Travis WDBE, Burke AP, Marx A, Nicholson AG. WHO classification of tumours of the lung, pleura, thymus and heart, vol. 7. 4th ed; 2015.
Google Scholar
Ströbel P, Hartmann E, Rosenwald A, Kalla J, Ott G, Friedel G, et al. Corticomedullary differentiation and maturational arrest in thymomas. Histopathology. 2014;64(4):557–66. https://doi.org/10.1111/his.12279.
Article
PubMed
Google Scholar
Loehrer PJ Sr, Kim K, Aisner SC, Livingston R, Einhorn LH, Johnson D, et al. Cisplatin plus doxorubicin plus cyclophosphamide in metastatic or recurrent thymoma: final results of an intergroup trial. The Eastern Cooperative Oncology Group, Southwest Oncology Group, and Southeastern Cancer Study Group. J Clin Oncol. 1994;12(6):1164–8. https://doi.org/10.1200/JCO.1994.12.6.1164.
Article
PubMed
Google Scholar
Loehrer PJ Sr, Jiroutek M, Aisner S, Aisner J, Green M, Thomas CR Jr, et al. Combined etoposide, ifosfamide, and cisplatin in the treatment of patients with advanced thymoma and thymic carcinoma: an intergroup trial. Cancer. 2001;91(11):2010–5. https://doi.org/10.1002/1097-0142(20010601)91:11<2010::AID-CNCR1226>3.0.CO;2-2.
Article
PubMed
CAS
Google Scholar
Ströbel P, Bargou R, Wolff A, Spitzer D, Manegold C, Dimitrakopoulou-Strauss A, et al. Sunitinib in metastatic thymic carcinomas: laboratory findings and initial clinical experience. Br J Cancer. 2010;103(2):196–200. https://doi.org/10.1038/sj.bjc.6605740.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thomas A, Rajan A, Berman A, Tomita Y, Brzezniak C, Lee MJ, et al. Sunitinib in patients with chemotherapy-refractory thymoma and thymic carcinoma: an open-label phase 2 trial. Lancet Oncol. 2015;16(2):177–86. https://doi.org/10.1016/S1470-2045(14)71181-7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Loehrer PJ Sr, Chen M, Kim K, Aisner SC, Einhorn LH, Livingston R, et al. Cisplatin, doxorubicin, and cyclophosphamide plus thoracic radiation therapy for limited-stage unresectable thymoma: an intergroup trial. J Clin Oncol. 1997;15(9):3093–9. https://doi.org/10.1200/JCO.1997.15.9.3093.
Article
PubMed
CAS
Google Scholar
Rajan A, Giaccone G. Chemotherapy for thymic tumors: induction, consolidation, palliation. Thorac Surg Clin. 2011;21(1):107–14, viii. https://doi.org/10.1016/j.thorsurg.2010.08.003.
Article
PubMed
Google Scholar
Gokmen-Polar Y, Sanders KL, Goswami CP, Cano OD, Zaheer NA, Jain RK, et al. Establishment and characterization of a novel cell line derived from human thymoma AB tumor. Lab Investig. 2012;92(11):1564–73. https://doi.org/10.1038/labinvest.2012.115.
Article
PubMed
CAS
Google Scholar
Radovich M, Pickering CR, Felau I, Ha G, Zhang H, Jo H, et al. The integrated genomic landscape of thymic epithelial tumors. Cancer Cell. 2018;33(2):244–258 e210. https://doi.org/10.1016/j.ccell.2018.01.003.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rieker RJ, Aulmann S, Penzel R, Schnabel PA, Blaeker H, Esposito I, et al. Chromosomal imbalances in sporadic neuroendocrine tumours of the thymus. Cancer Lett. 2005;223(1):169–74. https://doi.org/10.1016/j.canlet.2004.10.027.
Article
PubMed
CAS
Google Scholar
Ehemann V, Kern MA, Breinig M, Schnabel PA, Gunawan B, Schulten HJ, et al. Establishment, characterization and drug sensitivity testing in primary cultures of human thymoma and thymic carcinoma. Int J Cancer. 2008;122(12):2719–25. https://doi.org/10.1002/ijc.23335.
Article
PubMed
CAS
Google Scholar
Marx A, Rieker R, Toker A, Langer F, Strobel P. Thymic carcinoma: is it a separate entity? From molecular to clinical evidence. Thorac Surg Clin. 2011;21(1):25–31 v-vi.
Article
PubMed
Google Scholar
Petrini I, Meltzer PS, Kim IK, Lucchi M, Park KS, Fontanini G, et al. A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors. Nat Genet. 2014;46(8):844–9. https://doi.org/10.1038/ng.3016.
