Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7(1):12632. https://doi.org/10.1038/ncomms12632.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown NF, Carter TJ, Ottaviani D, Mulholland P. Harnessing the immune system in glioblastoma. Br J Cancer. 2018;119(10):1171–81. https://doi.org/10.1038/s41416-018-0258-8.
Article
PubMed
PubMed Central
Google Scholar
Binder ZA, Thorne AH, Bakas S, Wileyto EP, Bilello M, Akbari H, et al. Epidermal growth factor receptor extracellular domain mutations in glioblastoma present opportunities for clinical imaging and therapeutic development. Cancer cell. 2018;34(1):163–77 e7. https://doi.org/10.1016/j.ccell.2018.06.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Watts C, Price SJ, Santarius T. Current concepts in the surgical management of glioma patients. Clin Oncol (R Coll Radiol). 2014;26(7):385–94. https://doi.org/10.1016/j.clon.2014.04.001.
Article
CAS
Google Scholar
Majchrzak K, Kaspera W, Bobek-Billewicz B, Hebda A, Stasik-Pres G, Majchrzak H, et al. The assessment of prognostic factors in surgical treatment of low-grade gliomas: a prospective study. Clin Neurol Neurosurg\. 2012;114(8):1135–44. https://doi.org/10.1016/j.clineuro.2012.02.054.
Article
PubMed
Google Scholar
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. https://doi.org/10.1016/j.cell.2013.09.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):1373–85. https://doi.org/10.1016/S1470-2045(17)30517-X.
Article
CAS
PubMed
Google Scholar
Concha-Benavente F, Ferris RL. Reversing EGFR mediated immunoescape by targeted monoclonal antibody therapy. Front pharmacol. 2017;8:332. https://doi.org/10.3389/fphar.2017.00332.
Article
CAS
PubMed
PubMed Central
Google Scholar
Persico P, Lorenzi E, Dipasquale A, Pessina F, Navarria P, Politi LS, et al. Checkpoint inhibitors as high-grade gliomas treatment: state of the art and future perspectives. J Clin Med. 2021;10(7). https://doi.org/10.3390/jcm10071367.
Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat Immunol. 2019;20(9):1100–9. https://doi.org/10.1038/s41590-019-0433-y.
Article
CAS
PubMed
Google Scholar
Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat med. 2019;25(3):462–9. https://doi.org/10.1038/s41591-019-0349-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang HS, Wan J, Zhou HG, Xu JN, Lu YP, Ji XY, et al. Different T-cell subsets in glioblastoma multiforme and targeted immunotherapy. Cancer Lett. 2021;496:134–43. https://doi.org/10.1016/j.canlet.2020.09.028.
Article
CAS
PubMed
Google Scholar
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li SQ, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234. https://doi.org/10.1038/s41586-018-0792-9.
Article
CAS
PubMed
Google Scholar
Inagaki FF, Furusawa A, Choyke PL, Kobayashi H. Enhanced nanodrug delivery in tumors after near-infrared photoimmunotherapy. Nanophotonics-Berlin. 2019;8(10):1673–88. https://doi.org/10.1515/nanoph-2019-0186.
Article
CAS
Google Scholar
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Nanoparticle-based phototriggered cancer immunotherapy and its domino effect in the tumor microenvironment. Biomacromolecules. 2018;19(6):1869–87. https://doi.org/10.1021/acs.biomac.8b00460.
Article
CAS
PubMed
Google Scholar
Kato T, Okada R, Goto Y, Furusawa A, Inagaki F, Wakiyama H, et al. Electron donors rather than reactive oxygen species needed for therapeutic photochemical reaction of near-infrared photoimmunotherapy. ACS Pharmacol Transl Sci. 2021;4(5):1689–701. https://doi.org/10.1021/acsptsci.1c00184.
Article
CAS
PubMed
Google Scholar
Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, et al. Syngeneic mouse models of oral cancer are effectively targeted by anti-CD44-based NIR-PIT. Mol Cancer Res. 2017;15(12):1667–77. https://doi.org/10.1158/1541-7786.MCR-17-0333.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagaya T, Okuyama S, Ogata F, Maruoka Y, Knapp DW, Karagiannis SN, et al. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody. Oncotarget. 2018;9(27):19026–38. https://doi.org/10.18632/oncotarget.24876.
Article
PubMed
PubMed Central
Google Scholar
Kato T, Wakiyama H, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy; a review of targets for cancer therapy. Cancers. 2021;13(11):2535. https://doi.org/10.3390/cancers13112535.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wakiyama H, Kato T, Furusawa A, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy of cancer; possible clinical applications. Nanophotonics. 2021;10(12):3135–51. https://doi.org/10.1515/nanoph-2021-0119.
Article
CAS
Google Scholar
Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12(12):860–75. https://doi.org/10.1038/nrc3380.
Article
CAS
PubMed
Google Scholar
Burley TA, Maczynska J, Shah A, Szopa W, Harrington KJ, Boult JKR, et al. Near-infrared photoimmunotherapy targeting EGFR-shedding new light on glioblastoma treatment. Int J Cancer. 2018;142(11):2363–74. https://doi.org/10.1002/ijc.31246.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, et al. Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA. 2007;104(31):12867–72. https://doi.org/10.1073/pnas.0705158104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gangoso E, Southgate B, Bradley L, Rus S, Galvez-Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184(9):2454–2470.e26. https://doi.org/10.1016/j.cell.2021.03.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burley TA, Da Pieve C, Martins CD, Ciobota DM, Allott L, Oyen WJG, et al. Affibody-based PET imaging to guide EGFR-targeted cancer therapy in head and neck squamous cell cancer models. J Nucl Med. 2019;60(3):353–61. https://doi.org/10.2967/jnumed.118.216069.
