Saigal S, Doyle LW: An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet. 2008, 371: 261-269. 10.1016/S0140-6736(08)60136-1.
Article
PubMed
Google Scholar
McIntire DD, Bloom SL, Casey BM, Leveno KJ: Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med. 1999, 340: 1234-1238. 10.1056/NEJM199904223401603.
Article
CAS
PubMed
Google Scholar
Barker DJ, Eriksson JG, Forsen T, Osmond C: Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002, 31: 1235-1239. 10.1093/ije/31.6.1235.
Article
CAS
PubMed
Google Scholar
Gluckman PD, Hanson MA, Cooper C, Thornburg KL: Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008, 359: 61-73. 10.1056/NEJMra0708473.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A, Vera Garcia C, Rohde S, Say L, Lawn JE: National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012, 379: 2162-2172. 10.1016/S0140-6736(12)60820-4.
Article
PubMed
Google Scholar
Goldenberg RL, Culhane JF, Iams JD, Romero R: Epidemiology and causes of preterm birth. Lancet. 2008, 371: 75-84. 10.1016/S0140-6736(08)60074-4.
Article
PubMed
Google Scholar
Ananth CV, Vintzileos AM: Maternal-fetal conditions necessitating a medical intervention resulting in preterm birth. Am J Obstet Gynecol. 2006, 195: 1557-1563. 10.1016/j.ajog.2006.05.021.
Article
PubMed
Google Scholar
Kramer MS: Determinants of low birth weight: methodological assessment and meta-analysis. Bull World Health Organ. 1987, 65: 663-737.
CAS
PubMed
PubMed Central
Google Scholar
Kramer MS: The epidemiology of adverse pregnancy outcomes: an overview. J Nutr. 2003, 133: 1592S-1596S.
CAS
PubMed
Google Scholar
McCowan LM, Roberts CT, Dekker GA, Taylor RS, Chan EH, Kenny LC, Baker PN, Moss-Morris R, Chappell LC, North RA, SCOPE consortium: Risk factors for small-for-gestational-age infants by customised birthweight centiles: data from an international prospective cohort study. BJOG. 2010, 117: 1599-1607. 10.1111/j.1471-0528.2010.02737.x.
Article
CAS
PubMed
Google Scholar
Baroutis G, Mousiolis A, Mesogitis S, Costalos C, Antsaklis A: Preterm birth trends in Greece, 1980–2008: a rising concern. Acta Obstet Gynecol Scand. 2013, 92: 575-582. 10.1111/aogs.12089.
Article
PubMed
Google Scholar
Ehrenberg HM, Iams JD, Goldenberg RL, Newman RB, Weiner SJ, Sibai BM, Caritis SN, Miodovnik M, Dombrowski MP, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Maternal-Fetal Medicine Units Network (MFMU): Maternal obesity, uterine activity, and the risk of spontaneous preterm birth. Obstet Gynecol. 2009, 113: 48-52. 10.1097/AOG.0b013e318191c818.
Article
PubMed
PubMed Central
Google Scholar
Johnson TS, Rottier KJ, Luellwitz A, Kirby RS: Maternal prepregnancy body mass index and delivery of a preterm infant in missouri 1998–2000. Public Health Nurs. 2009, 26: 3-13. 10.1111/j.1525-1446.2008.00750.x.
Article
PubMed
Google Scholar
Salihu HM, Lynch O, Alio AP, Liu J: Obesity subtypes and risk of spontaneous versus medically indicated preterm births in singletons and twins. Am J Epidemiol. 2008, 168: 13-20. 10.1093/aje/kwn092.
Article
PubMed
Google Scholar
Rey E, Couturier A: The prognosis of pregnancy in women with chronic hypertension. Am J Obstet Gynecol. 1994, 171: 410-416. 10.1016/0002-9378(94)90276-3.
Article
CAS
PubMed
Google Scholar
Gilbert WM, Young AL, Danielsen B: Pregnancy outcomes in women with chronic hypertension: a population-based study. J Reprod Med. 2007, 52: 1046-1051.
PubMed
Google Scholar
Catov JM, Bodnar LM, Ness RB, Barron SJ, Roberts JM: Inflammation and dyslipidemia related to risk of spontaneous preterm birth. Am J Epidemiol. 2007, 166: 1312-1319. 10.1093/aje/kwm273.
Article
PubMed
Google Scholar
Chatzi L, Plana E, Daraki V, Karakosta P, Alegkakis D, Tsatsanis C, Kafatos A, Koutis A, Kogevinas M: Metabolic syndrome in early pregnancy and risk of preterm birth. Am J Epidemiol. 2009, 170: 829-836. 10.1093/aje/kwp211.
Article
PubMed
Google Scholar
Kenny LC, Broadhurst DI, Dunn W, Brown M, North RA, McCowan L, Roberts C, Cooper GJ, Kell DB, Baker PN, Screening for Pregnancy Endpoints Consortium: Robust early pregnancy prediction of later preeclampsia using metabolomic biomarkers. Hypertension. 2010, 56: 741-749. 10.1161/HYPERTENSIONAHA.110.157297.