Article
PubMed
PubMed Central
CAS
Google Scholar
Montero J, Sarosiek KA, DeAngelo JD, Maertens O, Ryan J, Ercan D, et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015;160(5):977–89. https://doi.org/10.1016/j.cell.2015.01.042.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538(7626):477–82. https://doi.org/10.1038/nature19830.
Article
PubMed
CAS
Google Scholar
Leverson JD, Phillips DC, Mitten MJ, Boghaert ER, Diaz D, Tahir SK, et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med. 2015;7(279):279ra240.
Article
CAS
Google Scholar
Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15(1):49–63. https://doi.org/10.1038/nrm3722.
Article
CAS
PubMed
Google Scholar
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.
Article
PubMed
CAS
Google Scholar
Hata AN, Engelman JA, Faber AC. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 2015;5(5):475–87. https://doi.org/10.1158/2159-8290.CD-15-0011.
Article
PubMed
PubMed Central
CAS
Google Scholar
Findley HW, Gu L, Yeager AM, Zhou M. Expression and regulation of Bcl-2, Bcl-xl, and Bax correlate with p53 status and sensitivity to apoptosis in childhood acute lymphoblastic leukemia. Blood. 1997;89(8):2986–93. https://doi.org/10.1182/blood.V89.8.2986.
Article
PubMed
CAS
Google Scholar
Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD, et al. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood. 1998;91(3):991–1000. https://doi.org/10.1182/blood.V91.3.991.991_991_1000.
Article
PubMed
CAS
Google Scholar
Roberts AW, Davids MS, Pagel JM, Kahl BS, Puvvada SD, Gerecitano JF, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–22. https://doi.org/10.1056/NEJMoa1513257.
Article
PubMed
CAS
Google Scholar
Soderquist RS, Crawford L, Liu E, Lu M, Agarwal A, Anderson GR, et al. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat Commun. 2018;9(1):3513. https://doi.org/10.1038/s41467-018-05815-z.
Article
PubMed
PubMed Central
CAS
Google Scholar
Scherr AL, Mock A, Gdynia G, Schmitt N, Heilig CE, Korell F, et al. Identification of BCL-XL as highly active survival factor and promising therapeutic target in colorectal cancer. Cell Death Dis. 2020;11(10):875. https://doi.org/10.1038/s41419-020-03092-7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Campbell KJ, Dhayade S, Ferrari N, Sims AH, Johnson E, Mason SM, et al. MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death Dis. 2018;9(2):19. https://doi.org/10.1038/s41419-017-0035-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Belharazem D, Schalke B, Gold R, Nix W, Vitacolonna M, Hohenberger P, et al. cFLIP overexpression in T cells in thymoma-associated myasthenia gravis. Ann Clin Transl Neurol. 2015;2(9):894–905. https://doi.org/10.1002/acn3.210.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang B, Belharazem D, Li L, Kneitz S, Schnabel PA, Rieker RJ, et al. Anti-apoptotic signature in thymic squamous cell carcinomas - functional relevance of anti-apoptotic BIRC3 expression in the thymic carcinoma cell line 1889c. Front Oncol. 2013;3:316. https://doi.org/10.3389/fonc.2013.00316.
Article
PubMed
PubMed Central
Google Scholar
Jain R, Sheridan JM, Policheni A, Heinlein M, Gandolfo LC, Dewson G, et al. A critical epithelial survival axis regulated by MCL-1 maintains thymic function in mice. Blood. 2017;130(23):2504–15. https://doi.org/10.1182/blood-2017-03-771576.
Article
PubMed
CAS
Google Scholar
Petrini I, Meltzer PS, Zucali PA, Luo J, Lee C, Santoro A, et al. Copy number aberrations of BCL2 and CDKN2A/B identified by array-CGH in thymic epithelial tumors. Cell Death Dis. 2012;3(7):e351. https://doi.org/10.1038/cddis.2012.92.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koga K, Matsuno Y, Noguchi M, Mukai K, Asamura H, Goya T, et al. A review of 79 thymomas: modification of staging system and reappraisal of conventional division into invasive and non-invasive thymoma. Pathol Int. 1994;44(5):359–67. https://doi.org/10.1111/j.1440-1827.1994.tb02936.x.
Article
PubMed
CAS
Google Scholar
Koch R, Christie AL, Crombie JL, Palmer AC, Plana D, Shigemori K, et al. Biomarker-driven strategy for MCL1 inhibition in T-cell lymphomas. Blood. 2019;133(6):566–75. https://doi.org/10.1182/blood-2018-07-865527.
