Skip to main content
  • Research article
  • Open access
  • Published:

Age, sex, disease severity, and disease duration difference in placebo response: implications from a meta-analysis of diabetes mellitus

Abstract

Background

The placebo response in patients with diabetes mellitus is very common. A systematic evaluation needs to be updated with the current evidence about the placebo response in diabetes mellitus and the associated factors in clinical trials of anti-diabetic medicine.

Methods

Literature research was conducted in Medline, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov for studies published between the date of inception and June 2019. Randomized placebo-controlled trials conducted in type 1and type 2 diabetes mellitus (T1DM/T2DM) were included. Random-effects model and meta-regression analysis were accordingly used. This meta-analysis was registered in PROSPERO as CRD42014009373.

Results

Significantly weight elevation (effect size (ES) = 0.33 kg, 95% CI, 0.03 to 0.61 kg) was observed in patients with placebo treatments in T1DM subgroup while significantly HbA1c reduction (ES = − 0.12%, 95% CI, − 0.16 to − 0.07%) and weight reduction (ES = − 0.40 kg, 95% CI, − 0.50 to − 0.29 kg) were observed in patients with placebo treatments in T2DM subgroup. Greater HbA1c reduction was observed in patients with injectable placebo treatments (ES = − 0.22%, 95% CI, − 0.32 to − 0.11%) versus oral types (ES = − 0.09%, 95% CI, − 0.14 to − 0.04%) in T2DM (P = 0.03). Older age (β = − 0.01, 95% CI, − 0.02 to − 0.01, P < 0.01) and longer diabetes duration (β = − 0.02, 95% CI, − 0.03 to − 0.21 × 10−2, P = 0.03) was significantly associated with more HbA1c reduction by placebo in T1DM. However, younger age (β = 0.02, 95% CI, 0.01 to 0.03, P = 0.01), lower male percentage (β = 0.01, 95% CI, 0.22 × 10−2, 0.01, P < 0.01), higher baseline BMI (β = − 0.02, 95% CI, − 0.04 to − 0.26 × 10−2, P = 0.02), and higher baseline HbA1c (β = − 0.09, 95% CI, − 0.16 to − 0.01, P = 0.02) were significantly associated with more HbA1c reduction by placebo in T2DM. Shorter diabetes duration (β = 0.06, 95% CI, 0.06 to 0.10, P < 0.01) was significantly associated with more weight reduction by placebo in T2DM. However, the associations between baseline BMI, baseline HbA1c, and placebo response were insignificant after the adjusted analyses.

Conclusion

The placebo response in diabetes mellitus was systematically outlined. Age, sex, disease severity (indirectly reflected by baseline BMI and baseline HbA1c), and disease duration were associated with placebo response in diabetes mellitus. The association between baseline BMI, baseline HbA1c, and placebo response may be the result of regression to the mean.

Peer Review reports

Background

A placebo is defined as any therapy that is used for its non-specific psychological and physiologic effect, but has no demonstrated pharmacological effect on the condition being treated [1]. Pharmaceutical and clinical studies have used placebos as a methodological tool to avoid bias, and also to evaluate the pure therapeutic effect of interventional therapies, aiming to avoid introducing ineffective or even harmful treatments into clinical practice [1,2,3,4]. Placebo effect is even promoted as a potential treatment modality in medicine [1,2,3].

According to the expert consensus statement in placebo research field, placebo response, defined as any health change after the administration of placebo, including natural history of a disease or fluctuation of symptoms, response biases, effects of co-interventions, or statistical regression to the mean, has been widely observed in many clinical trials [5]. In fact, an increase in the magnitude of placebo response without significant change in the efficacy outcomes with respect to effect size and success rate is an emerging pattern over time in trials of many conditions, such as depression [6], epilepsy [7], and also diabetes mellitus (DM) [8]. A placebo has been widely used in clinical research in both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). For example, the results of the new treatment were compared with placebo to prove the effect on glucose and body weight control. The placebo response was also used to estimate sample size in placebo-controlled trials and to evaluate the true effect size in active-controlled studies or real-world observational studies without a placebo group.

As for T2DM, the placebo response was previously reported by Khan et al. by analyzing the data from the U.S. Food and Drug Administration approved between 1999 and 2015 [8]. However, considering the increasing magnitude of placebo response and expanding clinical trial data, placebo response in T2DM, in terms of both glycemic and weight control, needs to be further evaluated and updated. Placebo response in T1DM has still not been systematically evaluated. Moreover, the potential factors associated with placebo response that might include patient age, gender, disease duration, follow-up duration, and ways of medication delivery have not been fully investigated and delineated. Knowledge from such investigations might suggest potential predictors for placebo responders and inform more precise clinical study design that allow more efficient efficacy evaluation of medical intervention in subpopulation of diabetes.

Since nonpharmacological interventions including behavior modification and nutritional therapies also play a role in glucose control in diabetes management, placebo response and its features mediated by psychosocial context may be more likely to be revealed in DM, which makes it an ideal model to explore placebo response. Therefore, we utilized the data of randomized controlled trials (RCTs) in both T1DM and T2DM and performed a meta-analysis to comprehensively outline the placebo response in DM. We also conducted the analysis for associated factors to propose a featured placebo response pattern associated with patient-level and study-level characteristics.

Methods

Data sources and searches

A systemic literature search was conducted for the published studies in the following databases: Medline, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), and ClinicalTrials.gov website, from the inception of each databases until June 2019. A search strategy was performed by using the following terms: metformin (MET); sulfonylurea (SU); alpha glucosidase inhibitor (AGI); thiazolidinedione (TZD); pramlintide; dipeptidyl peptidase-4 (DPP-4) inhibitor; sodium-glucose cotransporter 2 (SGLT2) inhibitor; glucagon-like peptide-1 receptor agonist (GLP-1RA); T1DM; T2DM; placebo-controlled; RCTs; cardiovascular outcome and renal outcome. Searches were firstly performed in January 2014 and subsequently updated in December 2017 and June 2019. This meta-analysis was registered in PROSPERO as CRD42014009373.

Study selection

Studies were included in this meta-analysis if following criteria were met: (1) placebo-controlled, randomized trials; (2) trials in patients with T1DM and T2DM; and (3) trials with HbA1c level and body weight measured in both placebo and active treatment groups. The exclusion criteria were as follows: (1) trials in patients with gestational diabetes or pre-diabetes; (2) trials in which the anti-diabetic treatment in the placebo group could be changed during the period of study; (3) trials with active agent control; and (4) trials with cross-over study design.

Data extraction and quality assessment

Two investigators independently extracted data by using a standardized form. Information including author, publication year, patient age, and male percentage was obtained from each trial for both placebo and active treatment groups. Trials with placebo agents administered by oral route were grouped for oral placebo response, and trials with placebo agents administered by injection route were grouped for injectable placebo response. Any disagreement would be resolved by the discussion between two investigators under the supervision of a third independent investigator. By using the Cochrane instrument [9], we evaluated the quality of each RCT.

Data synthesis and analysis

Placebo response were evaluated as pooled effect size (ES) with 95% confidence intervals (CIs) of HbA1c and weight changes from baseline in placebo treatment group by synthesizing mean value with standard error. Higgins I2 statistics were used to evaluate the between-study heterogeneity. Random-effects model was used in the meta-analysis. Subgroup comparisons for pooled ES were performed within the framework of a meta-analysis. The associations of continuous variables with placebo response on HbA1c and weight changes, including age, male percentage, baseline BMI, baseline HbA1c, diabetes duration, and study duration, were calculated by meta-regression analysis. Since publication year is a discontinuous variable, the associations between it and placebo response on HbA1c as well as weight change were analyzed by ANOVA tendency test. Indirect comparisons between HbA1c reduction and elevation groups as well as between weight reduction and elevation groups were conducted by Mann-Whitney test. The results of indirect comparisons were expressed as median value with accompanying interquartile range (Q1, Q3).

Publication bias was evaluated by Egger’s test, with a P value > 0.05 indicating low risk of publication bias. Pool ES analyses and subgroup comparisons were conducted by Review Manager statistical software package (version 5.3, Nordic Cochrane Centre, Copenhagen, Denmark). Meta-regression analysis was performed by the STATA statistical software package (Version 11.0). Mann-Whitney test and ANOVA tendency analysis were conducted by SPSS software (SPSS 24.0. Armonk, NY: IBM Corp). We conducted this study according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for conducting and reporting meta-analyses of RCTs.

Results

Overall characteristics

In all, 432 placebo-controlled clinical trials conducted in patients with DM were included, among which 41 trials were in T1DM with 4328 participants and 391 trials were in T2DM with 33,987 participants (Additional file 1: Figure S1). The baseline characteristics of enrolled RCTs were summarized in detail for T1DM (Additional file 1: Table S1) [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59] and T2DM (Additional file 1: Table S2) [60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450] respectively. The risk of bias was evaluated by the Cochrane instrument. In T1DM, there were 5 RCTs with high risk and 18 RCTs with uncertain risk of selection bias for random sequence generation, 4 RCTs with high risk and 15 RCTs with uncertain risk of selection bias for allocation concealment, and 5 RCTs with high risk of attrition bias (Additional file 1: Table S3). In T2DM, there were 8 RCTs with high risk and 15 RCTs with uncertain risk of selection bias for random sequence generation, 5 RCTs with high risk and 21 RCTs with uncertain risk of selection bias for allocation concealment, 22 RCTs with uncertain risk of performance bias, 13 RCTs with uncertain risk of detection bias, 37 RCTs with high risk and 30 RCTs with uncertain risk of attrition bias, and 12 RCTs with uncertain risk of reporting bias (Additional file 1: Table S4). The publication bias was accessed by Egger’s test in T1DM (t = − 0.29, P = 0.771) (Additional file 1: Figure S2) and T2DM (t = − 1.34, P = 0.179) (Additional file 1: Figure S3) respectively, which both turned out to be insignificant.

Overall placebo response

According to the meta-analysis, placebo treatment was generally associated with significantly HbA1c reduction (ES = − 0.11%, 95% CI, − 0.15 to − 0.07%) and weight reduction (ES = − 0.30 kg, 95% CI, − 0.40 to − 0.20 kg) in patients with DM (Table 1). As for specific DM types, significantly weight elevation (ES = 0.33 kg, 95% CI, 0.03 to 0.61 kg) was observed in patients with placebo treatments in T1DM subgroup while significantly HbA1c reduction (ES = − 0.12%, 95% CI, − 0.16 to − 0.07%) and weight reduction (ES = − 0.40 kg, 95% CI, − 0.50 to − 0.29 kg) were observed in patients with placebo treatments in T2DM subgroup (Fig. 1). As for treatment design, significantly HbA1c elevation (ES = 0.08%, 95% CI, 0.01 to 0.16%) was shown in monotherapy subgroup while add-on therapy was significantly associated with HbA1c reduction (ES = − 0.20%, 95% CI, − 0.25 to − 0.15%). Furthermore, significantly weight reduction was observed in both monotherapy (ES = − 0.56 kg, 95% CI, − 0.73 to − 0.39 kg) and add-on therapy (ES = − 0.19 kg, 95% CI, − 0.32 to − 0.07 kg) subgroups (Table 1). However, no significant difference was revealed in placebo response from different treatment designs by subgroup comparisons in terms of HbA1c and weight change. In T1DM, significantly HbA1c reduction was observed in patients with injectable placebo treatment (Fig. 2). In T2DM, significantly HbA1c reduction and weight reduction were observed in both oral and injectable placebo treatment subgroups (Fig. 2). Moreover, the magnitude of HbA1c reduction was greater in patients with injectable placebo (ES = − 0.22%, 95% CI, − 0.32 to − 0.11%) treatment than oral ones (ES = − 0.09%, 95% CI, − 0.14 to − 0.04%, P for subgroup comparison = 0.03) (Table 1).

Table 1 Pooled estimated effect of placebo response in patients with diabetes mellitus
Fig. 1
figure 1

Placebo response stratified by types of diabetes mellitus. a HbA1c change. b Weight change

Fig. 2
figure 2

Placebo response stratified by administration routes. a HbA1c change. b Weight change

Placebo response stratified by hypoglycemic comparators

Placebo responses stratified by hypoglycemic comparators were also systematically summarized in Table 1. In T1DM, generally distinct degree of HbA1c reductions was observed in different active comparator subgroups except metformin and AGI subgroups (Fig. 3). Comparable weight elevations were observed in most subgroups except a mild weight reduction seen in AGI subgroup (Fig. 3). In T2DM, placebo in metformin, TZD, and SU subgroups conferred HbA1c elevation effect while HbA1c reductions were observed in AGI, SGLT2i, DPP-4i, and GLP-1RA subgroups (Fig. 3). Weight reductions were shown in all hypoglycemic agent subgroups in T2DM (Fig. 3). By subgroup comparisons, greater HbA1c reduction was observed in GLP-1RA subgroup versus metformin subgroup in T1DM (P = 0.01). In terms of T2DM, greater HbA1c reduction was observed in GLP-1RA subgroup versus metformin subgroup (P < 0.01) and TZD subgroup (P < 0.01) respectively (Table 1). Similarly, greater HbA1c reduction was observed in SGLT2i subgroup versus metformin subgroup (P < 0.01), TZD subgroup (P < 0.01), SU (P = 0.02) subgroup, and DPP-4i subgroup (P = 0.02) respectively (Table 1).

Fig. 3
figure 3

Placebo response stratified by types of hypoglycemic agents. a HbA1c change. b Weight change

Associated factors with placebo response

Age

The HbA1c level with placebo treatments modestly increased in patients with T1DM below 18 years old (Additional file 1: Figure S4). However, this effect shifted into HbA1c reduction when the patients’ ages became older. Moreover, meta-regression analysis suggested older age was significantly associated with greater HbA1c reduction (β = − 0.01, 95% CI, − 0.02 to − 0.01, P < 0.01) (Fig. 4a). As for body weight, a profound increase with placebo treatments was found in T1DM patients under 18 (Additional file 1: Figure S4), but no specific changing tendency was observed later (Table 2).

Fig. 4
figure 4

Meta-regression analysis for factors associated with placebo response in diabetes mellitus. a Association between age and placebo response on HbA1c change in type 1 diabetes (β = − 0.01, 95% CI, − 0.02 to − 0.01, P < 0.01). b Association between age and placebo response on HbA1c change in type 2 diabetes (β = 0.02, 95% CI, 0.01 to 0.03, P < 0.01). c Association between male percentage and placebo response on HbA1c change in type 2 diabetes (β = 0.01, 95% CI, 0.22 × 10−2 to 0.01, P < 0.01). d Association between baseline BMI and placebo response on HbA1c change in type 2 diabetes (β = − 0.02, 95% CI, − 0.04 to − 0.26 × 10−2, P = 0.02). e Association between baseline HbA1c and placebo response on HbA1c change in type 2 diabetes (β = − 0.09, 95% CI, − 0.16 to − 0.01, P = 0.02). f Association between diabetes duration and placebo response on HbA1c change in type 1 diabetes (β = − 0.02, 95% CI, − 0.03 to − 0.21 × 10−2, P = 0.03). g Association between diabetes duration and placebo response on weight change in type 2 diabetes (β = 0.06, 95% CI, 0.02 to 0.10, P < 0.01)

Table 2 Meta-regression analysis and tendency test of placebo response with associated factors in patients with diabetes mellitus

Unlike T1DM, a profound HbA1c reduction with placebo treatments was observed in T2DM below 50 years old. Such effect grew milder along with growing ages and almost diminished in elderly over 60 (Additional file 1: Figure S5). With significantly younger patient ages in HbA1c reduction subgroup versus HbA1c elevation subgroup (Additional file 1: Table S5), meta-regression analysis suggested younger age was associated with more HbA1c reduction (β = 0.02, 95% CI, 0.01 to 0.03, P = 0.01) (Fig. 4b). Different degree reductions of body weight were shown in different age subgroups (Additional file 1: Figure S5) but no significant association was discovered.

Sex

In T2DM, HbA1c reduction with placebo treatment was more frequently observed in groups with lower male percentages (Additional file 1: Figure S6) and the male percentages in HbA1c reduction subgroup were significantly lower than those in HbA1c elevation subgroup (Additional file 1: Table S5). Meta-regression analysis consistently showed that a lower male percentage was significantly associated with more HbA1c reduction by placebo in T2DM (β = 0.01, 95% CI, 0.22 × 10−2 to 0.01, P < 0.01) (Fig. 4c). Although weight reduction was displayed in subgroups stratified by male percentage in T2DM (Additional file 1: Figure S6), no significant association was shown by meta-regression. Moreover, no significant association was found between male percentage and placebo response on HbA1c or weight change in T1DM (Additional file 1: Figure S7).

Baseline BMI

In T2DM, the HbA1c level with placebo treatment was decreased in patients with baseline BMI over 25 kg/m2 (Additional file 1: Figure S8). Accordingly, baseline BMI was significantly higher in patients with HbA1c reduction versus HbA1c elevation (Additional file 1: Table S5). Meta-regression further confirmed that higher baseline BMI was significantly associated with more HbA1c reduction (β = − 0.02, 95% CI, − 0.04 to − 0.26 × 10−2, P = 0.02) (Fig. 4d). However, the association turned to be negative after adjusted by age, male percentage, duration of diabetes, study duration, and baseline HbA1c (β = − 0.01, 95% CI, − 0.03 to 0.01, P = 0.41). Weight reductions were observed in different BMI strata with placebo treatments except for the subgroup over 35 kg/m2 (Additional file 1: Figure S8). Although baseline BMI was significantly lower in patients with weight reduction versus weight elevation (Additional file 1: Table S5), no specific response pattern was found for baseline BMI and weight change by meta-regression in T2DM. In T1DM, no significant association was found for BMI and placebo response on HbA1c or weight change (Additional file 1: Figure S9).

Baseline HbA1c

In T2DM, the HbA1c alteration mediated by placebo treatments was mild in patients with baseline HbA1c below 8.5%, but it reduced more when baseline HbA1c got higher (Additional file 1: Figure S10). The comparison for baseline HbA1c level between HbA1c reduction and elevation subgroups also confirmed a significantly higher baseline HbA1c level in patients with HbA1c reduction (Additional file 1: Table S5). Consistently, meta-regression analysis indicated that higher baseline HbA1c was significantly associated with greater HbA1c reduction by placebo in T2DM (β = − 0.09, 95% CI, − 0.16 to − 0.01, P = 0.02) (Fig. 4e). However, this association was insignificant after adjusted by age, male percentage, duration of diabetes, study duration, and baseline BMI (β = − 0.04, 95% CI, − 0.16 to 0.08, P = 0.52). As for weight change, no specific response pattern was observed in T2DM (Additional file 1: Figure S10), although a significant higher baseline HbA1c level was observed in patients with weight elevation versus weight reduction (Additional file 1: Table S5). No significant association was found between baseline HbA1c and HbA1c or weight change in T1DM (Additional file 1: Figure S11).

Diabetes duration

Placebo response on HbA1c reduction in T1DM was more profound in patients with diabetes duration between 10 and 30 years (Additional file 1: Figure S12) and a longer diabetes duration was significantly associated with greater HbA1c reduction by placebo (β = − 0.02, 95% CI, − 0.03 to − 0.21 × 10−2, P = 0.03) (Fig. 4f). With different extents of weight reduction observed in diabetes duration subgroups (Additional file 1: Figure S12), no significant association was observed in T1DM.

In T2DM, although moderate HbA1c reduction in placebo treatment was observed in strata of different diabetes duration (Additional file 1: Figure S13), no significant association was found. However, an attenuated magnitude of placebo response on weight reduction was exhibited with increasing diabetes duration (Additional file 1: Figure S13). With significantly shorter diabetes duration observed in patients with weight reduction versus weight elevation (Additional file 1: Table S5), meta-regression analysis suggested a shorter diabetes duration was significantly associated with more weight reduction by placebo (β = 0.06, 95% CI, 0.02 to 0.10, P < 0.01) (Fig. 4 g).

Study duration

In T1DM, modest HbA1c reduction and weight elevation were observed among most study duration strata (Additional file 1: Figure S14). As for T2DM, with the study duration increasing, tendencies of placebo response shifting from HbA1c elevation to HbA1c reduction and from weight reduction to weight gain were displayed (Additional file 1: Figure S15). However, no specific distribution pattern was supported by meta-regression analyses in both T1DM and T2DM.