Article
CAS
PubMed
Google Scholar
Diaz SO, Pinto J, Graca G, Duarte IF, Barros AS, Galhano E, Pita C, Almeida MD, Goodfellow BJ, Carreira IM, Gil AM: Metabolic biomarkers of prenatal disorders: an exploratory NMR metabonomics study of second trimester maternal urine and blood plasma. J Proteome Res. 2011, 10: 3732-3742. 10.1021/pr200352m.
Article
CAS
PubMed
Google Scholar
Horgan RP, Broadhurst DI, Walsh SK, Dunn WB, Brown M, Roberts CT, North RA, McCowan LM, Kell DB, Baker PN, Kenny LC: Metabolic profiling uncovers a phenotypic signature of small for gestational age in early pregnancy. J Proteome Res. 2011, 10: 3660-3673. 10.1021/pr2002897.
Article
CAS
PubMed
Google Scholar
Conde-Agudelo A, Papageorghiou AT, Kennedy SH, Villar J: Novel biomarkers for the prediction of the spontaneous preterm birth phenotype: a systematic review and meta-analysis. BJOG. 2011, 118: 1042-1054. 10.1111/j.1471-0528.2011.02923.x.
Article
CAS
PubMed
Google Scholar
Conde-Agudelo A, Papageorghiou AT, Kennedy SH, Villar J: Novel biomarkers for predicting intrauterine growth restriction: a systematic review and meta-analysis. BJOG. 2013, 120: 681-694. 10.1111/1471-0528.12172.
Article
CAS
PubMed
Google Scholar
World Health Organization: ICD-10: international statistical classification of diseases and related health problems. 1992, Geneva: World Health Organization
Google Scholar
Smith GC, Shah I, Pell JP, Crossley JA, Dobbie R: Maternal obesity in early pregnancy and risk of spontaneous and elective preterm deliveries: a retrospective cohort study. Am J Public Health. 2007, 97: 157-162. 10.2105/AJPH.2005.074294.
Article
PubMed
PubMed Central
Google Scholar
Mamelle N, Cochet V, Claris O: Definition of fetal growth restriction according to constitutional growth potential. Biol Neonate. 2001, 80: 277-285. 10.1159/000047157.
Article
CAS
PubMed
Google Scholar
Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK: Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007, 2: 2692-2703. 10.1038/nprot.2007.376.
Article
CAS
PubMed
Google Scholar
Dieterle F, Ross A, Schlotterbeck G, Senn H: Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006, 78: 4281-4290. 10.1021/ac051632c.
Article
CAS
PubMed
Google Scholar
Saude E, Slupsky CM, Sykes BD: Optimization of NMR analysis of biological fluids for quantitative accuracy. Metabolomics. 2006, 2: 113-123. 10.1007/s11306-006-0023-5.
Article
CAS
Google Scholar
Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, Nunez D, Sweatman BC, Haselden JN, Cox RD, Connor SC, Griffin JL: A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics. 2007, 29: 99-108.
Article
CAS
PubMed
Google Scholar
Yap IK, Brown IJ, Chan Q, Wijeyesekera A, Garcia-Perez I, Bictash M, Loo RL, Chadeau-Hyam M, Ebbels T, De Iorio M, Maibaum E, Zhao L, Kesteloot H, Daviglus ML, Stamler J, Nicholson JK, Elliott P, Holmes E: Metabolome-wide association study identifies multiple biomarkers that discriminate north and south Chinese populations at differing risks of cardiovascular disease: INTERMAP study. J Proteome Res. 2010, 9: 6647-6654. 10.1021/pr100798r.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, et al: HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37: D603-D610. 10.1093/nar/gkn810.
Article
CAS
PubMed
Google Scholar
R Core Team: R: A language and environment for statistical computing. 2014, Vienna, Austria: R Foundation for Statistical Computing, http://www.r-project.org/.
Google Scholar
Storey JD: The positive false discovery rate: A Bayesian interpretation and the q-value. Ann Stat. 2003, 31: 2013-2035. 10.1214/aos/1074290335.
Article
Google Scholar
Armitage P: Tests for linear trends in proportions and frequencies. Biometrics. 1955, 11: 375-10.2307/3001775.
Article
Google Scholar
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M: pROC: an open-source package for R and S + to analyze and compare ROC curves. BMC Bioinformatics. 2011, 12: 77-10.1186/1471-2105-12-77.
Article
PubMed
PubMed Central
Google Scholar
Reaven GM: Banting lecture 1998. Role of insulin resistance in human disease. Diabetes. 1988, 37: 1595-1607. 10.2337/diab.37.12.1595.
Article
CAS
PubMed
Google Scholar
King JC: Physiology of pregnancy and nutrient metabolism. Am J Clin Nutr. 2000, 71: 1218S-1225S.
CAS
PubMed
Google Scholar
Torri GM, Torri J, Gulian JM, Vion-Dury J, Viout P, Cozzone PJ: Magnetic resonance spectroscopy of serum and acute-phase proteins revisited: a multiparametric statistical analysis of metabolite variations in inflammatory, infectious and miscellaneous diseases. Clin Chim Acta. 1999, 279: 77-96. 10.1016/S0009-8981(98)00166-1.
