 17 (see Additional file 15: Table S10), which may have cancelled each other out and thus may help explain why there was little change in the expected influence of the CA+ network. In the CA− network, none of the 45 RF interrelations changed significantly between age 14 and 17 (see Additional file 15: Table S10). Hence, those findings point towards a general stability of RF interrelations between early and later adolescence, in both the CA+ and the CA− network. If this would generalize to other cohorts, it may offer one account for the finding that CA often has lasting effects on mental health [1, 60].
Of note, those findings were slightly different for the RF networks which are not corrected for general distress (see Additional file 7), as those networks differed in positive connectivity between age 14 and age 17 in the CA+ group. At age 17, the CA+ network was significantly more positively interrelated than at age 14. This finding suggests that in the CA+ (not the CA−) group there is some improvement in the degree to which RFs can potentially enhance each other, between early and later adolescence. Yet, as this finding does not hold when we take general distress into account, the effect should be considered with caution.
For both the CA+ and the CA− network, at both age 14 and age 17, the family, brooding, and negative self-esteem RFs were most positively connected with the other RFs (for more details see Additional file 10). Hence, those RFs are potentially important in driving the positive connectivity of the RF networks and in underpinning the degree to which RFs can enhance each other. Interestingly, in terms of mean levels, the family RFs stayed stable in both groups, the brooding RF decreased in both groups and the negative self-esteem RF increased in the CA− group between age 14 and age 17. This suggests that (changes in) mean levels of RFs may not, or at least not directly, impact the degree to which the RFs can enhance other RFs. Thus, our RF mean level and RF network model analyses provide independent but complementary insights. To further improve knowledge about the clinical relevance of those indicators, future research needs to examine whether RF mean levels or RF interrelations characteristics (such as expected influence coefficients) are better predictors for subsequent mental health. Such knowledge needs to be obtained before our network findings can inform clinical research, as knowledge on the prediction magnitude is essential for picking promising RF targets for translational studies.
Changes in pathways between RFs and general distress
Our findings showed that most RFs had direct negative pathways with distress, in both the CA+ and the CA− group, indicating that high RFs decrease distress, high distress decreases RFs, or both mutually influence each other. As all investigated RFs have empirically been shown to significantly decrease subsequent distress [8], it seems plausible that RF-distress pathways may not only over time, but also concurrently, operate as protective pathways. In the same vein, it is however also plausible that high distress reduces the protective effects of RFs (concurrently and/or over time). Such mutualistic coupling effects [61] need to be examined in future research. At both age 14 and 17, those potentially protective pathways appeared to be similarly strong in the two groups, regardless of solely investigating direct or also indirect pathways (i.e. via other RFs). Moreover, we did not detect differences between age 14 and 17, suggesting that RF-distress pathways seem stable between age 14 and 17.
Importantly, however, when taking our mean level findings into account—i.e. that the CA+ group had lower RFs and higher distress than the CA− group—a more elaborate interpretation emerges. That is, despite the fact that RF-distress pathways seem on the first glance to be similarly protective in the two groups, the combination of lower RFs and higher distress in the CA+ group supports the notion that RF-distress pathways operate on a different, and presumably more disadvantageous, mean level than in the CA− group. As lower RFs, higher distress, and potentially disadvantageous RF-distress pathways seemed to be rather stable from early to later adolescence, this may be another account for why exposure to CA is frequently found to not only have a short-term but also a longer-lasting impact on mental health [1, 60].
The four RFs that were most strongly interrelated with distress, in both the direct and the shortest pathway models, were negative self-esteem, brooding, aggression, and friendship support. Interestingly, the first two of those RFs were also among the RFs being most positively connected with the other RFs, in both groups and at both ages. Hence, if replication of our findings would hold, the negative self-esteem and brooding RFs may be of particular interest for future prediction studies, as they not only seem to have the highest potential of increasing other RFs, but also seem to have the highest potential in reducing distress, and therefore may also have a high potential in reducing subsequent mental health problems.
Limitations
Our research has several limitations. First, CA was assessed with retrospective caregiver report, which may be inaccurate due to for example limited recall, limited knowledge, or embarrassment. To enhance recall, caregivers were encouraged to use assisting material (e.g. photo albums) [27], and an event timeline (with the following time windows: 0–5, 5–11, 11–14) was established. Second, the family support and family cohesion RFs were derived from one questionnaire, which may have resulted in more similar response patterns in those RFs. The same argument goes for rumination (reflection and brooding) and self-esteem (high positive and low negative self-esteem) RFs. Third, to enable RF comparisons over time, we had to equate multiple LCFA parameters between age 14 and age 17. This may disadvantage the model accuracy and therefore potentially increase bias in the resulting factor scores. To circumvent this limitation as best we could, we used the least restricted models possible to still meet the assumptions of the respective network and mean change analyses. However, this meant that we could not use the exact same factor scores for the network and the mean change analyses. For completeness, we re-ran the mean change analyses with factor scores derived from the LCFAs that we used for the network analyses (see Additional file 6). Fourth, we interpret negative interrelations between RFs in networks that take general distress into account as disadvantageous. However, as our models are undirected, we cannot disentangle whether the general distress variable behaved as intended as a confounder, or against our expectation as a collider [62], falsely inducing or enhancing these interrelations (for a detailed discussion see Supplement XIII in [17]). Fifth, we performed the network models with regularized partial correlations, which currently is the default method. However, recently, other approaches have been suggested such as non-regularized methods [63]. Future research will need to show which methods tend to be most suitable for psychometric network models. Sixth, as our study contains two time points, we cannot draw conclusions with regard to tipping points or specifically sensitive periods. Likewise, we cannot examine how RFs change from prior to post CA, as we did not assess the RFs prior to CA. Seventh, we used imputation methods to include participants with missing information. Yet, when we pooled the factor model results for the imputed data sets together, we revealed for some models a negative pooled chi-square. As relative fit indices cannot be calculated based on a negative chi-square, the chi-squares had to be set to zero, resulting in arbitrary chi-square-dependent (“relative”) pooled fit indices. To enable the reader to judge the various models (i.e. being based on the different imputed data sets), we provide a chi-square-independent (“absolute”) fit index pooled over the separate models (i.e. the standardized root mean residual) and provide chi-square-dependent (“relative”) fit indices separately for the models. Eighth, it would have been valuable to explore gender effects (e.g. as in [64]); however, for many of the analyses, we may not have had enough power to split the sample additionally with regard to gender. Ninth, the ROOTS participants had on average a slightly higher SES than the average UK population and generalizations may therefore be most valid for above average SES populations [26].
Regarding the question whether resilience and risk factors are opposing sides of the same coin, the quick, but insufficient, answer for our study is probably that many (or most) of the investigated RFs are indeed the flip side of risk factors. For example, self-esteem (or a positive self-concept) is commonly defined as RF and has been discussed as such by many of the seminal resilience researchers, including Michael Rutter, Emmy Werner, Ann Masten, and Michael Ungar (for a review see, e.g. [65]). Yet, at the same time, a low level of self-esteem or self-worth is part of the DSM V criteria for depression (“Feelings of worthlessness”; American Psychiatric Association [66]). Hence, whereas a high level of self-esteem may protect against low mood levels, low self-esteem is assumed to contribute to or reflect low mood. As doing this question fully justice is out of the scope of this discussion, we added a more detailed debate on the question to Additional files 16 and 17. Importantly however, regardless of whether resilience and risk factors operate on the same continuum or are inversely correlated but not identical, understanding the nature of RFs seems to have universal appeal as it focuses on what promotes good mental health rather than on what increases mental health problems.