Publication year

In T1DM, HbA1c level in placebo treatment groups was increased in 1990s but decreased afterwards while weight level was reduced first but increased after 2000 (Additional file 1: Figure S16). The absolute alteration values for HbA1c and weight both peaked in 2006–2010 (Additional file 1: Figure S16). In T2DM, HbA1c level in placebo treatment arms tended to elevate modestly from the baseline between 1990 and 2005 but to decrease after 2006 (Additional file 1: Figure S17). As for weight change, except for a relatively modest increase before 1990, the placebo treatments mostly resulted in weight reduction in T2DM (Additional file 1: Figure S17). However, although comparisons showed that publication years of studies with HbA1c elevation and weight elevation in placebo treatment arms were significantly earlier than those with HbA1c and weight reduction (Additional file 1: Table S5), no significant associations were shown by ANOVA tendency tests in both T1DM and T2DM.

Discussion

This meta-analysis delineated the placebo response in both T1DM and T2DM with data from over 400 RCTs with almost 40,000 participants. More importantly, we characterized the placebo response pattern associated with patient age, sex, disease duration, and possibly disease severity (indirectly reflected by baseline BMI and baseline HbA1c) in diabetes, which tries to raise researchers’ attention again to weighting important moderators and predictors in placebo response.

As is mentioned, placebo response includes all health changes that result after the administration of an inactive treatment, thus including natural history, spontaneous recovery, and regression to the mean [451, 452]. So far, underlying mechanisms of placebo response are not fully understood. Individual patient and clinician factors, mutual interactions, and treatment environment may also somehow influence the placebo response to different extent. As for DM, placebo response can be related to optimal dietary treatment [453,454,455,456], or increased physical activity [457, 458], or improved education and management [459, 460], or patients’ expectations [461], in addition to fluctuation of symptoms and regression to the mean.

In this meta-analysis, data of T1DM have been included for analysis for the first time. Interestingly, significantly weight elevation was observed in T1DM patients with placebo treatments while significantly HbA1c reduction and weight reduction were observed in T2DM patients with placebo treatments. Considering all included studies in T1DM were with insulin add-on treatments, such difference in placebo response may be due to the background administration of insulin in T1DM population. Furthermore, we differentiated the oral and injection route for drug administration and found injectable placebo led to more HbA1c reduction compared with oral types in T2DM. It was hypothesized that a stronger signal delivered by subcutaneous puncture stimuli might trigger a positive psychological feedback that enhanced the placebo response, for example, raising patients’ expectations towards treatment benefits. But further evidence was still needed.

Patient age has been shown to consistently affect placebo response with different clinical conditions. Evaluations across medicine found that younger age was associated with higher placebo response, predominantly in psychiatric conditions and internal medicine [462]. In our study, older age was associated with more HbA1c reduction with placebo treatments in T1DM while younger age was associated with more HbA1c reduction with placebo treatments in T2DM. Such difference may be explained by distinct patient age distribution in T1DM and T2DM. In T1DM, adolescences and youth may not be mature enough to understand the disease severity and properly stick to the management routine. With their ages growing, their increased knowledge of DM may help them understand and believe in positive effects from well-organized DM management. In T2DM, patients are generally at a relatively mature age with disease onset. When they get older, less confidence and enthusiasm towards treatments and higher chance of experiencing treatment failure are likely to minimize the placebo response in these patients.

Sex is a controversial moderator for placebo response. Systematic reviews from major medical areas (neurology, psychiatry and internal medicine) but not from diabetes showed that only in 3 analyses female sex was associated with a higher placebo response, indicating poor evidence for contribution of sex to placebo response [463, 464]. But still, Enck et al. proposed that placebo response was predominantly the result of a conditioning learning response in females while a verbal manipulating of expectancies in males [463]. As a supplement, we did discover the sex difference of placebo response in T2DM in terms of HbA1c reduction.

Disease severity is another important associated factor with placebo response. In fact, a positive relationship between disease severity and magnitude of placebo response was previously observed in osteoarthritis [464]. As indirect indicators of disease severity, we found higher baseline BMI and higher baseline HbA1c were significantly associated with more HbA1c reduction achieved by placebo in T2DM, which was different from Khan’s finding [8]. The inconsistence between our results and Khan’s results might be due to different databases for placebo-controlled trials and more complicated groups of add-on treatment in our study. However, such associations turned to be negative after adjusted by other baseline parameters, including age, sex, duration of diabetes, and baseline BMI or HbA1c, which might influence the outcomes. Therefore, the correlations between increased disease severity (baseline BMI and higher baseline HbA1c) and greater HbA1c reduction may be the result of regression to the mean, which is also commonly observed in placebo response. Further investigations are needed to assess the potential link between placebo response and disease severity.

Disease duration is accompanied with alterations of patients’ understanding of disease itself and treatments. The association between the shorter disease duration and the larger placebo response effect size has been reported in fibromyalgia [465]. Similarly, we observed a shorter diabetes duration associated with more weight reduction by placebo in T2DM. It is possibly related to increasing treatment inertia and worsening adherence to nonpharmacological interventions in patients with longer durations. Moreover, worsening interrupted internal environment and neuro-endocrine-immune regulatory network with longer disease duration may also make it harder for placebo response to manifest.

This meta-analysis also has several limitations. First, included studies have different inclusion criteria, various baseline characteristics, non-uniform outcome definitions, and variable sample sizes. These factors will lead to heterogeneity among studies in this meta-analysis. Second, we did not include unpublished trials in our meta-analysis. Published studies may have an inherent bias, as unpublished trials tend to have null effects. However, the reported data from such unpublished trials were likely to be incomplete, espacially for placebo treatment group, which makes it hard for the quality evaluation and subsequent analysis. Therefore, we decide to exclude such studies. Moreover, we cannot fully assess the manipulation of each trials. Uncertainty of possibly inadequate blinding, additional bias from clinicians, known as “placebo by proxy” [466], and influence from underestimated interactions between patients and clinicians may affect the interpretation of our results. In addition, as a meta-analysis, data of HbA1c and body weight change in placebo treatment group were used as the surrogate parameters, but not the data at patient-level, which would be more helpful to draw a conclusion. It is noted that the associations between baseline BMI, HbA1c, and placebo response are still not definite, since the adjusted meta-regression tuned out to be negative. The correlations between the baseline severity and placebo response observed in our meta-analysis may be the result of regression to the mean. Therefore, statistical outcomes for this part should be interpreted with caution. Also, since we did not include studies with untreated control, we could only evaluate the placebo response rather than placebo effect in DM. More investigations, especially studies with untreated control, are needed to accurately record and analyze the placebo response and even placebo effect in DM, and possibly better differentiate the effect of regression to the mean.

Conclusions

Placebo response in diabetes was systematically outlined in this meta-analysis. Age, sex, and disease duration were associated factors with placebo response in diabetes, which may require more considerations when designing and conducting placebo-controlled clinical trials in diabetes. Baseline disease severity was also associated with placebo response in diabetes, which is likely to be the result of the regression to the mean. More investigations are encouraged to further explore unique or even potentially generalized placebo response patterns in DM and a wider field of medicine concerning more diseases.

Availability of data and materials

All data generated or analyzed during this study are included in this article and its supplementary information files.

Abbreviations

AGI:

Alpha glucosidase inhibitor

ANOVA:

Analysis of variance

BMI:

Body mass index

CI:

Confidence interval

DM:

Diabetes mellitus

DPP-4:

Dipeptidyl peptidase-4

ES:

Effect size

GLP-1RA:

Glucagon-like peptide-1 receptor agonist

INR:

Interquartile range

MET:

Metformin

RCT:

Randomized controlled trial

SGLT2:

Sodium-glucose cotransporter 2

SU:

Sulfonylurea

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

References

  1. Shapiro AK. Semantics of the placebo. Psvchiatr Q. 1968;42:653–95.

    Article  CAS  Google Scholar 

  2. Shapiro AP, Schwartz GE, Ferguson DCE, Redmond DP, Weiss SM. Behavioral methods in the treatment of hypertension. Ann Intern Med. 1977;86:626–36.

    Article  Google Scholar 

  3. Kaptchuk TJ, Miller FG. Placebo effects in medicine. N Engl J Med. 2015;373(1):8–9.

    Article  CAS  PubMed  Google Scholar 

  4. Hróbjartsson A, Gøtzsche PC. Placebo interventions for all clinical conditions. Cochrane Database Syst Rev. 2010;20(1):CD003974.

    Google Scholar 

  5. Evers AM, Luana C, Charlotte B, et al. Implications of placebo and nocebo effects for clinical practice: expert consensus. Psychother Psychosom. 2018;87(4):204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Khan A, FahlMar K, Faucett J, et al. Has the rising placebo response impacted antidepressant clinical trial outcome? Data from the US Food and Drug Administration 1987-2013. World Psychiatry. 2017;16:181–92.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rheims S, Perucca E, Cucherat M, et al. Factors determining response to antiepileptic drugs in randomized controlled trials. A systematic review and meta-analysis. Epilepsia. 2011;52:219–33.

    CAS  PubMed  Google Scholar 

  8. Khan A, Fahl Mar K, Schilling J, et al. Magnitude and pattern of placebo response in clinical trials of oral antihyperglycemic agents: data from the Food and Drug Administration 1999-2015. Diabetes Care. 2018;41(5):994–1000.

    Article  CAS  PubMed  Google Scholar 

  9. Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Anderson JJA, Couper JJ, Giles LC, Leggett CE, Gent R, Coppin B, et al. Effect of metformin on vascular function in children with type 1 diabetes: a 12-month randomized controlled trial. J Clin Endocrinol Metab. 2017;102(12):4448–56.

    Article  PubMed  Google Scholar 

  11. Codner E, Iniguez G, Lopez P, Mujica V, Eyzaguirre FC, Asenjo S, et al. Metformin for the treatment of hyperandrogenism in adolescents with type 1 diabetes mellitus. Horm Res Paediatr. 2013;80(5):343–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hamilton J, Cummings E, Zdravkovic V, Finegood D, Daneman D. Metformin as an adjunct therapy in adolescents with type 1 diabetes and insulin resistance: a randomized controlled trial. Diabetes Care. 2003;26(1):138–43.

    Article  CAS  PubMed  Google Scholar 

  13. Jacobsen IB, Henriksen JE, Beck-Nielsen H. The effect of metformin in overweight patients with type 1 diabetes and poor metabolic control. Basic Clin Pharmacol Toxicol. 2009;105(3):145–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lund SS, Tarnow L, Astrup AS, Hovind P, Jacobsen PK, Alibegovic AC, et al. Effect of adjunct metformin treatment in patients with type-1 diabetes and persistent inadequate glycaemic control. A randomized study. PLoS One. 2008;3(10):e3363.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lund SS, Tarnow L, Astrup AS, Hovind P, Jacobsen PK, Alibegovic AC, et al. Effect of adjunct metformin treatment on levels of plasma lipids in patients with type 1 diabetes. Diabetes Obes Metab. 2009;11(10):966–77.

    Article  CAS  PubMed  Google Scholar 

  16. Libman IM, Miller KM, DiMeglio LA, Bethin KE, Katz ML, Shah A, et al. Effect of metformin added to insulin on glycemic control among overweight/obese adolescents with type 1 diabetes: a randomized clinical trial. JAMA. 2015;314(21):2241–50.

    Article  CAS  PubMed  Google Scholar 

  17. Meyer L, Bohme P, Delbachian I, Lehert P, Cugnardey N, Drouin P, et al. The benefits of metformin therapy during continuous subcutaneous insulin infusion treatment of type 1 diabetic patients. Diabetes Care. 2002;25(12):2153–8.

    Article  CAS  PubMed  Google Scholar 

  18. Nadeau KJ, Chow K, Alam S, Lindquist K, Campbell S, McFann K, et al. Effects of low dose metformin in adolescents with type I diabetes mellitus: a randomized, double-blinded placebo-controlled study. Pediatr Diabetes. 2015;16(3):196–203.

    Article  CAS  PubMed  Google Scholar 

  19. Nwosu BU, Maranda L, Cullen K, Greenman L, Fleshman J, McShea N, et al. A randomized, double-blind, placebo-controlled trial of adjunctive metformin therapy in overweight/obese youth with type 1 diabetes. PLoS One. 2015;10(9):e0137525.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Petrie JR, Chaturvedi N, Ford I, Hramiak I, Hughes AD, Jenkins AJ, et al. Metformin in adults with type 1 diabetes: design and methods of REducing with MetfOrmin Vascular Adverse Lesions (REMOVAL): an international multicentre trial. Diabetes Obes Metab. 2017;19(4):509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petrie JR, Chaturvedi N, Ford I, Brouwers M, Greenlaw N, Tillin T, et al. Cardiovascular and metabolic effects of metformin in patients with type 1 diabetes (REMOVAL): a double-blind, randomised, placebo-controlled trial. Lancet Diab Endocrinol. 2017;5(8):597–609.

    Article  CAS  Google Scholar 

  22. Pitocco D, Zaccardi F, Tarzia P, Milo M, Scavone G, Rizzo P, et al. Metformin improves endothelial function in type 1 diabetic subjects: a pilot, placebo-controlled randomized study. Diabetes Obes Metab. 2013;15(5):427–31.

    Article  CAS  PubMed  Google Scholar 

  23. Sarnblad S, Kroon M, Aman J. Metformin as additional therapy in adolescents with poorly controlled type 1 diabetes: randomised placebo-controlled trial with aspects on insulin sensitivity. Eur J Endocrinol. 2003;149(4):323–9.

    Article  PubMed  Google Scholar 

  24. Ziaee A, Esmailzadehha N, Honardoost M. Comparison of adjunctive therapy with metformin and acarbose in patients with Type-1 diabetes mellitus. Pak J Med Sci. 2017;33(3):686–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hollander P, Pi-Sunyer X, Coniff RF. Acarbose in the treatment of type I diabetes. Diabetes Care. 1997;20(3):248–53.

    Article  CAS  PubMed  Google Scholar 

  26. Riccardi G, Giacco R, Parillo M, Turco S, Rivellese AA, Ventura MR, et al. Efficacy and safety of acarbose in the treatment of type 1 diabetes mellitus: a placebo-controlled, double-blind, multicentre study. Diab Med. 1999;16(3):228–32.

    Article  CAS  Google Scholar 

  27. Bhat R, Bhansali A, Bhadada S, Sialy R. Effect of pioglitazone therapy in lean type 1 diabetes mellitus. Diab Res Clin Pract. 2007;78(3):349–54.

    Article  CAS  Google Scholar 

  28. Strowig SM, Raskin P. The effect of rosiglitazone on overweight subjects with type 1 diabetes. Diabetes Care. 2005;28(7):1562–7.

    Article  CAS  PubMed  Google Scholar 

  29. Tafuri KS, Godil MA, Lane AH, Wilson TA. Effect of pioglitazone on the course of new-onset type 1 diabetes mellitus. J Clin Res Pediatr Endocrinol. 2013;5(4):236–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zdravkovic V, Hamilton JK, Daneman D, Cummings EA. Pioglitazone as adjunctive therapy in adolescents with type 1 diabetes. J Pediatr. 2006;149(6):845–9.

    Article  CAS  PubMed  Google Scholar 

  31. Ahren B, Hirsch IB, Pieber TR, Mathieu C, Gomez-Peralta F, Hansen TK, et al. Efficacy and safety of liraglutide added to capped insulin treatment in subjects with type 1 diabetes: the ADJUNCT TWO randomized trial. Diabetes Care. 2016;39(10):1693–701.

    Article  CAS  PubMed  Google Scholar 

  32. Dejgaard TF, Frandsen CS, Hansen TS, Almdal T, Urhammer S, Pedersen-Bjergaard U, et al. Efficacy and safety of liraglutide for overweight adult patients with type 1 diabetes and insufficient glycaemic control (Lira-1): a randomised, double-blind, placebo-controlled trial. Lancet Diab Endocrinol. 2016;4(3):221–32.

    Article  CAS  Google Scholar 

  33. Dejgaard TF, Johansen NB, Frandsen CS, Asmar A, Tarnow L, Knop FK, et al. Effects of liraglutide on cardiovascular risk factors in patients with type 1 diabetes. Diabetes Obes Metab. 2017;19(5):734–8.

    Article  CAS  PubMed  Google Scholar 

  34. Frandsen CS, Dejgaard TF, Holst JJ, Andersen HU, Thorsteinsson B, Madsbad S. Twelve-week treatment with liraglutide as add-on to insulin in normal-weight patients with poorly controlled type 1 diabetes: a randomized, placebo-controlled, double-blind parallel study. Diabetes Care. 2015;38(12):2250–7.

    Article  CAS  PubMed  Google Scholar 

  35. Frandsen CS, Dejgaard TF, Andersen HU, Holst JJ, Hartmann B, Thorsteinsson B, et al. Liraglutide as adjunct to insulin treatment in type 1 diabetes does not interfere with glycaemic recovery or gastric emptying rate during hypoglycaemia: a randomized, placebo-controlled, double-blind, parallel-group study. Diabetes Obes Metab. 2017;19(6):773–82.

    Article  CAS  PubMed  Google Scholar 

  36. Kuhadiya ND, Dhindsa S, Ghanim H, Mehta A, Makdissi A, Batra M, et al. Addition of liraglutide to insulin in patients with type 1 diabetes: a randomized placebo-controlled clinical trial of 12 weeks. Diabetes Care. 2016;39(6):1027–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mathieu C, Zinman B, Hemmingsson JU, Woo V, Colman P, Christiansen E, et al. Efficacy and safety of liraglutide added to insulin treatment in type 1 diabetes: the ADJUNCT ONE treat-to-target randomized trial. Diabetes Care. 2016;39(10):1702–10.

    Article  CAS  PubMed  Google Scholar 

  38. Garg SK, Moser EG, Bode BW, Klaff LJ, Hiatt WR, Beatson C, et al. Effect of sitagliptin on post-prandial glucagon and GLP-1 levels in patients with type 1 diabetes: investigator-initiated, double-blind, randomized, placebo-controlled trial. Endocrine Pract. 2013;19(1):19–28.

    Article  Google Scholar 

  39. Buse JB, Garg SK, Rosenstock J, Bailey TS, Banks P, Bode BW, et al. Sotagliflozin in in combination with optimized insulin therapy in adults with type 1 diabetes: the north American inTandem1 study. Diabetes Care. 2018;41(9):1970–80.

  40. Dandona P, Mathieu C, Phillip M, Hansen L, Griffen SC, Tschope D, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (DEPICT-1): 24 week results from a multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diab Endocrinol. 2017;5(11):864–76.

    Article  CAS  Google Scholar 

  41. Danne T, Cariou B, Banks P, Brandle M, Brath H, Franek E, et al. HbA1c and hypoglycemia reductions at 24 and 52 weeks with sotagliflozin in combination with insulin in adults with type 1 diabetes: the European inTandem2 study. Diabetes Care. 2018;41(9):1981–90.

  42. Famulla S, Pieber TR, Eilbracht J, Neubacher D, Soleymanlou N, Woerle HJ, et al. Glucose exposure and variability with empagliflozin as adjunct to insulin in patients with type 1 diabetes: continuous glucose monitoring data from a 4-week, randomized, placebo-controlled trial (EASE-1). Diabetes Technol Ther. 2017;19(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  43. Pieber TR, Famulla S, Eilbracht J, Cescutti J, Soleymanlou N, Johansen OE, et al. Empagliflozin as adjunct to insulin in patients with type 1 diabetes: a 4-week, randomized, placebo-controlled trial (EASE-1). Diabetes Obes Metab. 2015;17(10):928–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garg SK, Henry RR, Banks P, Buse JB, Davies MJ, Fulcher GR, et al. Effects of sotagliflozin added to insulin in patients with type 1 diabetes. N Engl J Med. 2017;377(24):2337–48.

    Article  CAS  PubMed  Google Scholar 

  45. Henry RR, Thakkar P, Tong C, Polidori D, Alba M. Efficacy and safety of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to insulin in patients with type 1 diabetes. Diabetes Care. 2015;38(12):2258–65.

    Article  CAS  PubMed  Google Scholar 

  46. Rodbard HW, Peters AL, Slee A, Cao A, Traina SB, Alba M. The effect of canagliflozin, a sodium glucose cotransporter 2 inhibitor, on glycemic end points assessed by continuous glucose monitoring and patient-reported outcomes among people with type 1 diabetes. Diabetes Care. 2017;40(2):171–80.

    Article  CAS  PubMed  Google Scholar 

  47. Peters AL, Henry RR, Thakkar P, Tong C, Alba M. Diabetic ketoacidosis with canagliflozin, a sodium-glucose cotransporter 2 inhibitor, in patients with type 1 diabetes. Diabetes Care. 2016;39(4):532–8.

