Lobstein T, Jackson-Leach R, Moodie ML, Hall KD, Gortmaker SL, Swinburn BA, et al. Child and adolescent obesity: part of a bigger picture. Lancet. 2015;385:2510–20.
Article
PubMed
PubMed Central
Google Scholar
The Lancet. Managing the tide of childhood obesity. Lancet. 2015;385:2434.
Google Scholar
Mameli C, Mazzantini S, Zuccotti GV. Nutrition in the First 1000 Days: The Origin of Childhood Obesity. Int J Environ Res Public Health. 2016;13(9):838. https://doi.org/10.3390/ijerph13090838.
Blake-Lamb TL, Locks LM, Perkins ME, Woo Baidal JA, Cheng ER, Taveras EM. Interventions for childhood obesity in the first 1,000 days a systematic review. Am J Prev Med. 2016;50:780–9.
Article
PubMed
PubMed Central
Google Scholar
Nishtar S, Gluckman P, Armstrong T. Ending childhood obesity: a time for action. Lancet. 2016;387:825–7.
Article
PubMed
Google Scholar
Ravelli AC, van der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70:811–6.
Article
CAS
PubMed
Google Scholar
Liu L, Pang ZC, Sun JP, Xue B, Wang SJ, Ning F, et al. Exposure to famine in early life and the risk of obesity in adulthood in Qingdao: evidence from the 1959–1961 Chinese famine. Nutr Metab Cardiovasc Dis. 2017;27:154–60.
Article
PubMed
Google Scholar
Maslova E, Rytter D, Bech BH, Henriksen TB, Rasmussen MA, Olsen SF, et al. Maternal protein intake during pregnancy and offspring overweight 20 y later. Am J Clin Nutr. 2014;100:1139–48.
Article
CAS
PubMed
Google Scholar
Chen L-W, Aris I, Bernard J, Tint M-T, Chia A, Colega M, et al. Associations of maternal dietary patterns during pregnancy with offspring adiposity from birth until 54 months of age. Nutrients. 2016;9:2.
Article
PubMed Central
Google Scholar
Chen L-W, Aris IM, Bernard JY, Tint MT, Colega M, Gluckman PD, et al. Associations of maternal macronutrient intake during pregnancy with infant BMI peak characteristics and childhood BMI. Am J Clin Nutr. 2017;105:705–13.
Article
CAS
PubMed
Google Scholar
Meng R, Lv J, Yu C, Guo Y, Bian Z, Yang L, et al. Prenatal famine exposure, adulthood obesity patterns and risk of type 2 diabetes. Int J Epidemiol. 2018;47:399–408.
Article
PubMed
Google Scholar
Perng W, Oken E, Dabelea D. Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia. 2019;62:1779–88.
Article
PubMed
Google Scholar
Kant AK. Indexes of overall diet quality: a review. J Am Diet Assoc. 1996;96:785–91.
Article
CAS
PubMed
Google Scholar
Cespedes EM, Hu FB. Dietary patterns: from nutritional epidemiologic analysis to national guidelines. Am J Clin Nutr. 2015;101:899–900.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaillard R, Rifas-Shiman SL, Perng W, Oken E, Gillman MW. Maternal inflammation during pregnancy and childhood adiposity. Obesity (Silver Spring). 2016;24(6):1320-7. https://doi.org/10.1002/oby.21484. Epub 2016 Apr 20.
Sen S, Simmons RA. Maternal antioxidant supplementation prevents adiposity in the offspring of Western diet-fed rats. Diabetes. 2010;59:3058–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114:999–1012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips CM, Chen L-W, Heude B, Bernard JY, Harvey NC, Duijts L, et al. Dietary inflammatory index and non-communicable disease risk: a narrative review. Nutrients. 2019;11:1873.
Article
CAS
PubMed Central
Google Scholar
Hébert JR, Shivappa N, Wirth MD, Hussey JR, Hurley TG. Perspective: the dietary inflammatory index (DII)-lessons learned, improvements made, and future directions. Adv Nutr. 2019;10:185–95.
Article
PubMed
PubMed Central
Google Scholar
Chatzi L, Rifas-Shiman SL, Georgiou V, Joung KE, Koinaki S, Chalkiadaki G, et al. Adherence to the Mediterranean diet during pregnancy and offspring adiposity and cardiometabolic traits in childhood. Pediatr Obes. 2017;12:47–56.
