WHO. Antimicrobial resistance: global report on surveillance 2014; 2014. p. 257.
Google Scholar
Allegranzi B, Bagheri Nejad S, Combescure C, Graafmans W, Attar H, Donaldson L, Pittet D. Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. Lancet. 2011;377(9761):228–41.
Article
PubMed
Google Scholar
Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014;22(1):36–41.
Article
CAS
PubMed
Google Scholar
Agga GE, Arthur TM, Durso LM, Harhay DM, Schmidt JW. Antimicrobial-resistant bacterial populations and antimicrobial resistance genes obtained from environments impacted by livestock and municipal waste. PLoS One. 2015;10(7):e0132586.
Article
PubMed
PubMed Central
CAS
Google Scholar
Silbergeld EK, Graham J, Price LB. Industrial food animal production, antimicrobial resistance, and human health. Annu Rev Public Health. 2008;29:151–69.
Article
PubMed
Google Scholar
Hao H, Sander P, Iqbal Z, Wang Y, Cheng G, Yuan Z. The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis. Front Microbiol. 2016;7:1626.
PubMed
PubMed Central
Google Scholar
Schaumburg F, Onwugamba FC, Akulenko R, Peters G, Mellmann A, Kock R, Becker K. A geospatial analysis of flies and the spread of antimicrobial resistant bacteria. Int J Med Microbiol. 2016;306(7):566–71.
Article
PubMed
Google Scholar
Onwugamba FC, Fitzgerald JR, Rochon K, Guardabassi L, Alabi A, Kuhne S, Grobusch MP, Schaumburg F. The role of ‘filth flies’ in the spread of antimicrobial resistance. Travel Med Infect Dis. 2018;22:8–17.
Article
PubMed
Google Scholar
Heesterbeek H, Anderson RM, Andreasen V, Bansal S, De Angelis D, Dye C, Eames KT, Edmunds WJ, Frost SD, Funk S, et al. Modeling infectious disease dynamics in the complex landscape of global health. Science. 2015;347(6227):aaa4339.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grundmann H, Hellriegel B. Mathematical modelling: a tool for hospital infection control. Lancet Infect Dis. 2006;6(1):39–45.
Article
CAS
PubMed
Google Scholar
Temime L, Hejblum G, Setbon M, Valleron AJ. The rising impact of mathematical modelling in epidemiology: antibiotic resistance research as a case study. Epidemiol Infect. 2008;136(3):289–98.
Article
CAS
PubMed
Google Scholar
Opatowski L, Guillemot D, Boelle PY, Temime L. Contribution of mathematical modeling to the fight against bacterial antibiotic resistance. Curr Opin Infect Dis. 2011;24(3):279–87.
Article
PubMed
Google Scholar
van Kleef E, Robotham JV, Jit M, Deeny SR, Edmunds WJ. Modelling the transmission of healthcare associated infections: a systematic review. BMC Infect Dis. 2013;13:294.
Article
PubMed
PubMed Central
Google Scholar
Birkegard AC, Halasa T, Toft N, Folkesson A, Graesboll K. Send more data: a systematic review of mathematical models of antimicrobial resistance. Antimicrob Resist Infect Control. 2018;7:117.
Article
PubMed
PubMed Central
Google Scholar
Centers for Disease Control and Prevention OoIDArtitUS: Antibiotic Resistance Threats in the United States, 2013. 2013.
Google Scholar
Willem L, Verelst F, Bilcke J, Hens N, Beutels P. Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015). BMC Infect Dis. 2017;17(1):612.
Article
PubMed
PubMed Central
Google Scholar
Colledge L, Verlinde R: SciVal Metrics Guidebook. 2014, Version 1.01(February 2014).
Google Scholar
O’Neill J, RESISTANCE" TROA: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. 2016.