    Article  CAS  PubMed  Google Scholar 

  48. Kuhadiya ND, Ghanim H, Mehta A, Garg M, Khan S, Hejna J, et al. Dapagliflozin as additional treatment to liraglutide and insulin in patients with type 1 diabetes. J Clin Endocrinol Metab. 2016;101(9):3506–15.

    Article  CAS  PubMed  Google Scholar 

  49. Sands AT, Zambrowicz BP, Rosenstock J, Lapuerta P, Bode BW, Garg SK, et al. Sotagliflozin, a dual SGLT1 and SGLT2 inhibitor, as adjunct therapy to insulin in type 1 diabetes. Diabetes Care. 2015;38(7):1181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shimada A, Hanafusa T, Yasui A, Lee G, Taneda Y, Sarashina A, et al. Empagliflozin as adjunct to insulin in Japanese participants with type 1 diabetes: results of a 4-week, double-blind, randomized, placebo-controlled phase 2 trial. Diabetes Obes Metab. 2018;20(9):2190–9.

  51. Mathieu C, Dandona P, Gillard P, Senior P, Hasslacher C, Araki E, et al. Efficacy and safety of dapagliflozin in patients with inadequately controlled type 1 diabetes (the DEPICT-2 study): 24-week results from a randomized controlled trial. Diabetes Care. 2018;41(9):1938–46.

    Article  CAS  PubMed  Google Scholar 

  52. Rosenstock J, Marquard J, Laffel LM, Neubacher D, Kaspers S, Cherney DZ, et al. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: the EASE trials. Diabetes Care. 2018;41(12):2560–9.

    Article  CAS  PubMed  Google Scholar 

  53. Edelman S, Garg S, Frias J, Maggs D, Wang Y, Zhang B, et al. A double-blind, placebo-controlled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care. 2006;29(10):2189–95.

    Article  CAS  PubMed  Google Scholar 

  54. Marrero DG, Crean J, Zhang B, Kellmeyer T, Gloster M, Herrmann K, et al. Effect of adjunctive pramlintide treatment on treatment satisfaction in patients with type 1 diabetes. Diabetes Care. 2007;30(2):210–6.

    Article  CAS  PubMed  Google Scholar 

  55. Kovatchev BP, Crean J, McCall A. Pramlintide reduces the risks associated with glucose variability in type 1 diabetes. Diabetes Technol Ther. 2008;10(5):391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Herrmann K, Frias JP, Edelman SV, Lutz K, Shan K, Chen S, et al. Pramlintide improved measures of glycemic control and body weight in patients with type 1 diabetes mellitus undergoing continuous subcutaneous insulin infusion therapy. Postgrad Med. 2013;125(3):136–44.

    Article  PubMed  Google Scholar 

  57. Ratner RE, Dickey R, Fineman M, Maggs DG, Shen L, Strobel SA, et al. Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in type 1 diabetes mellitus: a 1-year, randomized controlled trial. Diab Med. 2004;21(11):1204–12.

    Article  CAS  Google Scholar 

  58. Ratner R, Whitehouse F, Fineman MS, Strobel S, Shen L, Maggs DG, et al. Adjunctive therapy with pramlintide lowers HbA1c without concomitant weight gain and increased risk of severe hypoglycemia in patients with type 1 diabetes approaching glycemic targets. Exp Clin Endocrinol Diab. 2005;113(4):199–204.

    Article  CAS  Google Scholar 

  59. Whitehouse F, Kruger DF, Fineman M, Shen L, Ruggles JA, Maggs DG, et al. A randomized study and open-label extension evaluating the long-term efficacy of pramlintide as an adjunct to insulin therapy in type 1 diabetes. Diabetes Care. 2002;25(4):724–30.

    Article  CAS  PubMed  Google Scholar 

  60. Madsbad S, Schmitz O, Ranstam J, Jakobsen G, Matthews DR. Improved glycemic control with no weight increase in patients with type 2 diabetes after once-daily treatment with the long-acting glucagon-like peptide 1 analog liraglutide (NN2211): a 12-week, double-blind, randomized, controlled trial. Diabetes Care. 2004;27(6):1335–42.

    Article  CAS  PubMed  Google Scholar 

  61. Scott R, Wu M, Sanchez M, Stein P. Efficacy and tolerability of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy over 12 weeks in patients with type 2 diabetes. Int J Clin Pract. 2007;61(1):171–80.

    Article  CAS  PubMed  Google Scholar 

  62. Goldberg RB, Holvey SM, Schneider J. A dose-response study of glimepiride in patients with NIDDM who have previously received sulfonylurea agents. The Glimepiride Protocol #201 Study Group. Diabetes Care. 1996;19(8):849–56.

    Article  CAS  PubMed  Google Scholar 

  63. Rosenstock J, Samols E, Muchmore DB, Schneider J. Glimepiride, a new once-daily sulfonylurea. A double-blind placebo-controlled study of NIDDM patients. Glimepiride Study Group. Diabetes Care. 1996;19(11):1194–9.

    Article  CAS  PubMed  Google Scholar 

  64. Simonson DC, Kourides IA, Feinglos M, Shamoon H, Fischette CT. Efficacy, safety, and dose-response characteristics of glipizide gastrointestinal therapeutic system on glycemic control and insulin secretion in NIDDM. Results of two multicenter, randomized, placebo-controlled clinical trials. The Glipizide Gastrointestinal Therapeutic System Study Group. Diabetes Care. 1997;20(4):597–606.

    Article  CAS  PubMed  Google Scholar 

  65. Fischer S, Patzak A, Rietzsch H, Schwanebeck U, Kohler C, Wildbrett J, et al. Influence of treatment with acarbose or glibenclamide on insulin sensitivity in type 2 diabetic patients. Diabetes Obes Metab. 2003;5(1):38–44.

    Article  CAS  PubMed  Google Scholar 

  66. Hanefeld M, Haffner SM, Menschikowski M, Koehler C, Temelkova-Kurktschiev T, Wildbrett J, et al. Different effects of acarbose and glibenclamide on proinsulin and insulin profiles in people with type 2 diabetes. Diabetes Res Clin Pract. 2002;55(3):221–7.

    Article  CAS  PubMed  Google Scholar 

  67. Hoffmann J, Spengler M. Efficacy of 24-week monotherapy with acarbose, glibenclamide, or placebo in NIDDM patients. The Essen Study. Diabetes Care. 1994;17(6):561–6.

    Article  CAS  PubMed  Google Scholar 

  68. Segal P, Feig PU, Schernthaner G, Ratzmann KP, Rybka J, Petzinna D, et al. The efficacy and safety of miglitol therapy compared with glibenclamide in patients with NIDDM inadequately controlled by diet alone. Diabetes Care. 1997;20(5):687–91.

    Article  CAS  PubMed  Google Scholar 

  69. Ebeling P, Teppo AM, Koistinen HA, Koivisto VA. Concentration of the complement activation product, acylation-stimulating protein, is related to C-reactive protein in patients with type 2 diabetes. Metab Clin Exp. 2001;50(3):283–7.

    Article  CAS  PubMed  Google Scholar 

  70. Coniff RF, Shapiro JA, Seaton TB, Bray GA. Multicenter, placebo-controlled trial comparing acarbose (BAY g 5421) with placebo, tolbutamide, and tolbutamide-plus-acarbose in non-insulin-dependent diabetes mellitus. Am J Med. 1995;98(5):443–51.

    Article  CAS  PubMed  Google Scholar 

  71. Johnson AB, Webster JM, Sum CF, Heseltine L, Argyraki M, Cooper BG, et al. The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type II diabetic patients. Metab Clin Exp. 1993;42(9):1217–22.

    Article  CAS  PubMed  Google Scholar 

  72. Tessari P, Biolo G, Bruttomesso D, Inchiostro S, Panebianco G, Vedovato M, et al. Effects of metformin treatment on whole-body and splanchnic amino acid turnover in mild type 2 diabetes. J Clin Endocrinol Metab. 1994;79(6):1553–60.

    CAS  PubMed  Google Scholar 

  73. List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care. 2009;32(4):650–7.

    Article  CAS  PubMed  Google Scholar 

  74. Fonseca VA, Ferrannini E, Wilding JP, Wilpshaar W, Dhanjal P, Ball G, et al. Active- and placebo-controlled dose-finding study to assess the efficacy, safety, and tolerability of multiple doses of ipragliflozin in patients with type 2 diabetes mellitus. J Diabetes Complicat. 2013;27(3):268–73.

    Article  PubMed  Google Scholar 

  75. Garber AJ, Duncan TG, Goodman AM, Mills DJ, Rohlf JL. Efficacy of metformin in type II diabetes: results of a double-blind, placebo-controlled, dose-response trial. Am J Med. 1997;103(6):491–7.

    Article  CAS  PubMed  Google Scholar 

  76. Natali A, Baldeweg S, Toschi E, Capaldo B, Barbaro D, Gastaldelli A, et al. Vascular effects of improving metabolic control with metformin or rosiglitazone in type 2 diabetes. Diabetes Care. 2004;27(6):1349–57.

    Article  CAS  PubMed  Google Scholar 

  77. Fujioka K, Brazg RL, Raz I, Bruce S, Joyal S, Swanink R, et al. Efficacy, dose-response relationship and safety of once-daily extended-release metformin (Glucophage XR) in type 2 diabetic patients with inadequate glycaemic control despite prior treatment with diet and exercise: results from two double-blind, placebo-controlled studies. Diabetes Obes Metab. 2005;7(1):28–39.

    Article  CAS  PubMed  Google Scholar 

  78. Hoffmann J, Spengler M. Efficacy of 24-week monotherapy with acarbose, metformin, or placebo in dietary-treated NIDDM patients: the Essen-II study. Am J Med. 1997;103(6):483–90.

    Article  CAS  PubMed  Google Scholar 

  79. Horton ES, Clinkingbeard C, Gatlin M, Foley J, Mallows S, Shen S. Nateglinide alone and in combination with metformin improves glycemic control by reducing mealtime glucose levels in type 2 diabetes. Diabetes Care. 2000;23(11):1660–5.

    Article  CAS  PubMed  Google Scholar 

  80. Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care. 2007;30(8):1979–87.

    Article  CAS  PubMed  Google Scholar 

  81. Haak T, Meinicke T, Jones R, Weber S, von Eynatten M, Woerle HJ. Initial combination of linagliptin and metformin improves glycaemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2012;14(6):565–74.

    Article  CAS  PubMed  Google Scholar 

  82. Hallsten K, Virtanen KA, Lonnqvist F, Sipila H, Oksanen A, Viljanen T, et al. Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes. Diabetes. 2002;51(12):3479–85.

    Article  CAS  PubMed  Google Scholar 

  83. Viljanen AP, Virtanen KA, Jarvisalo MJ, Hallsten K, Parkkola R, Ronnemaa T, et al. Rosiglitazone treatment increases subcutaneous adipose tissue glucose uptake in parallel with perfusion in patients with type 2 diabetes: a double-blind, randomized study with metformin. J Clin Endocrinol Metab. 2005;90(12):6523–8.

    Article  CAS  PubMed  Google Scholar 

  84. DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. Multicenter Metformin Study Group. N Engl J Med. 1995;333(9):541–9.

    Article  CAS  PubMed  Google Scholar 

  85. Dornan TL, Heller SR, Peck GM, Tattersall RB. Double-blind evaluation of efficacy and tolerability of metformin in NIDDM. Diabetes Care. 1991;14(4):342–4.

    Article  CAS  PubMed  Google Scholar 

  86. Chiasson JL, Naditch L. The synergistic effect of miglitol plus metformin combination therapy in the treatment of type 2 diabetes. Diabetes Care. 2001;24(6):989–94.

    Article  CAS  PubMed  Google Scholar 

  87. Wagner H, Degerblad M, Thorell A, Nygren J, Stahle A, Kuhl J, et al. Combined treatment with exercise training and acarbose improves metabolic control and cardiovascular risk factor profile in subjects with mild type 2 diabetes. Diabetes Care. 2006;29(7):1471–7.

    Article  CAS  PubMed  Google Scholar 

  88. Coniff RF, Shapiro JA, Robbins D, Kleinfield R, Seaton TB, Beisswenger P, et al. Reduction of glycosylated hemoglobin and postprandial hyperglycemia by acarbose in patients with NIDDM. A placebo-controlled dose-comparison study. Diabetes Care. 1995;18(6):817–24.

    Article  CAS  PubMed  Google Scholar 

  89. Calle-Pascual A, Garcia-Honduvilla J, Martin-Alvarez PJ, Calle JR, Maranes JP. Influence of 16-week monotherapy with acarbose on cardiovascular risk factors in obese subjects with non-insulin-dependent diabetes mellitus: a controlled, double-blind comparison study with placebo. Diabetes Metab. 1996;22(3):201–2.

    CAS  PubMed  Google Scholar 

  90. Scott R, Lintott CJ, Zimmet P, Campbell L, Bowen K, Welborn T. Will acarbose improve the metabolic abnormalities of insulin-resistant type 2 diabetes mellitus? Diabetes Res Clin Pract. 1999;43(3):179–85.

    Article  CAS  PubMed  Google Scholar 

  91. Delgado H, Lehmann T, Bobbioni-Harsch E, Ybarra J, Golay A. Acarbose improves indirectly both insulin resistance and secretion in obese type 2 diabetic patients. Diabetes Metab. 2002;28(3):195–200.

    CAS  PubMed  Google Scholar 

  92. Hanefeld M, Schaper F, Koehler C, Bergmann S, Ugocsai P, Stelzer J, et al. Effect of acarbose on postmeal mononuclear blood cell response in patients with early type 2 diabetes: the AI(I) DA study. Horm Metab Res. 2009;41(2):132–6.

    Article  CAS  PubMed  Google Scholar 

  93. Rosenbaum P, Peres RB, Zanella MT, Ferreira SR. Improved glycemic control by acarbose therapy in hypertensive diabetic patients: effects on blood pressure and hormonal parameters. Braz J Med Biolo Res. 2002;35(8):877–84.

    Article  CAS  Google Scholar 

  94. Hotta N, Kakuta H, Sano T, Matsumae H, Yamada H, Kitazawa S, et al. Long-term effect of acarbose on glycaemic control in non-insulin-dependent diabetes mellitus: a placebo-controlled double-blind study. Diab Med. 1993;10(2):134–8.

    Article  CAS  Google Scholar 

  95. Chan JC, Chan KW, Ho LL, Fuh MM, Horn LC, Sheaves R, et al. An Asian multicenter clinical trial to assess the efficacy and tolerability of acarbose compared with placebo in type 2 diabetic patients previously treated with diet. Asian Acarbose Study Group. Diabetes Care. 1998;21(7):1058–61.

    Article  CAS  PubMed  Google Scholar 

  96. Gentile S, Turco S, Guarino G, Oliviero B, Annunziata S, Cozzolino D, et al. Effect of treatment with acarbose and insulin in patients with non-insulin-dependent diabetes mellitus associated with non-alcoholic liver cirrhosis. Diabetes Obes Metab. 2001;3(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  97. Coniff RF, Shapiro JA, Seaton TB. Long-term efficacy and safety of acarbose in the treatment of obese subjects with non-insulin-dependent diabetes mellitus. Arch Intern Med. 1994;154(21):2442–8.

    Article  CAS  PubMed  Google Scholar 

  98. Chiasson JL, Josse RG, Hunt JA, Palmason C, Rodger NW, Ross SA, et al. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. A multicenter controlled clinical trial. Ann Intern Med. 1994;121(12):928–35.

    Article  CAS  PubMed  Google Scholar 

  99. Meneilly GS, Ryan EA, Radziuk J, Lau DC, Yale JF, Morais J, et al. Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care. 2000;23(8):1162–7.

    Article  CAS  PubMed  Google Scholar 

  100. Josse RG, Chiasson JL, Ryan EA, Lau DC, Ross SA, Yale JF, et al. Acarbose in the treatment of elderly patients with type 2 diabetes. Diabetes Res Clin Pract. 2003;59(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  101. Hasche H, Mertes G, Bruns C, Englert R, Genthner P, Heim D, et al. Effects of acarbose treatment in type 2 diabetic patients under dietary training: a multicentre, double-blind, placebo-controlled, 2-year study. Diab Nutr Metab. 1999;12(4):277–85.

    CAS  Google Scholar 

  102. Iwamoto Y, Kosaka K, Kuzuya T, Akanuma Y, Shigeta Y, Kaneko T. Effects of troglitazone: a new hypoglycemic agent in patients with NIDDM poorly controlled by diet therapy. Diabetes Care. 1996;19(2):151–6.

    Article  CAS  PubMed  Google Scholar 

  103. Kumar S, Boulton AJ, Beck-Nielsen H, Berthezene F, Muggeo M, Persson B, et al. Troglitazone, an insulin action enhancer, improves metabolic control in NIDDM patients. Troglitazone Study Group. Diabetologia. 1996;39(6):701–9.

    Article  CAS  PubMed  Google Scholar 

  104. Patel J, Anderson RJ, Rappaport EB. Rosiglitazone monotherapy improves glycaemic control in patients with type 2 diabetes: a twelve-week, randomized, placebo-controlled study. Diabetes Obes Metab. 1999;1(3):165–72.

    Article  CAS  PubMed  Google Scholar 

  105. Raskin P, Rappaport EB, Cole ST, Yan Y, Patwardhan R, Freed MI. Rosiglitazone short-term monotherapy lowers fasting and post-prandial glucose in patients with type II diabetes. Diabetologia. 2000;43(3):278–84.

    Article  CAS  PubMed  Google Scholar 

  106. Miyazaki Y, Glass L, Triplitt C, Matsuda M, Cusi K, Mahankali A, et al. Effect of rosiglitazone on glucose and non-esterified fatty acid metabolism in type II diabetic patients. Diabetologia. 2001;44(12):2210–9.

    Article  CAS  PubMed  Google Scholar 

  107. Juhl CB, Hollingdal M, Porksen N, Prange A, Lonnqvist F, Schmitz O. Influence of rosiglitazone treatment on beta-cell function in type 2 diabetes: evidence of an increased ability of glucose to entrain high-frequency insulin pulsatility. J Clin Endocrinol Metab. 2003;88(8):3794–800.

    Article  CAS  PubMed  Google Scholar 

  108. Wallace TM, Levy JC, Matthews DR. An increase in insulin sensitivity and basal beta-cell function in diabetic subjects treated with pioglitazone in a placebo-controlled randomized study. Diab Med. 2004;21(6):568–76.

    Article  CAS  Google Scholar 

  109. Gastaldelli A, Miyazaki Y, Pettiti M, Santini E, Ciociaro D, Defronzo RA, et al. The effect of rosiglitazone on the liver: decreased gluconeogenesis in patients with type 2 diabetes. J Clin Endocrinol Metab. 2006;91(3):806–12.

    Article  CAS  PubMed  Google Scholar 

  110. Sourij H, Zweiker R, Wascher TC. Effects of pioglitazone on endothelial function, insulin sensitivity, and glucose control in subjects with coronary artery disease and new-onset type 2 diabetes. Diabetes Care. 2006;29(5):1039–45.

    Article  CAS  PubMed  Google Scholar 

  111. Oz O, Tuncel E, Eryilmaz S, Fazlioglu M, Gul CB, Ersoy C, et al. Arterial elasticity and plasma levels of adiponectin and leptin in type 2 diabetic patients treated with thiazolidinediones. Endocrine. 2008;33(1):101–5.

    Article  CAS  PubMed  Google Scholar 

  112. Oz Gul O, Tuncel E, Yilmaz Y, Ulukaya E, Gul CB, Kiyici S, et al. Comparative effects of pioglitazone and rosiglitazone on plasma levels of soluble receptor for advanced glycation end products in type 2 diabetes mellitus patients. Metab Clin Exp. 2010;59(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  113. Kong AP, Yamasaki A, Ozaki R, Saito H, Asami T, Ohwada S, et al. A randomized-controlled trial to investigate the effects of rivoglitazone, a novel PPAR gamma agonist on glucose-lipid control in type 2 diabetes. Diabetes Obes Metab. 2011;13(9):806–13.

    Article  CAS  PubMed  Google Scholar 

  114. Colca JR, VanderLugt JT, Adams WJ, Shashlo A, McDonald WG, Liang J, et al. Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin Pharmacol Ther. 2013;93(4):352–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ebeling P, Teppo AM, Koistinen HA, Viikari J, Ronnemaa T, Nissen M, et al. Troglitazone reduces hyperglycaemia and selectively acute-phase serum proteins in patients with type II diabetes. Diabetologia. 1999;42(12):1433–8.