Article
PubMed
PubMed Central
Google Scholar
Tahir MJ, Haapala JL, Foster LP, Duncan KM, Teague AM, Kharbanda EO, McGovern PM, Whitaker KM, Rasmussen KM, Fields DA, Jacobs DR Jr, Harnack LJ, Demerath EW. Higher Maternal Diet Quality during Pregnancy and Lactation Is Associated with Lower Infant Weight-For-Length, Body Fat Percent, and Fat Mass in Early Postnatal Life. Nutrients. 2019;11(3):632. https://doi.org/10.3390/nu11030632.
Sen S, Rifas-Shiman SL, Shivappa N, Wirth MD, Hebert JR, Gold DR, et al. Associations of prenatal and early life dietary inflammatory potential with childhood adiposity and cardiometabolic risk in Project Viva. Pediatr Obes. 2018;13:292–300.
Article
CAS
PubMed
Google Scholar
Moore BF, Sauder KA, Starling AP, Hébert JR, Shivappa N, Ringham BM, et al. Proinflammatory diets during pregnancy and neonatal adiposity in the healthy start study. J Pediatr. 2018;195:121–127.e2.
Article
PubMed
Google Scholar
Crozier SR, Robinson SM, Godfrey KM, Cooper C, Inskip HM. Women’s dietary patterns change little from before to during pregnancy. J Nutr. 2009;139:1956–63.
Article
CAS
PubMed
Google Scholar
Toro-Ramos T, Paley C, Pi-Sunyer FX, Gallagher D. Body composition during fetal development and infancy through the age of 5 years. Eur J Clin Nutr. 2015;69:1279–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stephenson J, Heslehurst N, Hall J, Schoenaker DAJM, Hutchinson J, Cade JE, et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet. 2018;391:1830–41.
Article
PubMed
PubMed Central
Google Scholar
Jaddoe VWV, Mackenbach JP, Moll HA, Steegers EAP, Tiemeier H, Verhulst FC, et al. The Generation R Study: design and cohort profile. Eur J Epidemiol. 2006;21:475–84.
Article
PubMed
Google Scholar
Polańska K, Hanke W, Król A, Potocka A, Waszkowska M, Jacukowicz A, et al. Polish mother and child cohort study (REPRO-Pl) - methodology of the follow-up of the children at the age of 7. Int J Occup Med Environ Health. 2016;29:883–93.
Article
PubMed
Google Scholar
Heude B, Forhan A, Slama R, Douhaud L, Bedel S, Saurel-Cubizolles M-J, et al. Cohort profile: the EDEN mother-child cohort on the prenatal and early postnatal determinants of child health and development. Int J Epidemiol. 2016;45:353–63.
Article
PubMed
Google Scholar
O'Mahony D, Fallon UB, Hannon F, Kloeckner K, Avalos G, Murphy AW, Kelleher CC; Lifeways Cross Generation Cohort Study Steering Group. The Lifeways Cross-Generation Study: design, recruitment and data management considerations. Ir Med J. 2007;100(8):suppl 3-6.
Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon longitudinal study of parents and children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42:97–110.
Article
PubMed
Google Scholar
Inskip HM, Godfrey KM, Robinson SM, Law CM, Barker DJP, Cooper C, et al. Cohort profile: the Southampton Women’s survey. Int J Epidemiol. 2005;35:42–8.
Article
PubMed
Google Scholar
Walsh JM, McGowan CA, Mahony R, Foley ME, McAuliffe FM. Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. BMJ. 2012;345:e5605.
Article
PubMed
PubMed Central
Google Scholar
Kooijman MN, Kruithof CJ, van Duijn CM, Duijts L, Franco OH, van IJzendoorn MH, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31:1243–64.
Article
PubMed
Google Scholar
Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the ‘children of the 90s’-the index offspring of the Avon longitudinal study of parents and children. Int J Epidemiol. 2013;42:111–27.
Article
PubMed
Google Scholar
Aubert AM, Forhan A, de Lauzon-Guillain B, Chen L-W, Polanska K, Hanke W, et al. Deriving the Dietary Approaches to Stop Hypertension (DASH) score in women from seven pregnancy cohorts from the European ALPHABET consortium. Nutrients. 2019;11:2706.
Article
CAS
PubMed Central
Google Scholar
Deschamps V, de Lauzon-Guillain B, Lafay L, Borys J-M, Charles MA, Romon M. Reproducibility and relative validity of a food-frequency questionnaire among French adults and adolescents. Eur J Clin Nutr. 2007;63:282–91.
Article
PubMed
PubMed Central
Google Scholar
Klipstein-Grobusch K, den Breeijen JH, Goldbohm RA, Geleijnse JM, Hofman A, Grobbee DE, et al. Dietary assessment in the elderly: validation of a semiquantitative food frequency questionnaire. Eur J Clin Nutr. 1998;52:588–96.
