Kessler RC, Aguilar-Gaxiola S, Alonso J, Chatterji S, Lee S, Ormel J, et al. The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol Psichiatr Soc. 2009;18(1):23–33.
PubMed
PubMed Central
Google Scholar
Nolen-Hoeksema S, Watkins ER. A heuristic for developing transdiagnostic models of psychopathology: explaining multifinality and divergent trajectories. Perspect Psychol Sci. 2011;6(6):589–609.
PubMed
Google Scholar
Nelson B, McGorry PD, Wichers M, Wigman JTW, Hartmann JA. Moving from static to dynamic models of the onset of mental disorder a review. JAMA Psychiatry. 2017;74(5):528–34.
PubMed
Google Scholar
Van de Leemput IA, Wichers M, Cramer AOJ, Borsboom D, Tuerlinckx F, Kuppens P, et al. Critical slowing down as early warning for the onset and termination of depression. Proc Natl Acad Sci 2014;111(1):87–92.
Wichers M, Groot PC, Psychosystems ESM group, EWS group critical slowing down as a personalized early warning signal for depression psychother psychosom 2016;85:114–116.
Hayes AM, Laurenceau JP, Feldman G, Strauss JL, Cardaciotto LA. Change is not always linear: the study of nonlinear and discontinuous patterns of change in psychotherapy. Clin Psychol Rev. 2007;27(6):715–23.
PubMed
PubMed Central
Google Scholar
Schiepek G, Eckert H, Aas B, Wallot S, Wallot A. Integrative psychotherapy - a feedback-driven dynamic systems approach. Göttingen: Hogrefe Publishing; 2015.
Google Scholar
Olthof M, Hasselman F, Strunk G, van Rooij M, Aas B, Helmich MA, et al. Critical fluctuations as an early-warning signal for sudden gains and losses in patients receiving psychotherapy for mood disorders. Clin Psychol Sci. 2019;(September):216770261986596. Available from: https://doi.org/10.1177/2167702619865969.
Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, et al. Anticipating critical transitions. Science (80- ). 2012;338(6105):344–8.
CAS
Google Scholar
Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, et al. Early-warning signals for critical transitions. Nature. 2009;461(7260):53.
CAS
PubMed
Google Scholar
Lichtwarck-Aschoff A, Hasselman F, Cox R, Pepler D, Granic I. A characteristic destabilization profile in parent-child interactions associated with treatment efficacy for aggressive children. Nonlinear Dynamics Psychol Life Sci. 2012;16(3):353–79.
PubMed
Google Scholar
Kowalik ZJ, Schiepek G, Kumpf K, Roberts LE, Elbert T. Psychotherapy as a chaotic process II. The application of nonlinear analysis methods on quasi time series of the client-therapist interaction: a nonstationary approach. Psychother Res. 1997;7(3):197–218.
Google Scholar
Schiepek G, Tominschek I, Karch S, Lutz J, Mulert C, Meindl T, et al. A controlled single case study with repeated fMRI measurements during the treatment of a patient with obsessive-compulsive disorder: testing the nonlinear dynamics approach to psychotherapy. World J Biol Psychiatry. 2009;10:658–68.
PubMed
Google Scholar
Schiepek GK, Tominschek I, Heinzel S. Self-organization in psychotherapy testing the synergetic model of change processes. Front Psychol. 2014;5:1–11.
Google Scholar
Heinzel S, Tominschek I, Schiepek G. Dynamic pattern in psychotherapy - discontinuous changes and critical instabilities during the treatment of obsessive compulsive disorder. Nonlinear Dynamics Psychol Life Sci. 2014;18(2):155–76. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=psyc11&AN=2014–14788-003.
Schiepek G, Strunk G. The identification of critical fluctuations and phase transitions in short term and coarse-grained time series-a method for the real-time monitoring of human change processes. Biol Cybern. 2010;102:197–207.
PubMed
Google Scholar
Scheffer M, Carpenter SR, Dakos V, van Nes EH. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu Rev Ecol Evol Syst. 2015;46:145–67.