    Article  CAS  PubMed  Google Scholar 

  116. Miyazaki Y, Mahankali A, Matsuda M, Glass L, Mahankali S, Ferrannini E, et al. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care. 2001;24(4):710–9.

    Article  CAS  PubMed  Google Scholar 

  117. Phillips LS, Grunberger G, Miller E, Patwardhan R, Rappaport EB, Salzman A. Once- and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care. 2001;24(2):308–15.

    Article  CAS  PubMed  Google Scholar 

  118. Rosenblatt S, Miskin B, Glazer NB, Prince MJ, Robertson KE. The impact of pioglitazone on glycemic control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis. 2001;12(5):413–23.

    Article  CAS  PubMed  Google Scholar 

  119. Carey DG, Cowin GJ, Galloway GJ, Jones NP, Richards JC, Biswas N, et al. Effect of rosiglitazone on insulin sensitivity and body composition in type 2 diabetic patients [corrected]. Obes Res. 2002;10(10):1008–15.

    Article  CAS  PubMed  Google Scholar 

  120. Rosenstock J, Shen SG, Gatlin MR, Foley JE. Combination therapy with nateglinide and a thiazolidinedione improves glycemic control in type 2 diabetes. Diabetes Care. 2002;25(9):1529–33.

    Article  CAS  PubMed  Google Scholar 

  121. Lautamaki R, Airaksinen KE, Seppanen M, Toikka J, Luotolahti M, Ball E, et al. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: a 16-week randomized, double-blind, placebo-controlled study. Diabetes. 2005;54(9):2787–94.

    Article  CAS  PubMed  Google Scholar 

  122. Gastaldelli A, Ferrannini E, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. Thiazolidinediones improve beta-cell function in type 2 diabetic patients. Am J Physiol Endocrinol Metab. 2007;292(3):E871–83.

    Article  CAS  PubMed  Google Scholar 

  123. Tan GD, Fielding BA, Currie JM, Humphreys SM, Desage M, Frayn KN, et al. The effects of rosiglitazone on fatty acid and triglyceride metabolism in type 2 diabetes. Diabetologia. 2005;48(1):83–95.

    Article  CAS  PubMed  Google Scholar 

  124. Miyazaki Y, Matsuda M, DeFronzo RA. Dose-response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care. 2002;25(3):517–23.

    Article  CAS  PubMed  Google Scholar 

  125. Fonseca VA, Valiquett TR, Huang SM, Ghazzi MN, Whitcomb RW. Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study. The Troglitazone Study Group. J Clin Endocrinol Metab. 1998;83(9):3169–76.

    CAS  PubMed  Google Scholar 

  126. Fonseca VA, Reynolds T, Hemphill D, Randolph C, Wall J, Valiquet TR, et al. Effect of troglitazone on fibrinolysis and activated coagulation in patients with non-insulin-dependent diabetes mellitus. J Diabetes Complicat. 1998;12(4):181–6.

    Article  CAS  PubMed  Google Scholar 

  127. Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care. 2000;23(11):1605–11.

    Article  CAS  PubMed  Google Scholar 

  128. Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation. 2002;106(6):679–84.

    Article  CAS  PubMed  Google Scholar 

  129. Scherbaum WA, Goke B. Metabolic efficacy and safety of once-daily pioglitazone monotherapy in patients with type 2 diabetes: a double-blind, placebo-controlled study. Horm Metab Res. 2002;34(10):589–95.

    Article  CAS  PubMed  Google Scholar 

  130. Khan M, Murray FT, Karunaratne M, Perez A. Pioglitazone and reductions in post-challenge glucose levels in patients with type 2 diabetes. Diabetes Obes Metab. 2006;8(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  131. Truitt KE, Goldberg RB, Rosenstock J, Chou HS, Merante D, Triscari J, et al. A 26-week, placebo- and pioglitazone-controlled, dose-ranging study of rivoglitazone, a novel thiazolidinedione for the treatment of type 2 diabetes. Curr Med Res Opin. 2010;26(6):1321–31.

    Article  CAS  PubMed  Google Scholar 

  132. Chou HS, Truitt KE, Moberly JB, Merante D, Choi Y, Mun Y, et al. A 26-week, placebo- and pioglitazone-controlled monotherapy study of rivoglitazone in subjects with type 2 diabetes mellitus. Diabetes Obes Metab. 2012;14(11):1000–9.

    Article  CAS  PubMed  Google Scholar 

  133. Ristic S, Byiers S, Foley J, Holmes D. Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes: vildagliptin (LAF237) dose response. Diabetes Obes Metab. 2005;7(6):692–8.

    Article  CAS  PubMed  Google Scholar 

  134. Hanefeld M, Herman GA, Wu M, Mickel C, Sanchez M, Stein PP. Once-daily sitagliptin, a dipeptidyl peptidase-4 inhibitor, for the treatment of patients with type 2 diabetes. Curr Med Res Opin. 2007;23(6):1329–39.

    Article  CAS  PubMed  Google Scholar 

  135. Nonaka K, Kakikawa T, Sato A, Okuyama K, Fujimoto G, Kato N, et al. Efficacy and safety of sitagliptin monotherapy in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract. 2008;79(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  136. Rosenstock J, Sankoh S, List JF. Glucose-lowering activity of the dipeptidyl peptidase-4 inhibitor saxagliptin in drug-naive patients with type 2 diabetes. Diabetes Obes Metab. 2008;10(5):376–86.

    Article  CAS  PubMed  Google Scholar 

  137. Kikuchi M, Abe N, Kato M, Terao S, Mimori N, Tachibana H. Vildagliptin dose-dependently improves glycemic control in Japanese patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2009;83(2):233–40.

    Article  CAS  PubMed  Google Scholar 

  138. Iwamoto Y, Taniguchi T, Nonaka K, Okamoto T, Okuyama K, Arjona Ferreira JC, et al. Dose-ranging efficacy of sitagliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus. Endocr J. 2010;57(5):383–94.

    Article  CAS  PubMed  Google Scholar 

  139. Pattzi HM, Pitale S, Alpizar M, Bennett C, O'Farrell AM, Li J, et al. Dutogliptin, a selective DPP4 inhibitor, improves glycaemic control in patients with type 2 diabetes: a 12-week, double-blind, randomized, placebo-controlled, multicentre trial. Diabetes Obes Metab. 2010;12(4):348–55.

    Article  CAS  PubMed  Google Scholar 

  140. Rhee EJ, Lee WY, Yoon KH, Yoo SJ, Lee IK, Baik SH, et al. A multicenter, randomized, placebo-controlled, double-blind phase II trial evaluating the optimal dose, efficacy and safety of LC 15-0444 in patients with type 2 diabetes. Diabetes Obes Metab. 2010;12(12):1113–9.

    Article  CAS  PubMed  Google Scholar 

  141. Seino Y, Fujita T, Hiroi S, Hirayama M, Kaku K. Efficacy and safety of alogliptin in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, dose-ranging comparison with placebo, followed by a long-term extension study. Curr Med Res Opin. 2011;27(9):1781–92.

    Article  CAS  PubMed  Google Scholar 

  142. Kawamori R, Inagaki N, Araki E, Watada H, Hayashi N, Horie Y, et al. Linagliptin monotherapy provides superior glycaemic control versus placebo or voglibose with comparable safety in Japanese patients with type 2 diabetes: a randomized, placebo and active comparator-controlled, double-blind study. Diabetes Obes Metab. 2012;14(4):348–57.

    Article  CAS  PubMed  Google Scholar 

  143. Kadowaki T, Kondo K. Efficacy, safety and dose-response relationship of teneligliptin, a dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2013;15(9):810–8.

    Article  CAS  PubMed  Google Scholar 

  144. Inagaki N, Onouchi H, Sano H, Funao N, Kuroda S, Kaku K. SYR-472, a novel once-weekly dipeptidyl peptidase-4 (DPP-4) inhibitor, in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Diab Endocrinol. 2014;2(2):125–32.

    Article  CAS  Google Scholar 

  145. Sheu WH, Gantz I, Chen M, Suryawanshi S, Mirza A, Goldstein BJ, et al. Safety and efficacy of omarigliptin (MK-3102), a novel once-weekly DPP-4 inhibitor for the treatment of patients with type 2 diabetes. Diabetes Care. 2015;38(11):2106–14.

    Article  CAS  PubMed  Google Scholar 

  146. Yoon SA, Han BG, Kim SG, Han SY, Jo YI, Jeong KH, et al. Efficacy, safety and albuminuria-reducing effect of gemigliptin in Korean type 2 diabetes patients with moderate to severe renal impairment: a 12-week, double-blind randomized study (the GUARD study). Diabetes Obes Metab. 2017;19(4):590–8.

    Article  CAS  PubMed  Google Scholar 

  147. Pan C, Han P, Ji Q, Li C, Lu J, Yang J, et al. Efficacy and safety of alogliptin in patients with type 2 diabetes mellitus: a multicentre randomized double-blind placebo-controlled phase 3 study in mainland China, Taiwan, and Hong Kong. J Diab. 2017;9(4):386–95.

    Article  CAS  Google Scholar 

  148. Agarwal P, Jindal C, Sapakal V. Efficacy and safety of teneligliptin in Indian patients with inadequately controlled type 2 diabetes mellitus: a randomized, double-blind study. Indian J Endocrinol Metab. 2018;22(1):41–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia. 2006;49(11):2564–71.

    Article  CAS  PubMed  Google Scholar 

  150. Mohan V, Yang W, Son HY, Xu L, Noble L, Langdon RB, et al. Efficacy and safety of sitagliptin in the treatment of patients with type 2 diabetes in China, India, and Korea. Diabetes Res Clin Pract. 2009;83(1):106–16.

    Article  CAS  PubMed  Google Scholar 

  151. Aschner P, Kipnes MS, Lunceford JK, Sanchez M, Mickel C, Williams-Herman DE. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2006;29(12):2632–7.

    Article  CAS  PubMed  Google Scholar 

  152. Dejager S, Razac S, Foley JE, Schweizer A. Vildagliptin in drug-naive patients with type 2 diabetes: a 24-week, double-blind, randomized, placebo-controlled, multiple-dose study. Horm Met Res. 2007;39(3):218–23.

    Article  CAS  Google Scholar 

  153. Pi-Sunyer FX, Schweizer A, Mills D, Dejager S. Efficacy and tolerability of vildagliptin monotherapy in drug-naive patients with type 2 diabetes. Diabetes Res Clin Pract. 2007;76(1):132–8.

    Article  CAS  PubMed  Google Scholar 

  154. Rosenstock J, Aguilar-Salinas C, Klein E, Nepal S, List J, Chen R. Effect of saxagliptin monotherapy in treatment-naive patients with type 2 diabetes. Curr Med Res Opin. 2009;25(10):2401–11.

    Article  CAS  PubMed  Google Scholar 

  155. Del Prato S, Barnett AH, Huisman H, Neubacher D, Woerle HJ, Dugi KA. Effect of linagliptin monotherapy on glycaemic control and markers of beta-cell function in patients with inadequately controlled type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2011;13(3):258–67.

    Article  PubMed  Google Scholar 

  156. Pan CY, Yang W, Tou C, Gause-Nilsson I, Zhao J. Efficacy and safety of saxagliptin in drug-naive Asian patients with type 2 diabetes mellitus: a randomized controlled trial. Diabetes Metab Res Rev. 2012;28(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  157. Frederich R, McNeill R, Berglind N, Fleming D, Chen R. The efficacy and safety of the dipeptidyl peptidase-4 inhibitor saxagliptin in treatment-naive patients with type 2 diabetes mellitus: a randomized controlled trial. Diabetol Metab Syndr. 2012;4(1):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yang SJ, Min KW, Gupta SK, Park JY, Shivane VK, Pitale SU, et al. A multicentre, multinational, randomized, placebo-controlled, double-blind, phase 3 trial to evaluate the efficacy and safety of gemigliptin (LC15-0444) in patients with type 2 diabetes. Diabetes Obes Metab. 2013;15(5):410–6.

    Article  CAS  PubMed  Google Scholar 

  159. Roden M, Weng J, Eilbracht J, Delafont B, Kim G, Woerle HJ, et al. Empagliflozin monotherapy with sitagliptin as an active comparator in patients with type 2 diabetes: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diab Endocrinol. 2013;1(3):208–19.

    Article  CAS  Google Scholar 

  160. Inagaki N, Onouchi H, Maezawa H, Kuroda S, Kaku K. Once-weekly trelagliptin versus daily alogliptin in Japanese patients with type 2 diabetes: a randomised, double-blind, phase 3, non-inferiority study. Lancet Diab Endocrinol. 2015;3(3):191–7.

    Article  CAS  Google Scholar 

  161. Wu W, Li Y, Chen X, Lin D, Xiang S, Shen F, et al. Effect of Linagliptin on glycemic control in Chinese patients with newly-diagnosed, drug-naive type 2 diabetes mellitus: a randomized controlled trial. Med Sci Monit. 2015;21:2678–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Hong S, Park CY, Han KA, Chung CH, Ku BJ, Jang HC, et al. Efficacy and safety of teneligliptin, a novel dipeptidyl peptidase-4 inhibitor, in Korean patients with type 2 diabetes mellitus: a 24-week multicentre, randomized, double-blind, placebo-controlled phase III trial. Diabetes Obes Metab. 2016;18(5):528–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ji L, Han P, Wang X, Liu J, Zheng S, Jou YM, et al. Randomized clinical trial of the safety and efficacy of sitagliptin and metformin co-administered to Chinese patients with type 2 diabetes mellitus. J Diab Invest. 2016;7(5):727–36.

    Article  CAS  Google Scholar 

  164. Chacra A, Gantz I, Mendizabal G, Durlach L, O'Neill EA, Zimmer Z, et al. A randomised, double-blind, trial of the safety and efficacy of omarigliptin (a once-weekly DPP-4 inhibitor) in subjects with type 2 diabetes and renal impairment. Int J Clin Pract. 2017;71(6):e12955.

  165. Home P, Ravi Shankar R, Gantz I, Iredale C, O'Neill EA, Jain L, et al. A randomized, double-blind trial evaluating the efficacy and safety of monotherapy with the once-weekly dipeptidyl peptidase-4 inhibitor omarigliptin in people with type 2 diabetes. Diabetes Res Clin Pract. 2018;138:253–61.

  166. Gantz I, Okamoto T, Ito Y, Okuyama K, O'Neill EA, Kaufman KD, et al. A randomized, placebo- and sitagliptin-controlled trial of the safety and efficacy of omarigliptin, a once-weekly dipeptidyl peptidase-4 inhibitor, in Japanese patients with type 2 diabetes. Diabetes Obes Metab. 2017;19(11):1602–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pratley RE, Fleck P, Wilson C. Efficacy and safety of initial combination therapy with alogliptin plus metformin versus either as monotherapy in drug-naive patients with type 2 diabetes: a randomized, double-blind, 6-month study. Diabetes Obes Metab. 2014;16(7):613–21.

    Article  CAS  PubMed  Google Scholar 

  168. Ji L, Li L, Kuang J, Yang T, Kim DJ, Kadir AA, et al. Efficacy and safety of fixed-dose combination therapy, alogliptin plus metformin, in Asian patients with type 2 diabetes: a phase 3 trial. Diabetes Obes Metab. 2017;19(5):754–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Scherbaum WA, Schweizer A, Mari A, Nilsson PM, Lalanne G, Jauffret S, et al. Efficacy and tolerability of vildagliptin in drug-naive patients with type 2 diabetes and mild hyperglycaemia*. Diabetes Obes Metab. 2008;10(8):675–82.

    Article  CAS  PubMed  Google Scholar 

  170. Ott C, Jumar A, Striepe K, Friedrich S, Karg MV, Bramlage P, et al. A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc Diabetol. 2017;16(1):26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Ferrannini E, Seman L, Seewaldt-Becker E, Hantel S, Pinnetti S, Woerle HJ. A phase IIb, randomized, placebo-controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes. Diabetes Obes Metab. 2013;15(8):721–8.

    Article  CAS  PubMed  Google Scholar 

  172. Inagaki N, Kondo K, Yoshinari T, Maruyama N, Susuta Y, Kuki H. Efficacy and safety of canagliflozin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Diabetes Obes Metab. 2013;15(12):1136–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kaku K, Inoue S, Matsuoka O, Kiyosue A, Azuma H, Hayashi N, et al. Efficacy and safety of dapagliflozin as a monotherapy for type 2 diabetes mellitus in Japanese patients with inadequate glycaemic control: a phase II multicentre, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2013;15(5):432–40.

    Article  CAS  PubMed  Google Scholar 

  174. Seino Y, Sasaki T, Fukatsu A, Sakai S, Samukawa Y. Efficacy and safety of luseogliflozin monotherapy in Japanese patients with type 2 diabetes mellitus: a 12-week, randomized, placebo-controlled, phase II study. Curr Med Res Opin. 2014;30(7):1219–30.

    Article  CAS  PubMed  Google Scholar 

  175. Seino Y, Sasaki T, Fukatsu A, Ubukata M, Sakai S, Samukawa Y. Dose-finding study of luseogliflozin in Japanese patients with type 2 diabetes mellitus: a 12-week, randomized, double-blind, placebo-controlled, phase II study. Curr Med Res Opin. 2014;30(7):1231–44.

    Article  CAS  PubMed  Google Scholar 

  176. Ikeda S, Takano Y, Cynshi O, Tanaka R, Christ AD, Boerlin V, et al. A novel and selective sodium-glucose cotransporter-2 inhibitor, tofogliflozin, improves glycaemic control and lowers body weight in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2015;17(10):984–93.

    Article  CAS  PubMed  Google Scholar 

  177. Sykes AP, Kemp GL, Dobbins R, O'Connor-Semmes R, Almond SR, Wilkison WO, et al. Randomized efficacy and safety trial of once-daily remogliflozin etabonate for the treatment of type 2 diabetes. Diabetes Obes Metab. 2015;17(1):98–101.

    Article  CAS  PubMed  Google Scholar 

  178. Sykes AP, O'Connor-Semmes R, Dobbins R, Dorey DJ, Lorimer JD, Walker S, et al. Randomized trial showing efficacy and safety of twice-daily remogliflozin etabonate for the treatment of type 2 diabetes. Diabetes Obes Metab. 2015;17(1):94–7.

    Article  CAS  PubMed  Google Scholar 

  179. Heerspink HJ, Johnsson E, Gause-Nilsson I, Cain VA, Sjostrom CD. Dapagliflozin reduces albuminuria in patients with diabetes and hypertension receiving renin-angiotensin blockers. Diabetes Obes Metab. 2016;18(6):590–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010;33(10):2217–24.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Bailey CJ, Iqbal N, T'Joen C, List JF. Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab. 2012;14(10):951–9.

    Article  CAS  PubMed  Google Scholar 

  182. Inagaki N, Kondo K, Yoshinari T, Takahashi N, Susuta Y, Kuki H. Efficacy and safety of canagliflozin monotherapy in Japanese patients with type 2 diabetes inadequately controlled with diet and exercise: a 24-week, randomized, double-blind, placebo-controlled, phase III study. Expert Opin Pharmacother. 2014;15(11):1501–15.

    Article  CAS  PubMed  Google Scholar 

  183. Kaku K, Watada H, Iwamoto Y, Utsunomiya K, Terauchi Y, Tobe K, et al. Efficacy and safety of monotherapy with the novel sodium/glucose cotransporter-2 inhibitor tofogliflozin in Japanese patients with type 2 diabetes mellitus: a combined phase 2 and 3 randomized, placebo-controlled, double-blind, parallel-group comparative study. Cardiovasc Diabetol. 2014;13:65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Ji L, Ma J, Li H, Mansfield TA, T’Joen CL, Iqbal N, et al. Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: a randomized, blinded, prospective phase III study. Clin Ther. 2014;36(1):84–100 e9.

    Article  CAS  PubMed  Google Scholar 

  185. Kashiwagi A, Takahashi H, Ishikawa H, Yoshida S, Kazuta K, Utsuno A, et al. A randomized, double-blind, placebo-controlled study on long-term efficacy and safety of ipragliflozin treatment in patients with type 2 diabetes mellitus and renal impairment: results of the long-term ASP1941 safety evaluation in patients with type 2 diabetes with renal impairment (LANTERN) study. Diabetes Obes Metab. 2015;17(2):152–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kashiwagi A, Kazuta K, Goto K, Yoshida S, Ueyama E, Utsuno A. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2015;17(3):304–8.