Google Scholar
Abu-Raddad LJ, Sabatelli L, Achterberg JT, Sugimoto JD, Longini IM Jr, Dye C, Halloran ME. Epidemiological benefits of more-effective tuberculosis vaccines, drugs, and diagnostics. Proc Natl Acad Sci U S A. 2009;106(33):13980–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basu S, Andrews JR, Poolman EM, Gandhi NR, Shah NS, Moll A, Moodley P, Galvani AP, Friedland GH. Prevention of nosocomial transmission of extensively drug-resistant tuberculosis in rural South African district hospitals: an epidemiological modelling study. Lancet. 2007;370(9597):1500–7.
Article
PubMed
PubMed Central
Google Scholar
Lipsitch M, Cohen T, Murray M, Levin BR. Antiviral resistance and the control of pandemic influenza. PLoS Med. 2007;4(1):0111–21.
Article
Google Scholar
Heller J, Innocent GT, Denwood M, Reid SWJ, Kelly L, Mellor DJ. Assessing the probability of acquisition of meticillin-resistant Staphylococcus aureus (MRSA) in a dog using a nested stochastic simulation model and logistic regression sensitivity analysis. Prev Vet Med. 2011;99(2–4):211–24.
Article
CAS
PubMed
Google Scholar
Call DR, Matthews L, Subbiah M, Liu J. Do antibiotic residues in soils play a role in amplification and transmission of antibiotic resistant bacteria in cattle populations? Front Microbiol. 2013;4:193.
PubMed
PubMed Central
Google Scholar
O'Meara WP, Smith DL, McKenzie FE. Potential impact of intermittent preventive treatment (IPT) on spread of drug-resistant malaria. PLoS Med. 2006;3(5):633–42.
Google Scholar
Pongtavornpinyo W, Yeung S, Hastings IM, Dondorp AM, Day NP, White NJ. Spread of anti-malarial drug resistance: mathematical model with implications for ACT drug policies. Malar J. 2008;7:229.
Article
PubMed
PubMed Central
Google Scholar
Wu JT, Leung GM, Lipsitch M, Cooper BS, Riley S. Hedging against antiviral resistance during the next influenza pandemic using small stockpiles of an alternative chemotherapy. PLoS Med. 2009;6(5):e1000085.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tchuenche JM, Chiyaka C, Chan D, Matthews A, Mayer G. A mathematical model for antimalarial drug resistance. Math Med Biol. 2011;28(4):335–55.
Article
PubMed
Google Scholar
Chao DL, Bloom JD, Kochin BF, Antia R, Longini IM Jr. The global spread of drug-resistant influenza. J R Soc Interface. 2012;9(69):648–56.
Article
PubMed
Google Scholar
Chao DL. Modeling the global transmission of antiviral-resistant influenza viruses. Influenza Other Respir Viruses. 2013;7(Suppl 1):58–62.
Article
PubMed
Google Scholar
Kendall EA, Fofana MO, Dowdy DW. Burden of transmitted multidrug resistance in epidemics of tuberculosis: a transmission modelling analysis. Lancet Respir Med. 2015;3(12):963–72.
Article
PubMed
PubMed Central
Google Scholar
Ciccolini M, Dahl J, Chase-Topping ME, Woolhouse ME. Disease transmission on fragmented contact networks: livestock-associated methicillin-resistant Staphylococcus aureus in the Danish pig-industry. Epidemics. 2012;4(4):171–8.
Article
CAS
PubMed
Google Scholar
Hetem DJ, Bootsma MC, Troelstra A, Bonten MJ. Transmissibility of livestock-associated methicillin-resistant Staphylococcus aureus. Emerg Infect Dis. 2013;19(11):1797–802.
Article
PubMed
PubMed Central
Google Scholar
D'Agata EM, Webb GF, Pressley J. Rapid emergence of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains in the hospital setting. Math Model Nat Phenom. 2010;5(3):76–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pressley J, D'Agata EMC, Webb GF. The effect of co-colonization with community-acquired and hospital-acquired methicillin-resistant Staphylococcus aureus strains on competitive exclusion. J Theor Biol. 2010;264(3):645–56.
Article
PubMed
PubMed Central
Google Scholar
Kouyos R, Klein E, Grenfell B. Hospital-community interactions foster coexistence between methicillin-resistant strains of Staphylococcus aureus. PLoS Pathog. 2013;9(2):e1003134.