Article
PubMed
PubMed Central
CAS
Google Scholar
Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One. 2012;7(12):e51862. https://doi.org/10.1371/journal.pone.0051862.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oie HK, Russell EK, Carney DN, Gazdar AF. Cell culture methods for the establishment of the NCI series of lung cancer cell lines. J Cell Biochem Suppl. 1996;24:24–31. https://doi.org/10.1002/jcb.240630504.
Article
PubMed
CAS
Google Scholar
Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, et al. A landscape of pharmacogenomic interactions in cancer. Cell. 2016;166(3):740–54. https://doi.org/10.1016/j.cell.2016.06.017.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morales AA, Kurtoglu M, Matulis SM, Liu J, Siefker D, Gutman DM, et al. Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells. Blood. 2011;118(5):1329–39. https://doi.org/10.1182/blood-2011-01-327197.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wood KC. Overcoming MCL-1-driven adaptive resistance to targeted therapies. Nat Commun. 2020;11(1):531. https://doi.org/10.1038/s41467-020-14392-z.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee EF, Harris TJ, Tran S, Evangelista M, Arulananda S, John T, et al. BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death Dis. 2019;10(5):342. https://doi.org/10.1038/s41419-019-1568-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yasuda Y, Ozasa H, Kim YH, Yamazoe M, Ajimizu H, Yamamoto Funazo T, et al. MCL1 inhibition is effective against a subset of small-cell lung cancer with high MCL1 and low BCL-XL expression. Cell Death Dis. 2020;11(3):177. https://doi.org/10.1038/s41419-020-2379-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luedtke DA, Niu X, Pan Y, Zhao J, Liu S, Edwards H, et al. Inhibition of Mcl-1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Signal Transduct Target Ther. 2017;2(1):17012. https://doi.org/10.1038/sigtrans.2017.12.
Article
PubMed
PubMed Central
Google Scholar
Nakajima W, Hicks MA, Tanaka N, Krystal GW, Harada H. Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis. 2014;5(2):e1052. https://doi.org/10.1038/cddis.2014.6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Montero J, Gstalder C, Kim DJ, Sadowicz D, Miles W, Manos M, et al. Destabilization of NOXA mRNA as a common resistance mechanism to targeted therapies. Nat Commun. 2019;10(1):5157. https://doi.org/10.1038/s41467-019-12477-y.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cerella C, Dicato M, Diederich M. BH3 mimetics in AML therapy: death and beyond? Trends Pharmacol Sci. 2020;41(11):793–814. https://doi.org/10.1016/j.tips.2020.09.004.
Article
PubMed
CAS
Google Scholar
Belharazem D, Grass A, Paul C, Vitacolonna M, Schalke B, Rieker RJ, et al. Increased cFLIP expression in thymic epithelial tumors blocks autophagy via NF-kappaB signalling. Oncotarget. 2017;8(52):89580–94. https://doi.org/10.18632/oncotarget.15929.
Article
PubMed
PubMed Central
Google Scholar
Chen FF, Yan JJ, Chang KC, Lai WW, Chen RM, Jin YT. Immunohistochemical localization of Mcl-1 and bcl-2 proteins in thymic epithelial tumours. Histopathology. 1996;29(6):541–7. https://doi.org/10.1046/j.1365-2559.1996.d01-540.x.
Article
PubMed
CAS
Google Scholar
Zettl A, Ströbel P, Wagner K, Katzenberger T, Ott G, Rosenwald A, et al. Recurrent genetic aberrations in thymoma and thymic carcinoma. Am J Pathol. 2000;157(1):257–66. https://doi.org/10.1016/S0002-9440(10)64536-1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vaillant F, Merino D, Lee L, Breslin K, Pal B, Ritchie ME, et al. Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell. 2013;24(1):120–9. https://doi.org/10.1016/j.ccr.2013.06.002.
Article
PubMed
CAS
Google Scholar
Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435(7042):677–81. https://doi.org/10.1038/nature03579.
Article
PubMed
CAS
Google Scholar
Weeden CE, Ah-Cann C, Holik AZ, Pasquet J, Garnier JM, Merino D, et al. Dual inhibition of BCL-XL and MCL-1 is required to induce tumour regression in lung squamous cell carcinomas sensitive to FGFR inhibition. Oncogene. 2018;37(32):4475–88. https://doi.org/10.1038/s41388-018-0268-2.
Article
PubMed
CAS
Google Scholar
Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell. 2011;44(4):517–31. https://doi.org/10.1016/j.molcel.2011.10.001.
Article
PubMed
PubMed Central
CAS
Google Scholar
He Y, Koch R, Budamagunta V, Zhang P, Zhang X, Khan S, et al. DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J Hematol Oncol. 2020;13(1):95. https://doi.org/10.1186/s13045-020-00928-9.
Article
PubMed
PubMed Central
CAS
Google Scholar