    Article  CAS  PubMed  Google Scholar 

  187. Seino Y, Sasaki T, Fukatsu A, Ubukata M, Sakai S, Samukawa Y. Efficacy and safety of luseogliflozin as monotherapy in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled, phase 3 study. Curr Med Res Opin. 2014;30(7):1245–55.

    Article  CAS  PubMed  Google Scholar 

  188. Seino Y, Inagaki N, Haneda M, Kaku K, Sasaki T, Fukatsu A, et al. Efficacy and safety of luseogliflozin added to various oral antidiabetic drugs in Japanese patients with type 2 diabetes mellitus. J Diab Invest. 2015;6(4):443–53.

    Article  CAS  Google Scholar 

  189. Haneda M, Seino Y, Inagaki N, Kaku K, Sasaki T, Fukatsu A, et al. Influence of renal function on the 52-week efficacy and safety of the sodium glucose cotransporter 2 inhibitor luseogliflozin in Japanese patients with type 2 diabetes mellitus. Clin Ther. 2016;38(1):66–88.e20.

    Article  CAS  PubMed  Google Scholar 

  190. Li FF, Gao G, Li Q, Zhu HH, Su XF, Wu JD, et al. Influence of dapagliflozin on glycemic variations in patients with newly diagnosed type 2 diabetes mellitus. J Diab Res. 2016;2016:5347262.

    Google Scholar 

  191. Pollock C, Stefánsson B, Reyner D, et al. Albuminuria-lowering effect of dapagliflozin alone and in combination with saxagliptin and effect of dapagliflozin and saxagliptin on glycaemic control in patients with type 2 diabetes and chronic kidney disease (DELIGHT): a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2019;7(6):429–41.

    Article  CAS  PubMed  Google Scholar 

  192. Stenlof K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Terra SG, Focht K, Davies M, Frias J, Derosa G, Darekar A, et al. Phase III, efficacy and safety study of ertugliflozin monotherapy in people with type 2 diabetes mellitus inadequately controlled with diet and exercise alone. Diabetes Obes Metab. 2017;19(5):721–8.

    Article  CAS  PubMed  Google Scholar 

  194. Aronson R, Frias J, Goldman A, et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DM despite diet and exercise: VERTIS MONO extension study. Diab Obes Metab. 2018;20(6):1453.

    Article  CAS  Google Scholar 

  195. Lins PE, Lundblad S, Persson-Trotzig E, Adamson U. Glibenclamide improves the response to insulin treatment in non-insulin-dependent diabetics with second failure to sulfonylurea therapy. Acta Med Scand. 1988;223(2):171–9.

    Article  CAS  PubMed  Google Scholar 

  196. Stuart CA, Gilkison CR, Carlson RF, Stuart CA, Gilkison CR, Carlson RF. Effect of adding a sulfonylurea in patients with non-insulin-dependent diabetes mellitus previously well controlled with insulin. Endocrine Pract. 1997;3(6):344–8.

    Article  CAS  Google Scholar 

  197. Forst T, Uhlig-Laske B, Ring A, Graefe-Mody U, Friedrich C, Herbach K, et al. Linagliptin (BI 1356), a potent and selective DPP-4 inhibitor, is safe and efficacious in combination with metformin in patients with inadequately controlled type 2 diabetes. Diab Med. 2010;27(12):1409–19.

    Article  CAS  Google Scholar 

  198. Burant CF, Viswanathan P, Marcinak J, Cao C, Vakilynejad M, Xie B, et al. TAK-875 versus placebo or glimepiride in type 2 diabetes mellitus: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2012;379(9824):1403–11.

    Article  CAS  PubMed  Google Scholar 

  199. Schade DS, Mitchell WJ, Griego G. Addition of sulfonylurea to insulin treatment in poorly controlled type II diabetes. A double-blind, randomized clinical trial. Jama. 1987;257(18):2441–5.

    Article  CAS  PubMed  Google Scholar 

  200. Stenman S, Groop PH, Saloranta C, Totterman KJ, Fyhrqvist F, Groop L. Effects of the combination of insulin and glibenclamide in type 2 (non-insulin-dependent) diabetic patients with secondary failure to oral hypoglycaemic agents. Diabetologia. 1988;31(4):206–13.

    Article  CAS  PubMed  Google Scholar 

  201. Riddle M, Hart J, Bingham P, Garrison C, McDaniel P. Combined therapy for obese type 2 diabetes: suppertime mixed insulin with daytime sulfonylurea. Am J Med Sci. 1992;303(3):151–6.

    Article  CAS  PubMed  Google Scholar 

  202. Feinglos M, Dailey G, Cefalu W, Osei K, Tayek J, Canovatchel W, et al. Effect on glycemic control of the addition of 2.5 mg glipizide GITS to metformin in patients with T2DM. Diabetes Res Clin Pract. 2005;68(2):167–75.

    Article  CAS  PubMed  Google Scholar 

  203. Lewitt MS, Yu VK, Rennie GC, Carter JN, Marel GM, Yue DK, et al. Effects of combined insulin-sulfonylurea therapy in type II patients. Diabetes Care. 1989;12(6):379–83.

    Article  CAS  PubMed  Google Scholar 

  204. Riddle MC, Schneider J. Beginning insulin treatment of obese patients with evening 70/30 insulin plus glimepiride versus insulin alone. Glimepiride Combination Group. Diabetes Care. 1998;21(7):1052–7.

    Article  CAS  PubMed  Google Scholar 

  205. Roberts VL, Stewart J, Issa M, Lake B, Melis R. Triple therapy with glimepiride in patients with type 2 diabetes mellitus inadequately controlled by metformin and a thiazolidinedione: results of a 30-week, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2005;27(10):1535–47.

    Article  CAS  PubMed  Google Scholar 

  206. Nauck M, Frid A, Hermansen K, Shah NS, Tankova T, Mitha IH, et al. Efficacy and safety comparison of liraglutide, glimepiride, and placebo, all in combination with metformin, in type 2 diabetes: the LEAD (liraglutide effect and action in diabetes)-2 study. Diabetes Care. 2009;32(1):84–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Karlander SG, Gutniak MK, Efendic S. Effects of combination therapy with glyburide and insulin on serum lipid levels in NIDDM patients with secondary sulfonylurea failure. Diabetes Care. 1991;14(11):963–7.

    Article  CAS  PubMed  Google Scholar 

  208. Camerini-Davalos RA, Bloodworth JM Jr, Velasco CA, Reddi AS. Effect of insulin-glipizide combination on skeletal muscle capillary basement membrane width in diabetic patients. Clin Ther. 1994;16(6):952–61.

    CAS  PubMed  Google Scholar 

  209. Willms B, Ruge D. Comparison of acarbose and metformin in patients with type 2 diabetes mellitus insufficiently controlled with diet and sulphonylureas: a randomized, placebo-controlled study. Diabetic Med. 1999;16(9):755–61.

    Article  CAS  PubMed  Google Scholar 

  210. Aviles-Santa L, Sinding J, Raskin P. Effects of metformin in patients with poorly controlled, insulin-treated type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1999;131(3):182–8.

    Article  CAS  PubMed  Google Scholar 

  211. Hermann LS, Kalen J, Katzman P, Lager I, Nilsson A, Norrhamn O, et al. Long-term glycaemic improvement after addition of metformin to insulin in insulin-treated obese type 2 diabetes patients. Diabetes Obes Metab. 2001;3(6):428–34.

    Article  CAS  PubMed  Google Scholar 

  212. Douek IF, Allen SE, Ewings P, Gale EA, Bingley PJ. Continuing metformin when starting insulin in patients with type 2 diabetes: a double-blind randomized placebo-controlled trial. Diabetic Med. 2005;22(5):634–40.

    Article  CAS  PubMed  Google Scholar 

  213. Gram J, Henriksen JE, Grodum E, Juhl H, Hansen TB, Christiansen C, et al. Pharmacological treatment of the pathogenetic defects in type 2 diabetes: the randomized multicenter South Danish Diabetes Study. Diabetes Care. 2011;34(1):27–33.

    Article  PubMed  Google Scholar 

  214. Kooy A, de Jager J, Lehert P, Bets D, Wulffele MG, Donker AJ, et al. Long-term effects of metformin on metabolism and microvascular and macrovascular disease in patients with type 2 diabetes mellitus. Arch Intern Med. 2009;169(6):616–25.

    Article  CAS  PubMed  Google Scholar 

  215. Nemoto M, Tajima N, Kawamori R. Efficacy of combined use of miglitol in type 2 diabetes patients receiving insulin therapy-placebo-controlled double-blind comparative study. Acta Diabetol. 2011;48(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  216. Hwu CM, Ho LT, Fuh MM, Siu SC, Sutanegara D, Piliang S, et al. Acarbose improves glycemic control in insulin-treated Asian type 2 diabetic patients: results from a multinational, placebo-controlled study. Diabetes Res Clin Pract. 2003;60(2):111–8.

    Article  CAS  PubMed  Google Scholar 

  217. Schnell O, Mertes G, Standl E. Acarbose and metabolic control in patients with type 2 diabetes with newly initiated insulin therapy. Diabetes Obes Metab. 2007;9(6):853–8.

    Article  CAS  PubMed  Google Scholar 

  218. Kelley DE, Bidot P, Freedman Z, Haag B, Podlecki D, Rendell M, et al. Efficacy and safety of acarbose in insulin-treated patients with type 2 diabetes. Diabetes Care. 1998;21(12):2056–61.

    Article  CAS  PubMed  Google Scholar 

  219. Lam KS, Tiu SC, Tsang MW, Ip TP, Tam SC. Acarbose in NIDDM patients with poor control on conventional oral agents. A 24-week placebo-controlled study. Diabetes Care. 1998;21(7):1154–8.

    Article  CAS  PubMed  Google Scholar 

  220. Mitrakou A, Tountas N, Raptis AE, Bauer RJ, Schulz H, Raptis SA. Long-term effectiveness of a new alpha-glucosidase inhibitor (BAY m1099-miglitol) in insulin-treated type 2 diabetes mellitus. Diab Med. 1998;15(8):657–60.

    Article  CAS  Google Scholar 

  221. Standl E, Baumgartl HJ, Fuchtenbusch M, Stemplinger J. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes Metab. 1999;1(4):215–20.

    Article  CAS  PubMed  Google Scholar 

  222. Standl E, Schernthaner G, Rybka J, Hanefeld M, Raptis SA, Naditch L. Improved glycaemic control with miglitol in inadequately-controlled type 2 diabetics. Diabetes Res Clin Pract. 2001;51(3):205–13.

    Article  CAS  PubMed  Google Scholar 

  223. Lin BJ, Wu HP, Huang HS, Juang JH, Sison A, Bin Abdul Kadir DK, et al. Efficacy and tolerability of acarbose in Asian patients with type 2 diabetes inadequately controlled with diet and sulfonylureas. J Diabetes Complicat. 2003;17(4):179–85.

    Article  CAS  PubMed  Google Scholar 

  224. Phillips P, Karrasch J, Scott R, Wilson D, Moses R. Acarbose improves glycemic control in overweight type 2 diabetic patients insufficiently treated with metformin. Diabetes Care. 2003;26(2):269–73.

    Article  CAS  PubMed  Google Scholar 

  225. Hsieh SH, Shih KC, Chou CW, Chu CH. Evaluation of the efficacy and tolerability of miglitol in Chinese patients with type 2 diabetes mellitus inadequately controlled by diet and sulfonylureas. Acta Diabetol. 2011;48(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  226. Halimi S, Le Berre MA, Grange V. Efficacy and safety of acarbose add-on therapy in the treatment of overweight patients with type 2 diabetes inadequately controlled with metformin: a double-blind, placebo-controlled study. Diabetes Res Clin Pract. 2000;50(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  227. Van Gaal L, Maislos M, Schernthaner G, Rybka J, Segal P. Miglitol combined with metformin improves glycaemic control in type 2 diabetes. Diabetes Obes Metab. 2001;3(5):326–31.

    Article  PubMed  Google Scholar 

  228. Johnston PS, Feig PU, Coniff RF, Krol A, Kelley DE, Mooradian AD. Chronic treatment of African-American type 2 diabetic patients with alpha-glucosidase inhibition. Diabetes Care. 1998;21(3):416–22.

    Article  CAS  PubMed  Google Scholar 

  229. Johnston PS, Feig PU, Coniff RF, Krol A, Davidson JA, Haffner SM. Long-term titrated-dose alpha-glucosidase inhibition in non-insulin-requiring Hispanic NIDDM patients. Diabetes Care. 1998;21(3):409–15.

    Article  CAS  PubMed  Google Scholar 

  230. Bachmann W, Petzinna D, Raptis SA, Wascher T, Westermeier T. Long-term improvement of metabolic control by acarbose in type 2 diabetes patients poorly controlled with maximum sulfonylurea therapy. Clin Drug Invest. 2003;23(10):679–86.

    Article  CAS  Google Scholar 

  231. Iwamoto Y, Kosaka K, Kuzuya T, Akanuma Y, Shigeta Y, Kaneko T. Effect of combination therapy of troglitazone and sulphonylureas in patients with type 2 diabetes who were poorly controlled by sulphonylurea therapy alone. Diabetic Med. 1996;13(4):365–70.

    Article  CAS  PubMed  Google Scholar 

  232. Kawamori R, Matsuhisa M, Kinoshita J, Mochizuki K, Niwa M, Arisaka T, et al. Pioglitazone enhances splanchnic glucose uptake as well as peripheral glucose uptake in non-insulin-dependent diabetes mellitus. AD-4833 Clamp-OGL Study Group. Diabetes Res Clin Pract. 1998;41(1):35–43.

    Article  CAS  PubMed  Google Scholar 

  233. Kelly IE, Han TS, Walsh K, Lean ME. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care. 1999;22(2):288–93.

    Article  CAS  PubMed  Google Scholar 

  234. Pan C, Gao Y, Gao X, Li G, Luo B, Shi H, et al. The efficacy and safety of pioglitazone hydrochloride in combination with sulphonylureas and metfomin in the treatment of type 2 diabetes mellitus a 12-week randomized multi-centres placebo-controlled parallel study. Zhonghua Nei Ke Za Zhi. 2002;41(6):388–92.

    CAS  PubMed  Google Scholar 

  235. Buras J, Reenstra WR, Orlow D, Horton ES, Veves A. Troglitazone-induced changes in adiponectin do not affect endothelial function in diabetes. Obes Res. 2005;13(7):1167–74.

    Article  CAS  PubMed  Google Scholar 

  236. Mimura K, Umeda F, Hiramatsu S, Taniguchi S, Ono Y, Nakashima N, et al. Effects of a new oral hypoglycaemic agent (CS-045) on metabolic abnormalities and insulin resistance in type 2 diabetes. Diabetic Med. 1994;11(7):685–91.

    Article  CAS  PubMed  Google Scholar 

  237. Osende JI, Badimon JJ, Fuster V, Herson P, Rabito P, Vidhun R, et al. Blood thrombogenicity in type 2 diabetes mellitus patients is associated with glycemic control. J Am Coll Cardiol. 2001;38(5):1307–12.

    Article  CAS  PubMed  Google Scholar 

  238. Brackenridge AL, Jackson N, Jefferson W, Stolinski M, Shojaee-Moradie F, Hovorka R, et al. Effects of rosiglitazone and pioglitazone on lipoprotein metabolism in patients with type 2 diabetes and normal lipids. Diabetic Med. 2009;26(5):532–9.

    Article  CAS  PubMed  Google Scholar 

  239. Buysschaert M, Bobbioni E, Starkie M, Frith L. Troglitazone in combination with sulphonylurea improves glycaemic control in type 2 diabetic patients inadequately controlled by sulphonylurea therapy alone. Troglitazone Study Group. Diab Med. 1999;16(2):147–53.

    Article  CAS  Google Scholar 

  240. Kipnes MS, Krosnick A, Rendell MS, Egan JW, Mathisen AL, Schneider RL. Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Am J Med. 2001;111(1):10–7.

    Article  CAS  PubMed  Google Scholar 

  241. Scott R, Loeys T, Davies MJ, Engel SS. Efficacy and safety of sitagliptin when added to ongoing metformin therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2008;10(10):959–69.

    Article  CAS  PubMed  Google Scholar 

  242. Berhanu P, Perez A, Yu S. Effect of pioglitazone in combination with insulin therapy on glycaemic control, insulin dose requirement and lipid profile in patients with type 2 diabetes previously poorly controlled with combination therapy. Diabetes Obes Metab. 2007;9(4):512–20.

    Article  CAS  PubMed  Google Scholar 

  243. Yale JF, Valiquett TR, Ghazzi MN, Owens-Grillo JK, Whitcomb RW, Foyt HL. The effect of a thiazolidinedione drug, troglitazone, on glycemia in patients with type 2 diabetes mellitus poorly controlled with sulfonylurea and metformin. A multicenter, randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2001;134(9 Pt 1):737–45.

    Article  CAS  PubMed  Google Scholar 

  244. Zhu XX, Pan CY, Li GW, Shi HL, Tian H, Yang WY, et al. Addition of rosiglitazone to existing sulfonylurea treatment in chinese patients with type 2 diabetes and exposure to hepatitis B or C. Diabetes Technol Ther. 2003;5(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  245. Dailey GE 3rd, Noor MA, Park JS, Bruce S, Fiedorek FT. Glycemic control with glyburide/metformin tablets in combination with rosiglitazone in patients with type 2 diabetes: a randomized, double-blind trial. Am J Med. 2004;116(4):223–9.

    Article  CAS  PubMed  Google Scholar 

  246. Smith SR, De Jonge L, Volaufova J, Li Y, Xie H, Bray GA. Effect of pioglitazone on body composition and energy expenditure: a randomized controlled trial. Metab Clin Exp. 2005;54(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  247. Davidson JA, McMorn SO, Waterhouse BR, Cobitz AR. A 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study of the efficacy and tolerability of combination therapy with rosiglitazone and sulfonylurea in African American and Hispanic American patients with type 2 diabetes inadequately controlled with sulfonylurea monotherapy. Clin Ther. 2007;29(9):1900–14.

    Article  CAS  PubMed  Google Scholar 

  248. Hollander P, Yu D, Chou HS. Low-dose rosiglitazone in patients with insulin-requiring type 2 diabetes. Arch Intern Med. 2007;167(12):1284–90.

    Article  CAS  PubMed  Google Scholar 

  249. Sridhar S, Walia R, Sachdeva N, Bhansali A. Effect of pioglitazone on testosterone in eugonadal men with type 2 diabetes mellitus: a randomized double-blind placebo-controlled study. Clin Endocrinol. 2013;78(3):454–9.

    Article  CAS  Google Scholar 

  250. Buse JB, Gumbiner B, Mathias NP, Nelson DM, Faja BW, Whitcomb RW. Troglitazone use in insulin-treated type 2 diabetic patients. The Troglitazone Insulin Study Group. Diabetes Care. 1998;21(9):1455–61.

    Article  CAS  PubMed  Google Scholar 

  251. Schwartz S, Raskin P, Fonseca V, Graveline JF. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. Troglitazone and Exogenous Insulin Study Group. N Engl J Med. 1998;338(13):861–6.

    Article  CAS  PubMed  Google Scholar 

  252. Fonseca V, Rosenstock J, Patwardhan R, Salzman A. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. Jama. 2000;283(13):1695–702.

    Article  CAS  PubMed  Google Scholar 

  253. Wolffenbuttel BH, Gomis R, Squatrito S, Jones NP, Patwardhan RN. Addition of low-dose rosiglitazone to sulphonylurea therapy improves glycaemic control in type 2 diabetic patients. Diab Med. 2000;17(1):40–7.

    Article  CAS  Google Scholar 

  254. Raskin P, Rendell M, Riddle MC, Dole JF, Freed MI, Rosenstock J. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care. 2001;24(7):1226–32.

    Article  CAS  PubMed  Google Scholar 

  255. Barnett AH, Grant PJ, Hitman GA, Mather H, Pawa M, Robertson L, et al. Rosiglitazone in type 2 diabetes mellitus: an evaluation in British Indo-Asian patients. Diab Med. 2003;20(5):387–93.