Article
PubMed
PubMed Central
Google Scholar
Webb GF, Horn MA, D'Agata EM, Moellering RC Jr, Ruan S. Competition of hospital-acquired and community-acquired methicillin-resistant Staphylococcus aureus strains in hospitals. J Biol Dyn. 2010;4(1):115–29.
Article
PubMed
Google Scholar
Joice R, Lipsitch M. Targeting imperfect vaccines against drug-resistance determinants: a strategy for countering the rise of drug resistance. PLoS One. 2013;8(7):e68940.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hogea C, van Effelterre T, Acosta CJ. A basic dynamic transmission model of Staphylococcus aureus in the US population. Epidemiol Infect. 2014;142(3):468–78.
Article
CAS
PubMed
Google Scholar
Luciani F, Sisson SA, Jiang H, Francis AR, Tanaka MM. The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2009;106(34):14711–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trauer JM, Denholm JT, McBryde ES. Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-Pacific. J Theor Biol. 2014;358:74–84.
Article
PubMed
Google Scholar
Dowdy DW, Chaisson RE, Maartens G, Corbett EL, Dorman SE. Impact of enhanced tuberculosis diagnosis in South Africa: a mathematical model of expanded culture and drug susceptibility testing. Proc Natl Acad Sci U S A. 2008;105(32):11293–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Basu S, Frledland GH, Medlock J, Andrews JR, Shah NS, Gandhi NR, Moll A, Moodley P, Sturm AW, Galvani AP. Averting epidemics of extensively drug-resistant tuberculosis. Proc Natl Acad Sci U S A. 2009;106(18):7672–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uys PW, Warren R, van Helden PD, Murray M, Victor TC. Potential of rapid diagnosis for controlling drug-susceptible and drug-resistant tuberculosis in communities where Mycobacterium tuberculosis infections are highly prevalent. J Clin Microbiol. 2009;47(5):1484–90.
Article
PubMed
PubMed Central
Google Scholar
Shrestha S, Knight GM, Fofana M, Cohen T, White RG, Cobelens F, Dowdy DW. Drivers and trajectories of resistance to new first-line drug regimens for tuberculosis. Open Forum Infect Dis. 2014;1(2):ofu073.
Article
PubMed
PubMed Central
Google Scholar
Basu S, Galvani AP. The transmission and control of XDR TB in South Africa: an operations research and mathematical modelling approach. Epidemiol Infect. 2008;136(12):1585–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen T, Hedt BL, Pagano M. Estimating the magnitude and direction of bias in tuberculosis drug resistance surveys conducted only in the public sector: a simulation study. BMC Public Health. 2010;10:355.
Article
PubMed
PubMed Central
Google Scholar
Suen SC, Bendavid E, Goldhaber-Fiebert JD. Cost-effectiveness of improvements in diagnosis and treatment accessibility for tuberculosis control in India. Int J Tuberc Lung Dis. 2015;19(9):1115–24.
Article
PubMed
Google Scholar
Cohen T, Lipsitch M, Walensky RP, Murray M. Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations. Proc Natl Acad Sci U S A. 2006;103(18):7042–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sergeev R, Colijn C, Murray M, Cohen T. Modeling the dynamic relationship between HIV and the risk of drug-resistant tuberculosis. Sci Transl Med. 2012;4(135):135ra67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhunu CP. Mathematical analysis of a three-strain tuberculosis transmission model. Appl Math Model. 2011;35(9):4647–60.
Article
Google Scholar
Agusto FB, Cook J, Shelton PD, Wickers MG. Mathematical model of MDR-TB and XDR-TB with isolation and lost to follow-up. Abstr Appl Anal. 2015;2015(828461):1–21. http://dx.doi.org/10.1155/2015/828461.
Article
Google Scholar
Basu S, Maru D, Poolman E, Galvani A. Primary and secondary tuberculosis preventive treatment in HIV clinics: simulating alternative strategies. Int J Tuberc Lung Dis. 2009;13(5):652–8.