Article
CAS
PubMed
PubMed Central
Google Scholar
Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, et al. Guidelines for the welfare and use of animals in cancer research. Bri J Cancer. 2010;102(11):1555–77. https://doi.org/10.1038/sj.bjc.6605642.
Article
CAS
Google Scholar
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. https://doi.org/10.1371/journal.pbio.1000412.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogawa M, Tomita Y, Nakamura Y, Lee MJ, Lee S, Tomita S, et al. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget. 2017;8(6):10425–36. https://doi.org/10.18632/oncotarget.14425.
Article
PubMed
PubMed Central
Google Scholar
Kim JE, Patel MA, Mangraviti A, Kim ES, Theodros D, Velarde E, et al. Combination therapy with anti-PD-1, anti-TIM-3, and focal radiation results in regression of murine gliomas. Clin Cancer Res. 2017;23(1):124–36. https://doi.org/10.1158/1078-0432.Ccr-15-1535.
Article
CAS
PubMed
Google Scholar
Chandramohan V, Bao XH, Yu X, Parker S, McDowall C, Yu YR, et al. Improved efficacy against malignant brain tumors with EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor combinations. J Immunother Cancer. 2019;7. https://doi.org/10.1186/s40425-019-0614-0.
Chen CY, Hutzen B, Wedekind MF, Cripe TP. Oncolytic virus and PD-1/PD-L1 blockade combination therapy. Oncolytic Virother. 2018;7:65–77. https://doi.org/10.2147/Ov.S145532.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9(399). https://doi.org/10.1126/scitranslmed.aaa0984.
Kobayashi H, Choyke PL. Near-infrared photoimmunotherapy of cancer. Acc Chem Res. 2019;52(8):2332–9. https://doi.org/10.1021/acs.accounts.9b00273.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang M, Rao J, Wang M, Li X, Liu K, Naylor MF, et al. Cancer photo-immunotherapy: from bench to bedside. Theranostics. 2021;11(5):2218–31. https://doi.org/10.7150/thno.53056.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Dongen GA, Visser GW, Vrouenraets MB. Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev. 2004;56(1):31–52. https://doi.org/10.1016/j.addr.2003.09.003.
Article
CAS
PubMed
Google Scholar
van Driel P, Boonstra MC, Slooter MD, Heukers R, Stammes MA, Snoeks TJA, et al. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J Control Release. 2016;229:93–105. https://doi.org/10.1016/j.jconrel.2016.03.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maczynska J, Da Pieve C, Burley TA, Raes F, Shah A, Saczko J, et al. Immunomodulatory activity of IR700-labelled affibody targeting HER2. Cell Death Dis. 2020;11(10):886. https://doi.org/10.1038/s41419-020-03077-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. https://doi.org/10.3389/fimmu.2015.00588.
Article
PubMed
PubMed Central
Google Scholar
Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer. 2021;9(1). https://doi.org/10.1136/jitc-2020-001926.
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41. https://doi.org/10.1038/s41568-019-0205-x.
Article
CAS
PubMed
Google Scholar
Kishimoto S, Oshima N, Yamamoto K, Munasinghe J, Ardenkjaer-Larsen JH, Mitchell JB, et al. Molecular imaging of tumor photoimmunotherapy: evidence of photosensitized tumor necrosis and hemodynamic changes. Free Radic Biol Med. 2018;116:1–10. https://doi.org/10.1016/j.freeradbiomed.2017.12.034.
Article
CAS
PubMed
Google Scholar
Nakajima T, Sano K, Mitsunaga M, Choyke PL, Kobayashi H. Real-time monitoring of in vivo acute necrotic cancer cell death induced by near infrared photoimmunotherapy using fluorescence lifetime imaging. Cancer Res. 2012;72(18):4622–8. https://doi.org/10.1158/0008-5472.CAN-12-1298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou F, Xing D, Chen WR. Dynamics and mechanism of HSP70 translocation induced by photodynamic therapy treatment. Cancer Lett. 2008;264(1):135–44. https://doi.org/10.1016/j.canlet.2008.01.040.
Article
CAS
PubMed
Google Scholar
Panzarini E, Inguscio V, Dini L. Immunogenic cell death: can it be exploited in photodynamic therapy for cancer. Biomed Res Int. 2013;2013:482160. https://doi.org/10.1155/2013/482160.
Article
CAS
PubMed
Google Scholar
Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ. 2008;15(1):3–12. https://doi.org/10.1038/sj.cdd.4402269.
Article
CAS
PubMed
Google Scholar
Wang XJ, Ji J, Zhang HY, Fan ZX, Zhang LL, Shi L, et al. Stimulation of dendritic cells by DAMPs in ALA-PDT treated SCC tumor cells. Oncotarget. 2015;6(42):44688–702. https://doi.org/10.18632/oncotarget.5975.
Article
PubMed
PubMed Central
Google Scholar
Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 2005;65(3):1018–26.
CAS
PubMed
Google Scholar
Kleinovink JW, Fransen MF, Lowik CW, Ossendorp F. Photodynamic-immune checkpoint therapy eradicates local and distant tumors by CD8(+) T cells. Cancer Immunol Res. 2017;5(10):832–8. https://doi.org/10.1158/2326-6066.CIR-17-0055.
Article
CAS
PubMed
Google Scholar
Schipmann S, Muther M, Stogbauer L, Zimmer S, Brokinkel B, Holling M, et al. Combination of ALA-induced fluorescence-guided resection and intraoperative open photodynamic therapy for recurrent glioblastoma: case series on a promising dual strategy for local tumor control. J Neurosurg. 2020;134(2):1–11. https://doi.org/10.3171/2019.11.JNS192443.
Article
Google Scholar