Article
CAS
PubMed
Google Scholar
Muchmore AV, Decker JM: Uromodulin: a unique 85-kilodalton immunosuppressive glycoprotein isolated from urine of pregnant women. Science. 1985, 229: 479-481. 10.1126/science.2409603.
Article
CAS
PubMed
Google Scholar
Maachi M, Pieroni L, Bruckert E, Jardel C, Fellahi S, Hainque B, Capeau J, Bastard JP: Systemic low-grade inflammation is related to both circulating and adipose tissue TNFalpha, leptin and IL-6 levels in obese women. Int J Obes Relat Metab Disord. 2004, 28: 993-997.
Article
CAS
PubMed
Google Scholar
Tea I, Le Gall G, Kuster A, Guignard N, Alexandre-Gouabau MC, Darmaun D, Robins RJ: 1H-NMR-based metabolic profiling of maternal and umbilical cord blood indicates altered materno-foetal nutrient exchange in preterm infants. PLoS One. 2012, 7: e29947-10.1371/journal.pone.0029947.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oladipo OO, Weindel AL, Saunders AN, Dietzen DJ: Impact of premature birth and critical illness on neonatal range of plasma amino acid concentrations determined by LC-MS/MS. Mol Genet Metab. 2011, 104: 476-479. 10.1016/j.ymgme.2011.08.020.
Article
CAS
PubMed
Google Scholar
Diaz SO, Barros AS, Goodfellow BJ, Duarte IF, Carreira IM, Galhano E, Pita C, Almeida Mdo C, Gil AM: Following healthy pregnancy by nuclear magnetic resonance (NMR) metabolic profiling of human urine. J Proteome Res. 2013, 12: 969-979. 10.1021/pr301022e.
Article
CAS
PubMed
Google Scholar
Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O'Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE: Metabolite profiles and the risk of developing diabetes. Nat Med. 2011, 17: 448-453. 10.1038/nm.2307.
Article
PubMed
PubMed Central
Google Scholar
Wurtz P, Soininen P, Kangas AJ, Ronnemaa T, Lehtimaki T, Kahonen M, Viikari JS, Raitakari OT, Ala-Korpela M: Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013, 36: 648-655. 10.2337/dc12-0895.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, Ebbels T, De Iorio M, Brown IJ, Veselkov KA, Daviglus ML, Kesteloot H, Ueshima H, Zhao L, Nicholson JK, Elliott P: Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 2008, 453: 396-400. 10.1038/nature06882.
Article
CAS
PubMed
Google Scholar
Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ: Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006, 40: 235-243. 10.1097/00004836-200603000-00015.
Article
CAS
PubMed
Google Scholar
Samuel BS, Gordon JI: A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A. 2006, 103: 10011-10016. 10.1073/pnas.0602187103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lord RS, Bralley JA: Clinical applications of urinary organic acids. Part 2. Dysbiosis markers. Altern Med Rev. 2008, 13: 292-306.
PubMed
Google Scholar
Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, Feldstein AE, Britt EB, Fu X, Chung YM, Wu Y, Schauer P, Smith JD, Allayee H, Tang WH, DiDonato JA, Lusis AJ, Hazen SL: Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011, 472: 57-63. 10.1038/nature09922.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Kling Backhed H, Gonzalez A, Werner JJ, Angenent LT, Knight R, Backhed F, Isolauri E, Salminen S, Ley RE: Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell. 2012, 150: 470-480. 10.1016/j.cell.2012.07.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papadopoulou E, Stratakis N, Roumeliotaki T, Sarri K, Merlo DF, Kogevinas M, Chatzi L: The effect of high doses of folic acid and iron supplementation in early-to-mid pregnancy on prematurity and fetal growth retardation: the mother-child cohort study in Crete, Greece (Rhea study). Eur J Nutr. 2012, 52: 327-336.
Article
PubMed
Google Scholar
Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, Thomsen C, Wright J, Athersuch TJ, Avellana N, Basagaña X, Brochot C, Bucchini L, Bustamante M, Carracedo A, Casas M, Estivill X, Fairley L, van Gent D, Gonzalez JR, Granum B, Gražulevičienė R, Gutzkow KB, Julvez J, Keun HC, Kogevinas M, McEachan RR, Meltzer HM, Sabidó E, Schwarze PE, et al: The Human Early Life Exposome (HELIX): project rationale and design. Environ Health Perspect. 2014, 122: 535-544.
PubMed
PubMed Central
Google Scholar
Wild CP: Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005, 14: 1847-1850. 10.1158/1055-9965.EPI-05-0456.
Article
CAS
PubMed
Google Scholar
Rappaport SM, Smith MT: Epidemiology. Environment and disease risks. Science. 2010, 330: 460-461. 10.1126/science.1192603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Athersuch TJ: The role of metabolomics in characterizing the human exposome. Bioanalysis. 2012, 4: 2207-2212. 10.4155/bio.12.211.
Article
CAS
PubMed
Google Scholar