Google Scholar
Liu R, Chen P, Aihara K, Chen L. Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Sci Rep. 2015;5:1–13.
Dakos V, Van Nes EH, D’Odorico P, Scheffer M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology. 2012;93(2):264–71.
PubMed
Google Scholar
Houben M, Van Den Noortgate W, Kuppens P. The relation between short-term emotion dynamics and psychological well-being: a meta-analysis. Psychol Bull. 2015;141(4):901–30.
PubMed
Google Scholar
Kuppens P, Sheeber LB, Yap MBH, Whittle S, Simmons JG, Allen NB. Emotional inertia prospectively predicts the onset of depressive disorder in adolescence. Emotion. 2012;12(2):283–9.
PubMed
Google Scholar
Trull TJ, Lane SP, Koval P, Ebner-Priemer UW. Affective dynamics in psychopathology. Emot Rev. 2015;7(4):355–61.
PubMed
PubMed Central
Google Scholar
Suls J, Green P, Hillis S. Emotional reactivity to everyday problems, affective inertia, and neuroticism. Personal Soc Psychol Bull. 1998;24(2):127–36.
Google Scholar
Kuppens P, Allen NB, Sheeber LB. Emotional inertia and psychological maladjustment. Psychol Sci. 2010;21(7):984–91.
PubMed
PubMed Central
Google Scholar
Heimpel SA, Wood JV, Marshall MA, Brown JD. Do people with low self-esteem really want to feel better? Self-esteem differences in motivation to repair negative moods. J Pers Soc Psychol. 2002;82(1):128–47.
PubMed
Google Scholar
Brose A, Schmiedek F, Koval P, Kuppens P. Emotional inertia contributes to depressive symptoms beyond perseverative thinking. Cogn Emot. 2015;29(3):527–38 Available from: https://doi.org/10.1080/02699931.2014.916252.
PubMed
Google Scholar
Koval P, Kuppens P, Allen NB, Sheeber L. Getting stuck in depression: the roles of rumination and emotional inertia. Cogn Emot. 2012;26(8):1412–27.
PubMed
Google Scholar
Dejonckheere E, Mestdagh M, Houben M, Rutten I, Sels L, Kuppens P, et al. Complex affect dynamics add limited information to the prediction of psychological well-being. Nat Hum Behav. 2019;3(5):478–91 Available from: https://doi.org/10.1038/s41562-019-0555-0.
PubMed
Google Scholar
Bos EH, De Jonge P. “Critical slowing down in depression” is a great idea that still needs empirical proof. Proc Natl Acad Sci. 2014;111:1.
Wichers M, Borsboom D, Tuerlinckx F, Kuppens P, Viechtbauer W, van de Leemput IA, et al. Reply to Bos and De Jonge: between-subject data do provide first empirical support for critical slowing down in depression. Proc Natl Acad Sci. 2014;111:1.
Fisher AJ, Medaglia JD, Jeronimus BF. Lack of group-to-individual generalizability is a threat to human subjects research. Proc Natl Acad Sci. 2018;115(27):E6106–15.
CAS
PubMed
Google Scholar
Wichers M, Schreuder MJ, Goekoop R, Groen RN. Can we predict the direction of sudden shifts in symptoms? Transdiagnostic implications from a complex systems perspective on psychopathology. Psychol Med. 2019;49(3):380–7.
PubMed
Google Scholar
Derom C, Thiery E, Rutten BPF, Peeters H, Gielen M, Bijnens E, et al. The East Flanders Prospective Twin Survey (EFPTS): 55 years later. Twin Res Hum Genet. 2019;22:1–6.
Loos R, Derom C, Vlietinck R, Derom R. The East Flanders Prospective Twin Survey (Belgium): a population-based register. Twin Res. 1998;1(4):167–75.
CAS
PubMed
Google Scholar
Derogatis LR. SCL-90-R symptom checklist-90-R administration, scoring, and procedures manual. Bloomington: PsychCorp; 1977.