CAS
PubMed
Google Scholar
Mills HL, Cohen T, Colijn C. Community-wide isoniazid preventive therapy drives drug-resistant tuberculosis: a model-based analysis. Sci Transl Med. 2013;5(180):80ra49.
Article
Google Scholar
Kunkel A, Crawford FW, Shepherd J, Cohen T. Benefits of continuous isoniazid preventive therapy may outweigh resistance risks in a declining tuberculosis/HIV coepidemic. Aids. 2016;30(17):2715–23.
Article
CAS
PubMed
Google Scholar
Supervie V, Garcia-Lerma JG, Heneine W, Blower S. HIV, transmitted drug resistance, and the paradox of preexposure prophylaxis. Proc Natl Acad Sci U S A. 2010;107(27):12381–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbas UL, Hood G, Wetzel AW, Mellors JW. Factors influencing the emergence and spread of HIV drug resistance arising from rollout of antiretroviral pre-exposure prophylaxis (PrEP). PLoS One. 2011;6(4):e18165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Supervie V, Barrett M, Kahn JS, Musuka G, Moeti TL, Busang L, Blower S. Modeling dynamic interactions between pre-exposure prophylaxis interventions & treatment programs: predicting HIV transmission & resistance. Sci Rep. 2011;1:185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbas UL, Glaubius R, Mubayi A, Hood G, Mellors JW. Antiretroviral therapy and pre-exposure prophylaxis: combined impact on HIV transmission and drug resistance in South Africa. J Infect Dis. 2013;208(2):224–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nichols BE, Boucher CA, van Dijk JH, Thuma PE, Nouwen JL, Baltussen R, van de Wijgert J, Sloot PM, van de Vijver DA. Cost-effectiveness of pre-exposure prophylaxis (PrEP) in preventing HIV-1 infections in rural Zambia: a modeling study. PLoS One. 2013;8(3):e59549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vijver DAMCVD, Nichols BE, Abbas UL, Boucher CAB, Cambiano V, Eaton JW, Glaubius R, Lythgoe K, Mellors J, Phillips A, et al. Preexposure prophylaxis will have a limited impact on HIV-1 drug resistance in sub-Saharan Africa: a comparison of mathematical models. AIDS. 2013;27(18):2943–51.
Article
PubMed
CAS
Google Scholar
Dimitrov DT, Boily MC, Hallett TB, Albert J, Boucher C, Mellors JW, Pillay D, van de Vijver DA. How much do we know about drug resistance due to PrEP use? Analysis of experts’ opinion and its influence on the projected public health impact. PLoS One. 2016;11(7):e0158620.
Article
PubMed
PubMed Central
CAS
Google Scholar
Glaubius RL, Parikh UM, Hood G, Penrose KJ, Bendavid E, Mellors JW, Abbas UL. Deciphering the effects of injectable pre-exposure prophylaxis for combination human immunodeficiency virus prevention. Open Forum Infect Dis. 2016;3(3):ofw125.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wilson DP, Coplan PM, Wainberg MA, Blower SM. The paradoxical effects of using antiretroviral-based microbicides to control HIV epidemics. Proc Natl Acad Sci U S A. 2008;105(28):9835–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dimitrov DT, Masse B, Boily MC. Who will benefit from a wide-scale introduction of vaginal microbicides in developing countries? Stat Commun Infect Dis. 2010;2(1):1012.
PubMed
PubMed Central
Google Scholar
Dimitrov DT, Boily MC, Baggaley RF, Masse B. Modeling the gender-specific impact of vaginal microbicides on HIV transmission. J Theor Biol. 2011;288:9–20.
Article
PubMed
Google Scholar
Vardavas R, Blower S. The emergence of HIV transmitted resistance in Botswana: “when will the WHO detection threshold be exceeded?”. PLoS One. 2007;2(1):e152.