Article
CAS
PubMed
Google Scholar
Murrin C, Shrivastava A, Kelleher CC. Maternal macronutrient intake during pregnancy and 5 years postpartum and associations with child weight status aged five. Eur J Clin Nutr. 2013;67:670–9.
Article
CAS
PubMed
Google Scholar
Harrington J. Validation of a Food Frequency Questionnaire as a tool for assessing nutrient intake (MA thesis). Galway: National University of Ireland Galway; 1997.
Google Scholar
Horan MK, McGowan CA, Doyle O, McAuliffe FM. Well-being in pregnancy: an examination of the effect of socioeconomic, dietary and lifestyle factors including impact of a low glycaemic index dietary intervention. Eur J Clin Nutr. 2013;68:19–24.
Article
PubMed
CAS
Google Scholar
Rogers I, Emmett P. Diet during pregnancy in a population of pregnant women in South West England. Eur J Clin Nutr. 1998;52:246–50.
Article
CAS
PubMed
Google Scholar
Wesołowska E, Jankowska A, Trafalska E, Kałużny P, Grzesiak M, Dominowska J, Hanke W, Calamandrei G, Polańska K. Sociodemographic, Lifestyle, Environmental and Pregnancy-Related Determinants of Dietary Patterns during Pregnancy. Int J Environ Res Public Health. 2019;16(5):754. https://doi.org/10.3390/ijerph16050754.
Robinson S, Godfrey K, Osmond C, Cox V, Barker D. Evaluation of a food frequency questionnaire used to assess nutrient intakes in pregnant women. Eur J Clin Nutr. 1996;50:302–8.
CAS
PubMed
Google Scholar
Voortman T, Steegers-Theunissen RPM, Bergen NE, Jaddoe VWV, Looman CWN, Kiefte-de Jong JC, et al. Validation of a semi-quantitative food-frequency questionnaire for Dutch pregnant women from the general population using the method or triads. Nutrients. 2020;12:1341.
Article
CAS
PubMed Central
Google Scholar
Shivappa N, Steck SE, Hurley TG, Hussey JR, Hébert JR. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 2014;17:1689–96.
Article
PubMed
Google Scholar
Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch Intern Med. 2008;168:713.
Article
PubMed
Google Scholar
Miller PE, Cross AJ, Subar AF, Krebs-Smith SM, Park Y, Powell-Wiley T, et al. Comparison of 4 established DASH diet indexes: examining associations of index scores and colorectal cancer. Am J Clin Nutr. 2013;98:794–803.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barlow SE; Expert Committee. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120 Suppl 4:S164-92. https://doi.org/10.1542/peds.2007-2329C.
WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl. 2006;450:76–85.
Google Scholar
de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.
Article
PubMed
PubMed Central
Google Scholar
Fishbein DH, Michael L, Guthrie C, Carr C, Raymer J. Associations Between Environmental Conditions and Executive Cognitive Functioning and BehaviorDuring Late Childhood: A Pilot Study. Front Psychol. 2019;10:1263. https://doi.org/10.3389/fpsyg.2019.01263.
Duong J, Bradshaw CP. Links between contexts and middle to late childhood social-emotional development. Am J Community Psychol. 2017;60:538–54.
Article
PubMed
Google Scholar
Tobias DK, Hu FB, Chavarro J, Rosner B, Mozaffarian D, Zhang C. Healthful dietary patterns and type 2 diabetes mellitus risk among women with a history of gestational diabetes mellitus. Arch Intern Med. 2012;172:1566–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu C, Zhang C, Gelaye B, Enquobahrie DA, Frederick IO, Williams MA. Gestational diabetes mellitus in relation to maternal dietary heme iron and nonheme iron intake. Diabetes Care. 2011;34:1564–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–60.
Article
PubMed
PubMed Central
Google Scholar
Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58.
Article
PubMed
Google Scholar
Chen L-W, Aubert AM, Shivappa N, Bernard JY, Mensink-bout SM, Geraghty AA, et al. Associations of maternal dietary inflammatory potential and quality with offspring birth outcomes : An individual participant data pooled analysis of 7 European cohorts in the ALPHABET consortium. Plos Med. 2021;In press.
Khan S, Wirth M, Ortaglia A, Alvarado C, Shivappa N, Hurley T, et al. Design, Development and Construct Validation of the Children’s Dietary Inflammatory Index. Nutrients. 2018;10:993.