    Article  CAS  Google Scholar 

  256. Rosenstock J, Chou HS, Matthaei S, Seidel DK, Hamann A. Potential benefits of early addition of rosiglitazone in combination with glimepiride in the treatment of type 2 diabetes. Diabetes Obes Metab. 2008;10(10):862–73.

    Article  CAS  PubMed  Google Scholar 

  257. Marre M, Shaw J, Brandle M, Bebakar WM, Kamaruddin NA, Strand J, et al. Liraglutide, a once-daily human GLP-1 analogue, added to a sulphonylurea over 26 weeks produces greater improvements in glycaemic and weight control compared with adding rosiglitazone or placebo in subjects with type 2 diabetes (LEAD-1 SU). Diab Med. 2009;26(3):268–78.

    Article  CAS  Google Scholar 

  258. Henriksen K, Byrjalsen I, Qvist P, Beck-Nielsen H, Hansen G, Riis BJ, et al. Efficacy and safety of the PPARgamma partial agonist balaglitazone compared with pioglitazone and placebo: a phase III, randomized, parallel-group study in patients with type 2 diabetes on stable insulin therapy. Diabetes Metab Res Rev. 2011;27(4):392–401.

    Article  CAS  PubMed  Google Scholar 

  259. Nakamura T, Ushiyama C, Osada S, Hara M, Shimada N, Koide H. Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria. Metab Clin Exp. 2001;50(10):1193–6.

    Article  CAS  PubMed  Google Scholar 

  260. Reynolds LR, Konz EC, Frederich RC, Anderson JW. Rosiglitazone amplifies the benefits of lifestyle intervention measures in long-standing type 2 diabetes mellitus. Diabetes Obes Metab. 2002;4(4):270–5.

    Article  CAS  PubMed  Google Scholar 

  261. Yang WS, Jeng CY, Wu TJ, Tanaka S, Funahashi T, Matsuzawa Y, et al. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients. Diabetes Care. 2002;25(2):376–80.

    Article  CAS  PubMed  Google Scholar 

  262. Mattoo V, Eckland D, Widel M, Duran S, Fajardo C, Strand J, et al. Metabolic effects of pioglitazone in combination with insulin in patients with type 2 diabetes mellitus whose disease is not adequately controlled with insulin therapy: results of a six-month, randomized, double-blind, prospective, multicenter, parallel-group study. Clin Ther. 2005;27(5):554–67.

    Article  CAS  PubMed  Google Scholar 

  263. Derosa G, Salvadeo SA, D'Angelo A, Fogari E, Ragonesi PD, Ciccarelli L, et al. Rosiglitazone therapy improves insulin resistance parameters in overweight and obese diabetic patients intolerant to metformin. Arch Med Res. 2008;39(4):412–9.

    Article  CAS  PubMed  Google Scholar 

  264. Galle J, Kleophas W, Dellanna F, Schmid VH, Forkel C, Dikta G, et al. Comparison of the effects of pioglitazone versus placebo when given in addition to standard insulin treatment in patients with type 2 diabetes mellitus requiring hemodialysis: results from the PIOren study. Nephron extra. 2012;2(1):104–14.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Grey A, Beckley V, Doyle A, Fenwick S, Horne A, Gamble G, et al. Pioglitazone increases bone marrow fat in type 2 diabetes: results from a randomized controlled trial. Eur J Endocrinol. 2012;166(6):1087–91.

    Article  CAS  PubMed  Google Scholar 

  266. Kaku K. Efficacy and safety of therapy with metformin plus pioglitazone in the treatment of patients with type 2 diabetes: a double-blind, placebo-controlled, clinical trial. Curr Med Res Opin. 2009;25(5):1111–9.

    Article  CAS  PubMed  Google Scholar 

  267. Charpentier G, Halimi S. Earlier triple therapy with pioglitazone in patients with type 2 diabetes. Diabetes Obes Metab. 2009;11(9):844–54.

    Article  CAS  PubMed  Google Scholar 

  268. Negro R, Mangieri T, Dazzi D, Pezzarossa A, Hassan H. Rosiglitazone effects on blood pressure and metabolic parameters in nondipper diabetic patients. Diabetes Res Clin Pract. 2005;70(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  269. Bertrand OF, Poirier P, Rodes-Cabau J, Rinfret S, Title LM, Dzavik V, et al. Cardiometabolic effects of rosiglitazone in patients with type 2 diabetes and coronary artery bypass grafts: a randomized placebo-controlled clinical trial. Atherosclerosis. 2010;211(2):565–73.

    Article  PubMed  CAS  Google Scholar 

  270. Ahren B, Gomis R, Standl E, Mills D, Schweizer A. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care. 2004;27(12):2874–80.

    Article  CAS  PubMed  Google Scholar 

  271. Kikuchi M, Haneda M, Koya D, Tobe K, Onishi Y, Couturier A, et al. Efficacy and tolerability of vildagliptin as an add-on to glimepiride in Japanese patients with type 2 diabetes mellitus. Diabetes Res Clin Pract. 2010;89(3):216–23.

    Article  CAS  PubMed  Google Scholar 

  272. Kaku K, Itayasu T, Hiroi S, Hirayama M, Seino Y. Efficacy and safety of alogliptin added to pioglitazone in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial with an open-label long-term extension study. Diabetes Obes Metab. 2011;13(11):1028–35.

    Article  CAS  PubMed  Google Scholar 

  273. Nowicki M, Rychlik I, Haller H, Warren ML, Suchower L, Gause-Nilsson I. Saxagliptin improves glycaemic control and is well tolerated in patients with type 2 diabetes mellitus and renal impairment. Diabetes Obes Metab. 2011;13(6):523–32.

    Article  CAS  PubMed  Google Scholar 

  274. Seino Y, Fujita T, Hiroi S, Hirayama M, Kaku K. Alogliptin plus voglibose in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial with an open-label, long-term extension. Curr Med Res Opin. 2011;27(Suppl 3):21–9.

    Article  CAS  PubMed  Google Scholar 

  275. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35(6):1232–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Ross SA, Rafeiro E, Meinicke T, Toorawa R, Weber-Born S, Woerle HJ. Efficacy and safety of linagliptin 2.5 mg twice daily versus 5 mg once daily in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, placebo-controlled trial. Curr Med Res Opin. 2012;28(9):1465–74.

    Article  CAS  PubMed  Google Scholar 

  277. Kadowaki T, Kondo K. Efficacy and safety of teneligliptin in combination with pioglitazone in Japanese patients with type 2 diabetes mellitus. J Diab Invest. 2013;4(6):576–84.

    Article  CAS  Google Scholar 

  278. Kadowaki T, Kondo K. Efficacy and safety of teneligliptin added to glimepiride in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study with an open-label, long-term extension. Diabetes Obes Metab. 2014;16(5):418–25.

    Article  CAS  PubMed  Google Scholar 

  279. Kim MK, Rhee EJ, Han KA, Woo AC, Lee MK, Ku BJ, et al. Efficacy and safety of teneligliptin, a dipeptidyl peptidase-4 inhibitor, combined with metformin in Korean patients with type 2 diabetes mellitus: a 16-week, randomized, double-blind, placebo-controlled phase III trial. Diabetes Obes Metab. 2015;17(3):309–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Kadowaki T, Kondo K, Sasaki N, Miyayama K, Yokota S, Terata R, et al. Efficacy and safety of teneligliptin add-on to insulin monotherapy in Japanese patients with type 2 diabetes mellitus: a 16-week, randomized, double-blind, placebo-controlled trial with an open-label period. Expert Opin Pharmacother. 2017;18(13):1291–300.

    Article  CAS  PubMed  Google Scholar 

  281. Raz I, Chen Y, Wu M, Hussain S, Kaufman KD, Amatruda JM, et al. Efficacy and safety of sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes. Curr Med Res Opin. 2008;24(2):537–50.

    Article  CAS  PubMed  Google Scholar 

  282. Lewin AJ, Arvay L, Liu D, Patel S, von Eynatten M, Woerle HJ. Efficacy and tolerability of linagliptin added to a sulfonylurea regimen in patients with inadequately controlled type 2 diabetes mellitus: an 18-week, multicenter, randomized, double-blind, placebo-controlled trial. Clin Ther. 2012;34(9):1909–19 e15.

    Article  CAS  PubMed  Google Scholar 

  283. Dobs AS, Goldstein BJ, Aschner P, Horton ES, Umpierrez GE, Duran L, et al. Efficacy and safety of sitagliptin added to ongoing metformin and rosiglitazone combination therapy in a randomized placebo-controlled 54-week trial in patients with type 2 diabetes. J Diab. 2013;5(1):68–79.

    Article  CAS  Google Scholar 

  284. Gantz I, Chen M, Suryawanshi S, Ntabadde C, Shah S, O'Neill EA, et al. A randomized, placebo-controlled study of the cardiovascular safety of the once-weekly DPP-4 inhibitor omarigliptin in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2017;16(1):112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Charbonnel B, Karasik A, Liu J, Wu M, Meininger G. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing metformin therapy in patients with type 2 diabetes inadequately controlled with metformin alone. Diabetes Care. 2006;29(12):2638–43.

    Article  CAS  PubMed  Google Scholar 

  286. Rosenstock J, Brazg R, Andryuk PJ, Lu K, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin added to ongoing pioglitazone therapy in patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2006;28(10):1556–68.

    Article  CAS  PubMed  Google Scholar 

  287. Bosi E, Camisasca RP, Collober C, Rochotte E, Garber AJ. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care. 2007;30(4):890–5.

    Article  CAS  PubMed  Google Scholar 

  288. Fonseca V, Schweizer A, Albrecht D, Baron MA, Chang I, Dejager S. Addition of vildagliptin to insulin improves glycaemic control in type 2 diabetes. Diabetologia. 2007;50(6):1148–55.

    Article  CAS  PubMed  Google Scholar 

  289. Garber AJ, Schweizer A, Baron MA, Rochotte E, Dejager S. Vildagliptin in combination with pioglitazone improves glycaemic control in patients with type 2 diabetes failing thiazolidinedione monotherapy: a randomized, placebo-controlled study. Diabetes Obes Metab. 2007;9(2):166–74.

    Article  CAS  PubMed  Google Scholar 

  290. Hermansen K, Kipnes M, Luo E, Fanurik D, Khatami H, Stein P. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and metformin. Diabetes Obes Metab. 2007;9(5):733–45.

    Article  CAS  PubMed  Google Scholar 

  291. Garber AJ, Foley JE, Banerji MA, Ebeling P, Gudbjornsdottir S, Camisasca RP, et al. Effects of vildagliptin on glucose control in patients with type 2 diabetes inadequately controlled with a sulphonylurea. Diabetes Obes Metab. 2008;10(11):1047–56.

    Article  CAS  PubMed  Google Scholar 

  292. Goodman M, Thurston H, Penman J. Efficacy and tolerability of vildagliptin in patients with type 2 diabetes inadequately controlled with metformin monotherapy. Horm Metab Res. 2009;41(5):368–73.

    Article  CAS  PubMed  Google Scholar 

  293. Hollander P, Li J, Allen E, Chen R. Saxagliptin added to a thiazolidinedione improves glycemic control in patients with type 2 diabetes and inadequate control on thiazolidinedione alone. J Clin Endocrinol Metab. 2009;94(12):4810–9.

    Article  CAS  PubMed  Google Scholar 

  294. Jadzinsky M, Pfutzner A, Paz-Pacheco E, Xu Z, Allen E, Chen R. Saxagliptin given in combination with metformin as initial therapy improves glycaemic control in patients with type 2 diabetes compared with either monotherapy: a randomized controlled trial. Diabetes Obes Metab. 2009;11(6):611–22.

    Article  CAS  PubMed  Google Scholar 

  295. Pratley RE, Reusch JE, Fleck PR, Wilson CA, Mekki Q. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor alogliptin added to pioglitazone in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Curr Med Res Opin. 2009;25(10):2361–71.

    Article  CAS  PubMed  Google Scholar 

  296. Vilsboll T, Rosenstock J, Yki-Jarvinen H, Cefalu WT, Chen Y, Luo E, et al. Efficacy and safety of sitagliptin when added to insulin therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2010;12(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  297. Gomis R, Espadero RM, Jones R, Woerle HJ, Dugi KA. Efficacy and safety of initial combination therapy with linagliptin and pioglitazone in patients with inadequately controlled type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011;13(7):653–61.

    Article  CAS  PubMed  Google Scholar 

  298. Owens DR, Swallow R, Dugi KA, Woerle HJ. Efficacy and safety of linagliptin in persons with type 2 diabetes inadequately controlled by a combination of metformin and sulphonylurea: a 24-week randomized study. Diab Med. 2011;28(11):1352–61.

    Article  CAS  Google Scholar 

  299. Taskinen MR, Rosenstock J, Tamminen I, Kubiak R, Patel S, Dugi KA, et al. Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011;13(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  300. Yang W, Pan CY, Tou C, Zhao J, Gause-Nilsson I. Efficacy and safety of saxagliptin added to metformin in Asian people with type 2 diabetes mellitus: a randomized controlled trial. Diabetes Res Clin Pract. 2011;94(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  301. Barnett AH, Charbonnel B, Donovan M, Fleming D, Chen R. Effect of saxagliptin as add-on therapy in patients with poorly controlled type 2 diabetes on insulin alone or insulin combined with metformin. Curr Med Res Opin. 2012;28(4):513–23.

    Article  CAS  PubMed  Google Scholar 

  302. Bergenstal RM, Forti A, Chiasson JL, Woloschak M, Boldrin M, Balena R. Efficacy and safety of taspoglutide versus sitagliptin for type 2 diabetes mellitus (T-emerge 4 trial). Diab Ther. 2012;3(1):13.

    Article  CAS  Google Scholar 

  303. Pan C, Xing X, Han P, Zheng S, Ma J, Liu J, et al. Efficacy and tolerability of vildagliptin as add-on therapy to metformin in Chinese patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2012;14(8):737–44.

    Article  CAS  PubMed  Google Scholar 

  304. Seino Y, Miyata Y, Hiroi S, Hirayama M, Kaku K. Efficacy and safety of alogliptin added to metformin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial with an open-label, long-term extension study. Diabetes Obes Metab. 2012;14(10):927–36.

    Article  CAS  PubMed  Google Scholar 

  305. Yang W, Guan Y, Shentu Y, Li Z, Johnson-Levonas AO, Engel SS, et al. The addition of sitagliptin to ongoing metformin therapy significantly improves glycemic control in Chinese patients with type 2 diabetes. J Diab. 2012;4(3):227–37.

    Article  CAS  Google Scholar 

  306. Barnett AH, Huisman H, Jones R, von Eynatten M, Patel S, Woerle HJ. Linagliptin for patients aged 70 years or older with type 2 diabetes inadequately controlled with common antidiabetes treatments: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9902):1413–23.

    Article  CAS  PubMed  Google Scholar 

  307. Strain WD, Lukashevich V, Kothny W, Hoellinger MJ, Paldanius PM. Individualised treatment targets for elderly patients with type 2 diabetes using vildagliptin add-on or lone therapy (INTERVAL): a 24 week, randomised, double-blind, placebo-controlled study. Lancet. 2013;382(9890):409–16.

    Article  CAS  PubMed  Google Scholar 

  308. Zeng Z, Yang JK, Tong N, Yan S, Zhang X, Gong Y, et al. Efficacy and safety of linagliptin added to metformin and sulphonylurea in Chinese patients with type 2 diabetes: a sub-analysis of data from a randomised clinical trial. Curr Med Res Opin. 2013;29(8):921–9.

    Article  CAS  PubMed  Google Scholar 

  309. Lukashevich V, Del Prato S, Araga M, Kothny W. Efficacy and safety of vildagliptin in patients with type 2 diabetes mellitus inadequately controlled with dual combination of metformin and sulphonylurea. Diabetes Obes Metab. 2014;16(5):403–9.

    Article  CAS  PubMed  Google Scholar 

  310. Wang W, Yang J, Yang G, Gong Y, Patel S, Zhang C, et al. Efficacy and safety of linagliptin in Asian patients with type 2 diabetes mellitus inadequately controlled by metformin: a multinational 24-week, randomized clinical trial. J Diab. 2016;8(2):229–37.

    Article  CAS  Google Scholar 

  311. Yang W, Xing X, Lv X, Li Y, Ma J, Yuan G, et al. Vildagliptin added to sulfonylurea improves glycemic control without hypoglycemia and weight gain in Chinese patients with type 2 diabetes mellitus. J Diab. 2015;7(2):174–81.

    Article  CAS  Google Scholar 

  312. Ning G, Wang W, Li L, Ma J, Lv X, Yang M, et al. Vildagliptin as add-on therapy to insulin improves glycemic control without increasing risk of hypoglycemia in Asian, predominantly Chinese, patients with type 2 diabetes mellitus. J Diab. 2016;8(3):345–53.

    Article  CAS  Google Scholar 

  313. Ahn CH, Han KA, Yu JM, Nam JY, Ahn KJ, Oh TK, et al. Efficacy and safety of gemigliptin, a dipeptidyl peptidase-4 inhibitor, in patients with type 2 diabetes mellitus inadequately controlled with combination treatment of metformin and sulphonylurea: a 24-week, multicentre, randomized, double-blind, placebo-controlled study (TROICA study). Diabetes Obes Metab. 2017;19(5):635–43.

    Article  CAS  PubMed  Google Scholar 

  314. Lee SH, Gantz I, Round E, Latham M, O'Neill EA, Ceesay P, et al. A randomized, placebo-controlled clinical trial evaluating the safety and efficacy of the once-weekly DPP-4 inhibitor omarigliptin in patients with type 2 diabetes mellitus inadequately controlled by glimepiride and metformin. BMC Endocr Disord. 2017;17(1):70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  315. Shankar RR, Inzucchi SE, Scarabello V, Gantz I, Kaufman KD, Lai E, et al. A randomized clinical trial evaluating the efficacy and safety of the once-weekly dipeptidyl peptidase-4 inhibitor omarigliptin in patients with type 2 diabetes inadequately controlled on metformin monotherapy. Curr Med Res Opin. 2017;33(10):1853–60.

    Article  CAS  PubMed  Google Scholar 

  316. Kadowaki T, Inagaki N, Kondo K, Nishimura K, Kaneko G, Maruyama N, et al. Efficacy and safety of teneligliptin added to canagliflozin monotherapy in Japanese patients with type 2 diabetes mellitus: a multicentre, randomized, double-blind, placebo-controlled, parallel-group comparative study. Diabetes Obes Metab. 2018;20(2):453–7.

    Article  CAS  PubMed  Google Scholar 

  317. Nauck MA, Ellis GC, Fleck PR, Wilson CA, Mekki Q. Efficacy and safety of adding the dipeptidyl peptidase-4 inhibitor alogliptin to metformin therapy in patients with type 2 diabetes inadequately controlled with metformin monotherapy: a multicentre, randomised, double-blind, placebo-controlled study. Int J Clin Pract. 2009;63(1):46–55.

    Article  CAS  PubMed  Google Scholar 

  318. DeFronzo RA, Burant CF, Fleck P, Wilson C, Mekki Q, Pratley RE. Efficacy and tolerability of the DPP-4 inhibitor alogliptin combined with pioglitazone, in metformin-treated patients with type 2 diabetes. J Clin Endocrinol Metab. 2012;97(5):1615–22.

    Article  CAS  PubMed  Google Scholar 

  319. Fonseca V, Staels B, Morgan JD 2nd, Shentu Y, Golm GT, Johnson-Levonas AO, et al. Efficacy and safety of sitagliptin added to ongoing metformin and pioglitazone combination therapy in a randomized, placebo-controlled, 26-week trial in patients with type 2 diabetes. J Diabetes Complicat. 2013;27(2):177–83.

    Article  PubMed  Google Scholar 

  320. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, Tong C, Qiu R, Canovatchel W, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56(12):2582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Derosa G, Carbone A, D'Angelo A, Querci F, Fogari E, Cicero AF, et al. A randomized, double-blind, placebo-controlled trial evaluating sitagliptin action on insulin resistance parameters and beta-cell function. Expert Opin Pharmacother. 2012;13(17):2433–42.

    Article  CAS  PubMed  Google Scholar 

  322. Derosa G, Ragonesi PD, Carbone A, Fogari E, Bianchi L, Bonaventura A, et al. Vildagliptin added to metformin on beta-cell function after a euglycemic hyperinsulinemic and hyperglycemic clamp in type 2 diabetes patients. Diabetes Technol Ther. 2012;14(6):475–84.