Google Scholar
Myin-Germeys I, Birchwood M, Kwapil T. From environment to therapy in psychosis: a real-world momentary assessment approach. Schizophr Bull. 2011;37(2):244–7.
PubMed
PubMed Central
Google Scholar
Delespaul PAEG. Assessing schizophrenia in daily life: the experience sampling method. Helsinki: Maastricht University; 1995.
Holi M. Assessment of psychiatric symptoms using the SCL-90. Helsinki: Helsinki University; 2003.
Schauenburg H, Strack M. Measuring psychotherapeutic change with the symptom checklist SCL 90 R. Psychother Psychosom. 1999;68(4):199–206.
CAS
PubMed
Google Scholar
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Washington, DC; 2013.
Nelson J, Klumparendt A, Doebler P, Ehring T. Everyday emotional dynamics in major depression. Emotion. 2018;20:179–9.
Curtiss J, Fulford D, Hofmann SG, Gershon A. Network dynamics of positive and negative affect in bipolar disorder. J Affect Disord. 2019;249:270–77.
De Haan-Rietdijk S, Kuppens P, Hamaker EL. What's in a day? A guide to decomposing the variance in intensive longitudinal data. Frontiers in Psychology. 2016:7;1–16.
Van Roekel E, Verhagen M, Engels CRME, Kuppens P. Variation in the serotonin transporter polymorphism ( 5-HTTLPR ) and inertia of negative and positive emotions in daily life. Emotion. 2018;18:229–36.
PubMed
Google Scholar
Thompson RJ, Mata J, Jaeggi SM, Buschkuehl M, Jonides J, Gotlib IH. The everyday emotional experience of adults with major depressive disorder: examining emotional instability, inertia, and reactivity. J Abnorm Psychol. 2012;29(4):997–1003.
Google Scholar
Koval P, Brose A, Pe ML, Houben M, Erbas Y, Champagne D, et al. Emotional inertia and external events: the roles of exposure, reactivity, and recovery. Emotion. 2015;15(5):625–36.
PubMed
Google Scholar
Koval P, Sütterlin S, Kuppens P. Emotional inertia is associated with lower well-being when controlling for differences in emotional context. Front Psychol. 2016;6:1–11.
Google Scholar
Hox JJ. Multilevel analysis: techniques and applications. 2nd ed. New York: Routledge; 2010.
Google Scholar
Gujarati DN. Extensions of the two-variable linear regression model. In: Basic econometrics. New York: McGraw-HiII/lrwin; 2003. p. 164–296.
Google Scholar
Hochberg Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika. 1998;75(4):800–2.
Google Scholar
Wichers M, Smit AC, Snippe E. Early warning signals based on momentary affect dynamics can expose nearby transitions in depression: a confirmatory single-subject time-series study. JPOR. 2019; in press.
Cramer AOJ, Van Borkulo CD, Giltay EJ, Van Der Maas HLJ, Kendler KS, Scheffer M, et al. Major depression as a complex dynamic system. PLoS One. 2016;11(12):1–20.
Google Scholar
Burger J, van der Veen D, Robinaugh DJ, Quax R, Riese H, Schoevers RA, et al. Bridging the gap between complexity science and clinical practice by formalizing idiographic theories: a computational model of functional analysis. BMC Med. 2020;18:1–18.
Elwert F, Winship C. Endogenous selection bias: the problem of conditioning on a collider variable. Annu Rev Sociol. 2014;40(1):31–53.
PubMed
PubMed Central
Google Scholar
Munafò MR, Tilling K, Taylor AE, Evans DM, Smith GD. Collider scope: when selection bias can substantially influence observed associations. Int J Epidemiol. 2018;47(1):226–35.
PubMed
Google Scholar
Sperry SH, Walsh MA, Kwapil TR. Emotion dynamics concurrently and prospectively predict mood psychopathology. J Affect Disord. 2020;261:67–75.
PubMed
Google Scholar