Article
PubMed Central
CAS
Google Scholar
Holt EM, Steffen LM, Moran A, Basu S, Steinberger J, Ross JA, et al. Fruit and vegetable consumption and its relation to markers of inflammation and oxidative stress in adolescents. J Am Diet Assoc. 2009;109:414–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giugliano D, Ceriello A, Esposito K. The effects of diet on inflammation: emphasis on the metabolic syndrome. J Am Coll Cardiol. 2006;48:677–85.
Article
CAS
PubMed
Google Scholar
Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez-Nahm S, Mendez M, Robinson W, Murphy SK, Hoyo C, Hogan V, Rowley D. Low maternal adherence to a Mediterranean diet is associated with increase in methylation at the MEG3-IG differentially methylated region in female infants. Environ Epigenet. 2017;3(2):dvx007. https://doi.org/10.1093/eep/dvx007.
Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60:1528–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geraghty A, Sexton-Oates A, O’Brien E, Alberdi G, Fransquet P, Saffery R, et al. A low glycaemic index diet in pregnancy induces DNA methylation variation in blood of newborns: results from the ROLO randomised controlled trial. Nutrients. 2018;10:455.
Article
PubMed Central
CAS
Google Scholar
Baum D, Beck RQ, Hammer LD, Brasel JA, Greenwood MR. Adipose tissue thymidine kinase activity in man. Pediatr Res. 1986;20:118–21.
Article
CAS
PubMed
Google Scholar
Slater-Jefferies JL, Lillycrop KA, Townsend PA, Torrens C, Hoile SP, Hanson MA, et al. Feeding a protein-restricted diet during pregnancy induces altered epigenetic regulation of peroxisomal proliferator-activated receptor-α in the heart of the offspring. J Dev Orig Health Dis. 2011;2:250–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F. Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes. 2006;30:S11–7.
Article
Google Scholar
Wells JCK. Toward body composition reference data for infants, children, and adolescents. Adv Nutr. 2014;5:320S–9S.
Article
PubMed
PubMed Central
Google Scholar
Javed A, Jumean M, Murad MH, Okorodudu D, Kumar S, Somers VK, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: a systematic review and meta-analysis. Pediatr Obes. 2015;10:234–44.
Article
CAS
PubMed
Google Scholar
Malone SK, Zemel BS. Measurement and interpretation of body mass index during childhood and adolescence. J Sch Nurs. 2015;31:261–71.
Article
PubMed
Google Scholar
Freedman DS, Wang J, Maynard LM, Thornton JC, Mei Z, Pierson RN, et al. Relation of BMI to fat and fat-free mass among children and adolescents. Int J Obes. 2005;29:1–8.
Article
CAS
Google Scholar
Burrows R, Correa-Burrows P, Reyes M, Blanco E, Albala C, Gahagan S. Low muscle mass is associated with cardiometabolic risk regardless of nutritional status in adolescents: a cross-sectional study in a Chilean birth cohort. Pediatr Diabetes. 2017;18:895–902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steene-Johannessen J, Anderssen SA, Kolle E, Andersen LB. Low muscle fitness is associated with metabolic risk in youth. Med Sci Sports Exerc. 2009;41:1361–7.
Article
PubMed
Google Scholar
Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18:4046–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, et al. Gender-specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene. 2012;494:36–43.
Article
CAS
PubMed
Google Scholar
Andres A, Hull HR, Shankar K, Casey PH, Cleves MA, Badger TM. Longitudinal body composition of children born to mothers with normal weight, overweight, and obesity. Obesity. 2015;23:1252–8.
Article
PubMed
Google Scholar
Chen L-W, Tint M-T, Fortier MV, Aris IM, Bernard JY, Colega M, et al. Maternal macronutrient intake during pregnancy is associated with neonatal abdominal adiposity: The Growing Up in Singapore Towards healthy Outcomes (GUSTO) study. J Nutr. 2016;146:1571–9.
Article
CAS
PubMed
Google Scholar
Donnelly JM, Lindsay K, Walsh JM, Horan MK, O'Shea D, Molloy EJ, McAuliffe FM. Perinatal inflammation and childhood adiposity - a gender effect? J Matern Fetal Neonatal Med. 2020;33(7):1203-10. https://doi.org/10.1080/14767058.2018.1517315. Epub 2018 Sep 27.
Veldhuis JD, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, et al. Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev. 2005;26:114–46.
Article
CAS
PubMed
Google Scholar
Ulijaszek SJ, Kerr DA. Anthropometric measurement error and the assessment of nutritional status. Br J Nutr. 1999;82:165–77.
Article
CAS
PubMed
Google Scholar