    Article  CAS  PubMed  Google Scholar 

  323. Bosi E, Ellis GC, Wilson CA, Fleck PR. Alogliptin as a third oral antidiabetic drug in patients with type 2 diabetes and inadequate glycaemic control on metformin and pioglitazone: a 52-week, randomized, double-blind, active-controlled, parallel-group study. Diabetes Obes Metab. 2011;13(12):1088–96.

    Article  CAS  PubMed  Google Scholar 

  324. Kothny W, Shao Q, Groop PH, Lukashevich V. One-year safety, tolerability and efficacy of vildagliptin in patients with type 2 diabetes and moderate or severe renal impairment. Diabetes Obes Metab. 2012;14(11):1032–9.

    Article  CAS  PubMed  Google Scholar 

  325. Henry RR, Strange P, Zhou R, et al. Effects of dapagliflozin on 24-hour glycemic control in patients with type 2 diabetes: a randomized controlled trial. Diabetes Technol Ther. 2018;20(11):715–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Latva-Rasku A, Honka MJ, Kullberg J, et al. The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: a randomized, double-blind, placebo controlled study with 8-week treatment in type 2 diabetes patients. Diabetes Care. 2019;42(5):931–7.

  327. Wilding JP, Norwood P, T'Joen C, Bastien A, List JF, Fiedorek FT. A study of dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care. 2009;32(9):1656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Wilding JP, Ferrannini E, Fonseca VA, Wilpshaar W, Dhanjal P, Houzer A. Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes Obes Metab. 2013;15(5):403–9.

    Article  CAS  PubMed  Google Scholar 

  329. Amin NB, Wang X, Jain SM, Lee DS, Nucci G, Rusnak JM. Dose-ranging efficacy and safety study of ertugliflozin, a sodium-glucose co-transporter 2 inhibitor, in patients with type 2 diabetes on a background of metformin. Diabetes Obes Metab. 2015;17(6):591–8.

    Article  CAS  PubMed  Google Scholar 

  330. Weber MA, Mansfield TA, Cain VA, Iqbal N, Parikh S, Ptaszynska A. Blood pressure and glycaemic effects of dapagliflozin versus placebo in patients with type 2 diabetes on combination antihypertensive therapy: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Diab Endocrinol. 2016;4(3):211–20.

    Article  CAS  Google Scholar 

  331. Kario K, Okada K, Kato M, et al. 24-hour blood pressure-lowering effect of an SGLT-2 inhibitor in patients with diabetes and uncontrolled nocturnal hypertension: results from the randomized, placebo-controlled SACRA Study. Circulation. 2018;139(18):2089–97.

  332. Ross S, Thamer C, Cescutti J, Meinicke T, Woerle HJ, Broedl UC. Efficacy and safety of empagliflozin twice daily versus once daily in patients with type 2 diabetes inadequately controlled on metformin: a 16-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2015;17(7):699–702.

    Article  CAS  PubMed  Google Scholar 

  333. Schumm-Draeger PM, Burgess L, Koranyi L, Hruba V, Hamer-Maansson JE, de Bruin TW. Twice-daily dapagliflozin co-administered with metformin in type 2 diabetes: a 16-week randomized, placebo-controlled clinical trial. Diabetes Obes Metab. 2015;17(1):42–51.

    Article  CAS  PubMed  Google Scholar 

  334. Ishihara H, Yamaguchi S, Nakao I, Okitsu A, Asahina S. Efficacy and safety of ipragliflozin as add-on therapy to insulin in Japanese patients with type 2 diabetes mellitus (IOLITE): a multi-centre, randomized, placebo-controlled, double-blind study. Diabetes Obes Metab. 2016;18(12):1207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Terauchi Y, Tamura M, Senda M, Gunji R, Kaku K. Efficacy and safety of tofogliflozin in Japanese patients with type 2 diabetes mellitus with inadequate glycaemic control on insulin therapy (J-STEP/INS): results of a 16-week randomized, double-blind, placebo-controlled multicentre trial. Diabetes Obes Metab. 2017;19(10):1397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Seino Y, Sasaki T, Fukatsu A, Imazeki H, Ochiai H, Sakai S. Efficacy and safety of luseogliflozin added to insulin therapy in Japanese patients with type 2 diabetes: a multicenter, 52-week, clinical study with a 16-week, double-blind period and a 36-week, open-label period. Curr Med Res Opin. 2018;34(6):981–94.

    Article  CAS  PubMed  Google Scholar 

  337. Ji L, Han P, Liu Y, Yang G, Dieu Van NK, Vijapurkar U, et al. Canagliflozin in Asian patients with type 2 diabetes on metformin alone or metformin in combination with sulphonylurea. Diabetes Obes Metab. 2015;17(1):23–31.

    Article  CAS  PubMed  Google Scholar 

  338. Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Ways K, et al. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015;38(3):403–11.

    Article  CAS  PubMed  Google Scholar 

  339. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet. 2010;375(9733):2223–33.

    Article  CAS  PubMed  Google Scholar 

  340. Strojek K, Yoon KH, Hruba V, Elze M, Langkilde AM, Parikh S. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2011;13(10):928–38.

    Article  CAS  PubMed  Google Scholar 

  341. Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020–31.

    Article  CAS  PubMed  Google Scholar 

  342. Henry RR, Murray AV, Marmolejo MH, Hennicken D, Ptaszynska A, List JF. Dapagliflozin, metformin XR, or both: initial pharmacotherapy for type 2 diabetes, a randomised controlled trial. Int J Clin Pract. 2012;66(5):446–56.

    Article  CAS  PubMed  Google Scholar 

  343. Haring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, et al. Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2013;36(11):3396–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Haring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Broedl UC, et al. Empagliflozin as add-on to metformin in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care. 2014;37(6):1650–9.

    Article  PubMed  CAS  Google Scholar 

  345. Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ, et al. Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2014;16(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  346. Leiter LA, Cefalu WT, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ. Dapagliflozin added to usual care in individuals with type 2 diabetes mellitus with preexisting cardiovascular disease: a 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. J Am Geriatr Soc. 2014;62(7):1252–62.

    Article  PubMed  Google Scholar 

  347. Mathieu C, Ranetti AE, Li D, Ekholm E, Cook W, Hirshberg B, et al. Randomized, double-blind, phase 3 trial of triple therapy with dapagliflozin add-on to saxagliptin plus metformin in type 2 diabetes. Diabetes Care. 2015;38(11):2009–17.

    Article  CAS  PubMed  Google Scholar 

  348. Matthaei S, Bowering K, Rohwedder K, Grohl A, Parikh S. Dapagliflozin improves glycemic control and reduces body weight as add-on therapy to metformin plus sulfonylurea: a 24-week randomized, double-blind clinical trial. Diabetes Care. 2015;38(3):365–72.

    Article  CAS  PubMed  Google Scholar 

  349. Rosenstock J, Hansen L, Zee P, Li Y, Cook W, Hirshberg B, et al. Dual add-on therapy in type 2 diabetes poorly controlled with metformin monotherapy: a randomized double-blind trial of saxagliptin plus dapagliflozin addition versus single addition of saxagliptin or dapagliflozin to metformin. Diabetes Care. 2015;38(3):376–83.

    Article  CAS  PubMed  Google Scholar 

  350. Hadjadj S, Rosenstock J, Meinicke T, Woerle HJ, Broedl UC. Initial combination of empagliflozin and metformin in patients with type 2 diabetes. Diabetes Care. 2016;39(10):1718–28.

    Article  CAS  PubMed  Google Scholar 

  351. Lu CH, Min KW, Chuang LM, Kokubo S, Yoshida S, Cha BS. Efficacy, safety, and tolerability of ipragliflozin in Asian patients with type 2 diabetes mellitus and inadequate glycemic control with metformin: results of a phase 3 randomized, placebo-controlled, double-blind, multicenter trial. J Diab Invest. 2016;7(3):366–73.

    Article  CAS  Google Scholar 

  352. Kadowaki T, Inagaki N, Kondo K, Nishimura K, Kaneko G, Maruyama N, et al. Efficacy and safety of canagliflozin as add-on therapy to teneligliptin in Japanese patients with type 2 diabetes mellitus: results of a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2017;19(6):874–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Cusi K, Bril F, Barb D, et al. Effect of canagliflozin treatment on hepatic triglyceride content and glucose metabolism in patients with type 2 diabetes. Diabetes Obes Metab. 2019;21(4):812–21.

  354. Fioretto P, Del Prato S, Buse JB, Goldenberg R, Giorgino F, Reyner D, Langkilde AM, Sjöström CD, Sartipy P. DERIVE Study Investigators. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): the DERIVE study. Diabetes Obes Metab. 2018;20(11):2532–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  355. Han KA, Chon S, Chung CH, et al. Efficacy and safety of ipragliflozin as an add-on therapy to sitagliptin and metformin in Korean patients with inadequately controlled type 2 diabetes mellitus: a randomized controlled trial. Diabetes Obes Metab. 2018;20(10):2408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Shestakova MV, Wilding JPH, Wilpshaar W, et al. A phase 3 randomized placebo-controlled trial to assess the efficacy and safetyofipragliflozin as an add-on therapy to metformin in Russian patients with inadequately controlled type 2 diabetes mellitus. Diabetes Res Clin Pract. 2018;146:240–50.

    Article  CAS  PubMed  Google Scholar 

  357. Yang WY, Ma JH, Li YM, et al. Dapagliflozin as add-on therapy in Asian patients with type 2 diabetes inadequately controlled on insulin with or without oral antihyperglycemic drugs: a randomized controlled trial. J Diab. 2018;10:589–99.

    Article  CAS  Google Scholar 

  358. Ferdinand KC, Seman L, Salsali A. Design of a 24-week trial of empagliflozin once daily in hypertensive black/African American patients with type 2 diabetes mellitus. Curr Med Res Opin. 2018;34(2):361–7.

    Article  CAS  PubMed  Google Scholar 

  359. Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15(5):463–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Forst T, Guthrie R, Goldenberg R, Yee J, Vijapurkar U, Meininger G, et al. Efficacy and safety of canagliflozin over 52 weeks in patients with type 2 diabetes on background metformin and pioglitazone. Diabetes Obes Metab. 2014;16(5):467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Grunberger G, Camp S, Johnson J, Huyck S, Terra SG, Mancuso JP, et al. Ertugliflozin in patients with stage 3 chronic kidney disease and type 2 diabetes mellitus: the VERTIS RENAL randomized study. Diab Ther. 2018;9(1):49–66.

  362. Miller S, Krumins T, Zhou H, et al. Ertugliflozin and sitagliptin co-initiation in patients with type 2 diabetes: the VERTIS SITA randomized study. Diabetes Ther. 2018;9(1):253–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Rosenstock J, Frias J, Páll D, et al. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab. 2018;20(3):520–9.

    Article  CAS  PubMed  Google Scholar 

  364. Ji L, Liu Y, Miao H, et al. Safety and efficacy of ertugliflozin in Asian patients with type 2 diabetes mellitus inadequately controlled with metformin monotherapy: VERTIS Asia. Diabetes Obes Metab. 2019;21(6):1474–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Rosenstock J, Vico M, Wei L, Salsali A, List JF. Effects of dapagliflozin, an SGLT2 inhibitor, on HbA (1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care. 2012;35(7):1473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder K, et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med. 2012;156(6):405–15.

    Article  PubMed  Google Scholar 

  367. Ljunggren O, Bolinder J, Johansson L, Wilding J, Langkilde AM, Sjostrom CD, et al. Dapagliflozin has no effect on markers of bone formation and resorption or bone mineral density in patients with inadequately controlled type 2 diabetes mellitus on metformin. Diabetes Obes Metab. 2012;14(11):990–9.

    Article  CAS  PubMed  Google Scholar 

  368. Barnett AH, Mithal A, Manassie J, Jones R, Rattunde H, Woerle HJ, et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diab Endocrinol. 2014;2(5):369–84.

    Article  CAS  Google Scholar 

  369. Rosenstock J, Jelaska A, Frappin G, Salsali A, Kim G, Woerle HJ, et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care. 2014;37(7):1815–23.

    Article  CAS  PubMed  Google Scholar 

  370. Cefalu WT, Leiter LA, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ. Dapagliflozin’s effects on glycemia and cardiovascular risk factors in high-risk patients with type 2 diabetes: a 24-week, multicenter, randomized, double-blind, placebo-controlled study with a 28-week extension. Diabetes Care. 2015;38(7):1218–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Araki E, Onishi Y, Asano M, Kim H, Yajima T. Efficacy and safety of dapagliflozin over 1 year as add-on to insulin therapy in Japanese patients with type 2 diabetes: the DAISY (Dapagliflozin Added to patients under InSulin therapY) trial. Diabetes Obes Metab. 2017;19(4):562–70.

    Article  CAS  PubMed  Google Scholar 

  372. Dagogo-Jack S, Liu J, Eldor R, Amorin G, Johnson J, Hille D, et al. Efficacy and safety of the addition of ertugliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sitagliptin: The VERTIS SITA2 placebo-controlled randomized study. Diab Obes Metab. 2018;20(3):530–40.

  373. Yale JF, Xie J, Sherman SE, Garceau C. Canagliflozin in conjunction with sulfonylurea maintains glycemic control and weight loss over 52 weeks: a randomized, controlled trial in patients with type 2 diabetes mellitus. Clin Ther. 2017;39(11):2230–42.e2.

    Article  CAS  PubMed  Google Scholar 

  374. Hattori S. Anti-inflammatory effects of empagliflozin in patients with type 2 diabetes and insulin resistance. Diabetol Metab Syndr. 2018;10:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. JJabbour SA, Frias JP, Hardy E, et al. Safety and efficacy of exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy: 52-week results of the DURATION-8 randomized controlled trial. Diabetes Care. 2018;41(10):2136–46.

  376. Kawamori R, Haneda M, Suzaki K, et al. Empagliflozin as add-on to linagliptin in a fixed-dose combination in Japanese patients with type 2 diabetes: glycaemic efficacy and safety profile in a 52-week, randomized, placebo-controlled trial. Diabetes Obes Metab. 2018;20(9):2200–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Haering HU, Merker L, Christiansen AV, Roux F, Salsali A, Kim G, et al. Empagliflozin as add-on to metformin plus sulphonylurea in patients with type 2 diabetes. Diabetes Res Clin Pract. 2015;110(1):82–90.

    Article  CAS  PubMed  Google Scholar 

  378. Merker L, Haring HU, Christiansen AV, Roux F, Salsali A, Kim G, et al. Empagliflozin as add-on to metformin in people with type 2 diabetes. Diab Med. 2015;32(12):1555–67.

    Article  CAS  Google Scholar 

  379. Bode B, Stenlof K, Harris S, Sullivan D, Fung A, Usiskin K, et al. Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes Obes Metab. 2015;17(3):294–303.

    Article  CAS  PubMed  Google Scholar 

  380. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article  CAS  PubMed  Google Scholar 

  381. Neal B, Perkovic V, Mahaffey K W, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

  382. Wiviott SD, Raz I, Sabatine MS. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. Reply. N Engl J Med.2019;380(19):1881–1882.

  383. Vilsboll T, Zdravkovic M, Le-Thi T, Krarup T, Schmitz O, Courreges JP, et al. Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care. 2007;30(6):1608–10.

    Article  PubMed  CAS  Google Scholar 

  384. Seino Y, Rasmussen MF, Zdravkovic M, Kaku K. Dose-dependent improvement in glycemia with once-daily liraglutide without hypoglycemia or weight gain: a double-blind, randomized, controlled trial in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract. 2008;81(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  385. Vilsboll T, Brock B, Perrild H, Levin K, Lervang HH, Kolendorf K, et al. Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with type 2 diabetes mellitus. Diab Med. 2008;25(2):152–6.

    Article  CAS  Google Scholar 

  386. Miyagawa J, Odawara M, Takamura T, Iwamoto N, Takita Y, Imaoka T. Once-weekly glucagon-like peptide-1 receptor agonist dulaglutide is non-inferior to once-daily liraglutide and superior to placebo in Japanese patients with type 2 diabetes: a 26-week randomized phase III study. Diabetes Obes Metab. 2015;17(10):974–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Moretto TJ, Milton DR, Ridge TD, Macconell LA, Okerson T, Wolka AM, et al. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2008;30(8):1448–60.

    Article  CAS  PubMed  Google Scholar 

  388. Rosenstock J, Reusch J, Bush M, Yang F, Stewart M. Potential of albiglutide, a long-acting GLP-1 receptor agonist, in type 2 diabetes: a randomized controlled trial exploring weekly, biweekly, and monthly dosing. Diabetes Care. 2009;32(10):1880–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  389. Seino Y, Inagaki N, Miyahara H, Okuda I, Bush M, Ye J, et al. A randomized dose-finding study demonstrating the efficacy and tolerability of albiglutide in Japanese patients with type 2 diabetes mellitus. Curr Med Res Opin. 2014;30(6):1095–106.

    Article  CAS  PubMed  Google Scholar 

  390. Nauck MA, Stewart MW, Perkins C, Jones-Leone A, Yang F, Perry C, et al. Efficacy and safety of once-weekly GLP-1 receptor agonist albiglutide (HARMONY 2): 52 week primary endpoint results from a randomised, placebo-controlled trial in patients with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetologia. 2016;59(2):266–74.

    Article  CAS  PubMed  Google Scholar 

  391. Grunberger G, Chang A, Garcia Soria G, Botros FT, Bsharat R, Milicevic Z. Monotherapy with the once-weekly GLP-1 analogue dulaglutide for 12 weeks in patients with type 2 diabetes: dose-dependent effects on glycaemic control in a randomized, double-blind, placebo-controlled study. Diab Med. 2012;29(10):1260–7.

    Article  CAS  Google Scholar 

  392. Terauchi Y, Satoi Y, Takeuchi M, Imaoka T. Monotherapy with the once weekly GLP-1 receptor agonist dulaglutide for 12 weeks in Japanese patients with type 2 diabetes: dose-dependent effects on glycaemic control in a randomised, double-blind, placebo-controlled study. Endocr J. 2014;61(10):949–59.

    Article  CAS  PubMed  Google Scholar 

  393. Fonseca VA, Alvarado-Ruiz R, Raccah D, Boka G, Miossec P, Gerich JE. Efficacy and safety of the once-daily GLP-1 receptor agonist lixisenatide in monotherapy: a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes (GetGoal-Mono). Diabetes Care. 2012;35(6):1225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Raz I, Fonseca V, Kipnes M, Durrwell L, Hoekstra J, Boldrin M, et al. Efficacy and safety of taspoglutide monotherapy in drug-naive type 2 diabetic patients after 24 weeks of treatment: results of a randomized, double-blind, placebo-controlled phase 3 study (T-emerge 1). Diabetes Care. 2012;35(3):485–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Hollander P, Lasko B, Barnett AH, Bengus M, Kanitra L, Pi-Sunyer FX, et al. Effects of taspoglutide on glycemic control and body weight in obese patients with type 2 diabetes (T-emerge 7 study). Obesity (Silver Spring). 2013;21(2):238–47.

    Article  CAS  Google Scholar 

  396. Philip A, Parker V E, Michael S, et al. MEDI0382, a GLP-1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: a randomised, controlled, double-blind, ascending dose and phase 2a study. Lancet. 2018;391(10140):2607–18.

  397. Idorn T, Knop FK, Jorgensen MB, Jensen T, Resuli M, Hansen PM, et al. Safety and efficacy of liraglutide in patients with type 2 diabetes and end-stage renal disease: an investigator-initiated, placebo-controlled, double-blind, parallel-group. Randomized Trial Diabetes Care. 2016;39(2):206–13.

    CAS  PubMed  Google Scholar 

  398. Tonneijck L, Smits MM, Muskiet MHA, Hoekstra T, Kramer MHH, Danser AHJ, et al. Acute renal effects of the GLP-1 receptor agonist exenatide in overweight type 2 diabetes patients: a randomised, double-blind, placebo-controlled trial. Diabetologia. 2016;59(7):1412–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. von Scholten BJ, Persson F, Rosenlund S, Hovind P, Faber J, Hansen TW, et al. The effect of liraglutide on renal function: a randomized clinical trial. Diabetes Obes Metab. 2017;19(2):239–47.

    Article  CAS  Google Scholar 

  400. Gao Y, Yoon KH, Chuang LM, Mohan V, Ning G, Shah S, et al. Efficacy and safety of exenatide in patients of Asian descent with type 2 diabetes inadequately controlled with metformin or metformin and a sulphonylurea. Diabetes Res Clin Pract. 2009;83(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  401. Kadowaki T, Namba M, Yamamura A, Sowa H, Wolka AM, Brodows RG. Exenatide exhibits dose-dependent effects on glycemic control over 12 weeks in Japanese patients with suboptimally controlled type 2 diabetes. Endocr J. 2009;56(3):415–24.

    Article  CAS  PubMed  Google Scholar 

  402. Gill A, Hoogwerf BJ, Burger J, Bruce S, Macconell L, Yan P, et al. Effect of exenatide on heart rate and blood pressure in subjects with type 2 diabetes mellitus: a double-blind, placebo-controlled, randomized pilot study. Cardiovasc Diabetol. 2010;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  403. Nauck MA, Petrie JR, Sesti G, Mannucci E, Courreges JP, Lindegaard ML, et al. A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care. 2016;39(2):231–41.

    CAS  PubMed  Google Scholar 

  404. Ratner RE, Rosenstock J, Boka G. Dose-dependent effects of the once-daily GLP-1 receptor agonist lixisenatide in patients with type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebo-controlled trial. Diab Med. 2010;27(9):1024–32.

    Article  CAS  Google Scholar 

  405. Kim D, MacConell L, Zhuang D, Kothare PA, Trautmann M, Fineman M, et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care. 2007;30(6):1487–93.

    Article  CAS  PubMed  Google Scholar 

  406. Umpierrez GE, Blevins T, Rosenstock J, Cheng C, Anderson JH, Bastyr EJ 3rd. The effects of LY2189265, a long-acting glucagon-like peptide-1 analogue, in a randomized, placebo-controlled, double-blind study of overweight/obese patients with type 2 diabetes: the EGO study. Diabetes Obes Metab. 2011;13(5):418–25.

    Article  CAS  PubMed  Google Scholar 

  407. Kaku K, Rasmussen MF, Clauson P, Seino Y. Improved glycaemic control with minimal hypoglycaemia and no weight change with the once-daily human glucagon-like peptide-1 analogue liraglutide as add-on to sulphonylurea in Japanese patients with type 2 diabetes. Diabetes Obes Metab. 2010;12(4):341–7.

    Article  CAS  PubMed  Google Scholar 

  408. Lind M, Hirsch IB, Tuomilehto J, Dahlqvist S, Ahren B, Torffvit O, et al. Liraglutide in people treated for type 2 diabetes with multiple daily insulin injections: randomised clinical trial (MDI Liraglutide trial). BMJ. 2015;351:h5364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  409. Apovian CM, Bergenstal RM, Cuddihy RM, Qu Y, Lenox S, Lewis MS, et al. Effects of exenatide combined with lifestyle modification in patients with type 2 diabetes. Am J Med. 2010;123(5):468.e9–17.

    Article  CAS  Google Scholar 

  410. Ludvik B, Frías J P, Tinahones F J, et al. Dulaglutide as add-on therapy to SGLT2 inhibitors in patients with inadequately controlled type 2 diabetes (AWARD-10): a 24-week, randomised, double-blind, placebo-controlled trial. Lancet Diab Endocrinol. 2018;6(5):370–81.

  411. Dungan KM, Weitgasser R, Perez Manghi F, Pintilei E, Fahrbach JL, Jiang HH, et al. A 24-week study to evaluate the efficacy and safety of once-weekly dulaglutide added on to glimepiride in type 2 diabetes (AWARD-8). Diabetes Obes Metab. 2016;18(5):475–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Seino Y, Min KW, Niemoeller E, Takami A. Randomized, double-blind, placebo-controlled trial of the once-daily GLP-1 receptor agonist lixisenatide in Asian patients with type 2 diabetes insufficiently controlled on basal insulin with or without a sulfonylurea (GetGoal-L-Asia). Diabetes Obes Metab. 2012;14(10):910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Ahren B, Leguizamo Dimas A, Miossec P, Saubadu S, Aronson R. Efficacy and safety of lixisenatide once-daily morning or evening injections in type 2 diabetes inadequately controlled on metformin (GetGoal-M). Diabetes Care. 2013;36(9):2543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Riddle MC, Forst T, Aronson R, Sauque-Reyna L, Souhami E, Silvestre L, et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled with newly initiated and continuously titrated basal insulin glargine: a 24-week, randomized, placebo-controlled study (GetGoal-duo 1). Diabetes Care. 2013;36(9):2497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  415. Riddle MC, Aronson R, Home P, Marre M, Niemoeller E, Miossec P, et al. Adding once-daily lixisenatide for type 2 diabetes inadequately controlled by established basal insulin: a 24-week, randomized, placebo-controlled comparison (GetGoal-L). Diabetes Care. 2013;36(9):2489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Bolli GB, Munteanu M, Dotsenko S, Niemoeller E, Boka G, Wu Y, et al. Efficacy and safety of lixisenatide once daily vs. placebo in people with type 2 diabetes insufficiently controlled on metformin (GetGoal-F1). Diab Med. 2014;31(2):176–84.

    Article  CAS  Google Scholar 

  417. Yu Pan C, Han P, Liu X, Yan S, Feng P, Zhou Z, et al. Lixisenatide treatment improves glycaemic control in Asian patients with type 2 diabetes mellitus inadequately controlled on metformin with or without sulfonylurea: a randomized, double-blind, placebo-controlled, 24-week trial (GetGoal-M-Asia). Diabetes Metab Res Rev. 2014;30(8):726–35.

    Article  PubMed  CAS  Google Scholar 

  418. Rosenstock J, Hanefeld M, Shamanna P, Min KW, Boka G, Miossec P, et al. Beneficial effects of once-daily lixisenatide on overall and postprandial glycemic levels without significant excess of hypoglycemia in type 2 diabetes inadequately controlled on a sulfonylurea with or without metformin (GetGoal-S). J Diabetes Complicat. 2014;28(3):386–92.

    Article  PubMed  Google Scholar 

  419. Meneilly GS, Roy-Duval C, Alawi H, Dailey G, Bellido D, Trescoli C, et al. Lixisenatide therapy in older patients with type 2 diabetes inadequately controlled on their current antidiabetic treatment: the GetGoal-O randomized trial. Diabetes Care. 2017;40(4):485–93.

    Article  CAS  PubMed  Google Scholar 

  420. Yang W, Min K, Zhou Z, Li L, Xu X, Zhu D, et al. Efficacy and safety of lixisenatide in a predominantly Asian population with type 2 diabetes insufficiently controlled with basal insulin: the GetGoal-L-C randomized trial. Diabetes Obes Metab. 2018;20(2):335–43.

    Article  CAS  PubMed  Google Scholar 

  421. Henry RR, Mudaliar S, Kanitra L, Woloschak M, Balena R. Efficacy and safety of taspoglutide in patients with type 2 diabetes inadequately controlled with metformin plus pioglitazone over 24 weeks: T-Emerge 3 trial. J Clin Endocrinol Metab. 2012;97(7):2370–9.

    Article  CAS  PubMed  Google Scholar 

  422. Vanderheiden A, Harrison L, Warshauer J, Li X, Adams-Huet B, Lingvay I. Effect of adding liraglutide vs placebo to a high-dose lnsulin regimen in patients with type 2 diabetes: a randomized clinical trial. JAMA Intern Med. 2016;176(7):939–47.

    Article  PubMed  Google Scholar 

  423. Frias JP, Nauck MA, Van J, et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet. 2018;392(10160):2180–93.

  424. Russell-Jones D, Vaag A, Schmitz O, Sethi BK, Lalic N, Antic S, et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial. Diabetologia. 2009;52(10):2046–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Zinman B, Gerich J, Buse JB, Lewin A, Schwartz S, Raskin P, et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met+TZD). Diabetes Care. 2009;32(7):1224–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Ahmann A, Rodbard HW, Rosenstock J, Lahtela JT, de Loredo L, Tornoe K, et al. Efficacy and safety of liraglutide versus placebo added to basal insulin analogues (with or without metformin) in patients with type 2 diabetes: a randomized, placebo-controlled trial. Diabetes Obes Metab. 2015;17(11):1056–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Davies MJ, Bain SC, Atkin SL, Rossing P, Scott D, Shamkhalova MS, et al. Efficacy and safety of liraglutide versus placebo as add-on to glucose-lowering therapy in patients with type 2 diabetes and moderate renal impairment (LIRA-RENAL): a randomized clinical trial. Diabetes Care. 2016;39(2):222–30.

    CAS  PubMed  Google Scholar 

  428. Ildiko L, Desouza C V, Lalic K S , et al. A 26-week randomized controlled trial of semaglutide once daily versus liraglutide and placebo in patients with type 2 diabetes suboptimally controlled on diet and exercise with or without metformin. Diabetes Care. 2018;41(9):1926–37.

  429. Zinman B, Hoogwerf BJ, Duran Garcia S, Milton DR, Giaconia JM, Kim DD, et al. The effect of adding exenatide to a thiazolidinedione in suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med. 2007;146(7):477–85.

    Article  PubMed  Google Scholar 

  430. Liutkus J, Rosas Guzman J, Norwood P, Pop L, Northrup J, Cao D, et al. A placebo-controlled trial of exenatide twice-daily added to thiazolidinediones alone or in combination with metformin. Diabetes Obes Metab. 2010;12(12):1058–65.

    Article  CAS  PubMed  Google Scholar 

  431. Wysham C, Blevins T, Arakaki R, Colon G, Garcia P, Atisso C, et al. Efficacy and safety of dulaglutide added onto pioglitazone and metformin versus exenatide in type 2 diabetes in a randomized controlled trial (AWARD-1). Diabetes Care. 2014;37(8):2159–67.

    Article  CAS  PubMed  Google Scholar 

  432. Guja C, Juan P. Frías, Somogyi A , et al. Effect of exenatide QW or placebo, both added to titrated insulin glargine, in uncontrolled type 2 diabetes: the DURATION-7 randomized study. Diab Obes Metab. 2018;20(7):1602–14.

  433. Pozzilli P, Norwood P, Jodar E, Davies MJ, Ivanyi T, Jiang H, et al. Placebo-controlled, randomized trial of the addition of once-weekly glucagon-like peptide-1 receptor agonist dulaglutide to titrated daily insulin glargine in patients with type 2 diabetes (AWARD-9). Diabetes Obes Metab. 2017;19(7):1024–31.

    Article  CAS  PubMed  Google Scholar 

  434. Buse JB, Bergenstal RM, Glass LC, Heilmann CR, Lewis MS, Kwan AY, et al. Use of twice-daily exenatide in basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial. Ann Intern Med. 2011;154(2):103–12.

    Article  PubMed  Google Scholar 

  435. Buse JB, Han J, Miller S, MacConell L, Pencek R, Wintle M. Addition of exenatide BID to insulin glargine: a post-hoc analysis of the effect on glycemia and weight across a range of insulin titration. Curr Med Res Opin. 2014;30(7):1209–18.

    Article  CAS  PubMed  Google Scholar 

  436. Buse JB, Henry RR, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. 2004;27(11):2628–35.

    Article  CAS  PubMed  Google Scholar 

  437. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28(5):1092–100.

    Article  CAS  PubMed  Google Scholar 

  438. Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care. 2005;28(5):1083–91.

    Article  CAS  PubMed  Google Scholar 

  439. Rodbard HW, Ildiko L, John R, et al. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): a randomized, controlled trial. J Clin Endocrinol Metab. 2018;103(6):2291–301.

    Article  PubMed  PubMed Central  Google Scholar 

  440. Seino Y, Kaneko S, Fukuda S, Osonoi T, Shiraiwa T, Nishijima K, et al. Combination therapy with liraglutide and insulin in Japanese patients with type 2 diabetes: a 36-week, randomized, double-blind, parallel-group trial. J Diab Invest. 2016;7(4):565–73.

    Article  CAS  Google Scholar 

  441. Reusch J, Stewart MW, Perkins CM, Cirkel DT, Ye J, Perry CR, et al. Efficacy and safety of once-weekly glucagon-like peptide 1 receptor agonist albiglutide (HARMONY 1 trial): 52-week primary endpoint results from a randomized, double-blind, placebo-controlled trial in patients with type 2 diabetes mellitus not controlled on pioglitazone, with or without metformin. Diabetes Obes Metab. 2014;16(12):1257–64.

    Article  CAS  PubMed  Google Scholar 

  442. Weinstock RS, Guerci B, Umpierrez G, Nauck MA, Skrivanek Z, Milicevic Z. Safety and efficacy of once-weekly dulaglutide versus sitagliptin after 2 years in metformin-treated patients with type 2 diabetes (AWARD-5): a randomized, phase III study. Diabetes Obes Metab. 2015;17(9):849–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjoth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA. 2015;314(7):687–99.

    Article  CAS  PubMed  Google Scholar 

  444. Pinget M, Goldenberg R, Niemoeller E, Muehlen-Bartmer I, Guo H, Aronson R. Efficacy and safety of lixisenatide once daily versus placebo in type 2 diabetes insufficiently controlled on pioglitazone (GetGoal-P). Diabetes Obes Metab. 2013;15(11):1000–7.

    Article  CAS  PubMed  Google Scholar 

  445. Hernandez AF, Green JB, Janmohanmed S, D'Agostino RB Sr, Granger CB, Jones NP, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trail. Lancet. 2018;392(10157):1519–29.

    Article  CAS  PubMed  Google Scholar 

  446. Ahren B, Johnson SL, Stewart M, Cirkel DT, Yang F, Perry C, et al. HARMONY 3: 104-week randomized, double-blind, placebo- and active-controlled trial assessing the efficacy and safety of albiglutide compared with placebo, sitagliptin, and glimepiride in patients with type 2 diabetes taking metformin. Diabetes Care. 2014;37(8):2141–8.

    Article  CAS  PubMed  Google Scholar 

  447. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.

    Article  CAS  PubMed  Google Scholar 

  448. Home PD, Shamanna P, Stewart M, Yang F, Miller M, Perry C, et al. Efficacy and tolerability of albiglutide versus placebo or pioglitazone over 1 year in people with type 2 diabetes currently taking metformin and glimepiride: HARMONY 5. Diabetes Obes Metab. 2015;17(2):179–87.

    Article  CAS  PubMed  Google Scholar 

  449. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.

    Article  CAS  PubMed  Google Scholar 

  450. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  451. Perucca E, Wiebe S. Not all that glitters is gold: a guide to the critical interpretation of drug trials in epilepsy. Epilepsia Open. 2016;1(1):1–13.

    Google Scholar 

  452. Asmar R, Safar M, Queneau P. Evaluation of the placebo effect and reproducibility of blood pressure measurement in hypertension. Am J Hypertens. 2001;14:546–52.

    Article  CAS  PubMed  Google Scholar 

  453. Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr. 2013;97:505–16.

    Article  CAS  PubMed  Google Scholar 

  454. Franz MJ, Boucher JL, Green-Pastors J, Powers MA. Evidence-based nutrition practice guidelines for diabetes and scope and standards of practice. J Am Diet Assoc. 2008;108(Suppl. 1):S52–8.

    Article  PubMed  Google Scholar 

  455. Franz MJ, Powers MA, Leontos C, et al. The evidence for medical nutrition therapy for type 1 and type 2 diabetes in adults. J Am Diet Assoc. 2010;110:1852–89.

    Article  PubMed  Google Scholar 

  456. Thomas DE, Elliott EJ, Naughton GA. Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006;3:CD002968.

    Google Scholar 

  457. Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care. 2006;29:2518–27.

    Article  PubMed  Google Scholar 

  458. Umpierre D, Ribeiro PAB, Kramer CK, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305:1790–9.

    Article  CAS  PubMed  Google Scholar 

  459. Lo R, Lo B, Wells E, et al. The development and evaluation of a computer-aided diabetes education program. Aust J Adv Nurs. 1996;13:19–27.

    CAS  PubMed  Google Scholar 

  460. Fernando D. Knowledge about diabetes and metabolic control in diabetic patients. Ceylon Med J. 1993;38:18–21.

    CAS  PubMed  Google Scholar 

  461. de Wit HM, Te Groen M, Rovers MM, et al. The placebo response of injectable GLP-1 receptor agonists versus oral DPP-4 inhibitors and SGLT-2 inhibitors: a systematic review and meta-analysis. Br J Clin Pharmacol. 2016;82(1):301–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  462. Weimer K, Colloca L, Enck P. Age and sex as moderators of the placebo response - an evaluation of systematic reviews and meta-analyses across medicine. Gerontology. 2015;61(2):97–108.

    Article  PubMed  PubMed Central  Google Scholar 

  463. Enck P, Klosterhalfen S. Does sex/gender play a role in placebo and nocebo effects? Conflicting Evidence From Clinical Trials and Experimental Studies. Front Neurosci. 2019;13:160. https://doi.org/10.3389/fnins.2019.00160.

    Article  PubMed  PubMed Central  Google Scholar 

  464. Zhang W, Robertson J, Jones AC, et al. The placebo effect and its determinants in osteoarthritis: meta-analysis of randomised controlled trials. Ann Rheum Dis. 2008;67(12):1716–23.

    Article  CAS  PubMed  Google Scholar 

  465. Chen X, Zou K, Abdullah N, et al. The placebo effect and its determinants in fibromyalgia: meta-analysis of randomised controlled trials. Clin Rheumatol. 2017;36(7):1623–30.

    Article  PubMed  PubMed Central  Google Scholar 

  466. Grelotti DJ, Kaptchuk TJ. Placebo by proxy. BMJ. 2011;343:d4345.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the doctors, nurses, and technicians for their practical work during the study at Department of Endocrinology and Metabolism in Peking University People’s Hospital.

Funding

This study was supported by the National Natural Science Foundation of China (No.81970708, No.81970698, and No.81900805) and National Key Research and Development Program (No.2016YFC1304901) of China. The funding organization had no role in the study design, data collection or analysis, interpretation of the data, and decision to approve publication of the finished manuscript.

Author information

Authors and Affiliations

Authors

Contributions

LJ and XC conceptualized this study and designed the systematic review protocol; CL, WY, FL, and NL performed the study selection and data extraction; CL and XC performed the statistical analyses; CL and XC prepared the outlines and wrote the manuscript. All authors contributed to the critical revision of manuscript drafts. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoling Cai or Linong Ji.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

Linong Ji has received fees for lecture presentations and consulting fees from AstraZeneca, Merck, Novartis, Novo Nordisk, Lilly, Roche, Sanofi-Aventis and Takeda, and grants/research support from AstraZeneca, Merck, Novartis, Novo Nordisk and Sanofi-Aventis; there were no other relationships or activities that could appear to have influenced the submitted work. All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare no support from any organization for the submitted work other than that described above.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Additional file 1: Table S1.

Baseline characteristics of included RCT studies with type 1 diabetes. Table S2. Baseline characteristics of included RCT studies with type 2 diabetes. Table S3. Risk of bias of included RCT studies with type 1 diabetes. Table S4. Risk of bias of included RCT studies with type 2 diabetes. Table S5. Baseline characteristics by placebo response with HbA1c and weight change. Figure S1. Flowchart of the study. Figure S2. Egger’s test for trials with type 1 diabetes. Figure S3. Egger’s test for trials with type 2 diabetes. Figure S4. Placebo response stratified by patient age in type 1 diabetes mellitus. Figure S5. Placebo response stratified by patient age in type 2 diabetes mellitus. Figure S6. Placebo response stratified by male percentage in type 2 diabetes mellitus. Figure S7. Placebo response stratified by male percentage in type 1 diabetes mellitus. Figure S8. Placebo response stratified by baseline BMI in type 2 diabetes mellitus. Figure S9. Placebo response stratified by baseline BMI in type 1 diabetes mellitus. Figure S10. Placebo response stratified by baseline HbA1c in type 2 diabetes mellitus. Figure S11. Placebo response stratified by baseline HbA1c in type 1 diabetes mellitus. Figure S12. Placebo response stratified by diabetes duration in type 1 diabetes mellitus. Figure S13. Placebo response stratified by diabetes duration in type 2 diabetes mellitus. Figure S14. Placebo response stratified by study duration in type 1 diabetes mellitus. Figure S15. Placebo response stratified by study duration in type 2 diabetes mellitus. Figure S16. Placebo response stratified by publication year in type 1 diabetes mellitus. Figure S17. Placebo response stratified by publication year in type 2 diabetes mellitus.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Cai, X., Yang, W. et al. Age, sex, disease severity, and disease duration difference in placebo response: implications from a meta-analysis of diabetes mellitus. BMC Med 18, 322 (2020). https://doi.org/10.1186/s12916-020-01787-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s12916-020-01787-4

Keywords