Article
PubMed
PubMed Central
Google Scholar
Hoare A, Kerr SJ, Ruxrungtham K, Ananworanich J, Law MG, Cooper DA, Phanuphak P, Wilson DP. Hidden drug resistant HIV to emerge in the era of universal treatment access in Southeast Asia. PLoS One. 2010;5(6):e10981.
Article
PubMed
PubMed Central
CAS
Google Scholar
Phillips AN, Pillay D, Garnett G, Bennett D, Vitoria M, Cambiano V, Lundgren J. Effect on transmission of HIV-1 resistance of timing of implementation of viral load monitoring to determine switches from first to second-line antiretroviral regimens in resource-limited settings. AIDS. 2011;25(6):843–50.
Article
PubMed
Google Scholar
Pham QD, Wilson DP, Nguyen TV, Do NT, Truong LX, Nguyen LT, Zhang L. Projecting the epidemiological effect, cost-effectiveness and transmission of HIV drug resistance in Vietnam associated with viral load monitoring strategies. J Antimicrob Chemother. 2016;71(5):1367–79.
Article
PubMed
Google Scholar
Lima VD, Johnston K, Hogg RS, Levy AR, Harrigan PR, Anema A, Montaner JS. Expanded access to highly active antiretroviral therapy: a potentially powerful strategy to curb the growth of the HIV epidemic. J Infect Dis. 2008;198(1):59–67.
Article
CAS
PubMed
Google Scholar
Lou J, Bu L, Han E, Ruan Y, Xing H, Shao Y. Modeling primary and secondary drug resistances under China’s “four-free-one-care policy”. Int J Biomath. 2012;5(5):1–19.
Sood N, Wagner Z, Jaycocks A, Drabo E, Vardavas R. Test-and-treat in Los Angeles: a mathematical model of the effects of test-and-treat for the population of men who have sex with men in Los Angeles County. Clin Infect Dis. 2013;56(12):1789–96.
Article
PubMed
PubMed Central
Google Scholar
Cambiano V, Bertagnolio S, Jordan MR, Pillay D, Perriëns JH, Venter F, Lundgren J, Phillips A. Predicted levels of HIV drug resistance: potential impact of expanding diagnosis, retention, and eligibility criteria for antiretroviral therapy initiation. AIDS. 2014;28(SUPPL. 1):S15–23.
Article
CAS
PubMed
Google Scholar
Nichols BE, Sigaloff KC, Kityo C, Hamers RL, Baltussen R, Bertagnolio S, Jordan MR, Hallett TB, Boucher CA, de Wit TF, et al. Increasing the use of second-line therapy is a cost-effective approach to prevent the spread of drug-resistant HIV: a mathematical modelling study. J Int AIDS Soc. 2014;17:19164.
Article
PubMed
PubMed Central
Google Scholar
Nichols BE, Sigaloff KC, Kityo C, Mandaliya K, Hamers RL, Bertagnolio S, Jordan MR, Boucher CA, Rinke de Wit TF, van de Vijver DA. Averted HIV infections due to expanded antiretroviral treatment eligibility offsets risk of transmitted drug resistance: a modeling study. Aids. 2014;28(1):73–83.
Article
CAS
PubMed
Google Scholar
Iwani S, Suzuki T, Takeuchi Y. Paradox of vaccination: is vaccination really effective against avian flu epidemics? PLoS One. 2009;4(3):e4915.
Article
CAS
Google Scholar
McCaw JM, Arinaminpathy N, Hurt AC, McVernon J, AR ML. A mathematical framework for estimating pathogen transmission fitness and inoculum size using data from a competitive mixtures animal model. PLoS Comput Biol. 2011;7(4):e1002026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Regoes RR, Bonhoeffer S. Emergence of drug-resistant influenza virus: population dynamical considerations. Science. 2006;312(5772):389–91.
Article
CAS
PubMed
Google Scholar
Debarre F, Bonhoeffer S, Regoes RR. The effect of population structure on the emergence of drug resistance during influenza pandemics. J R Soc Interface. 2007;4(16):893–906.
Article
PubMed
PubMed Central
Google Scholar
Xu Y, Allen LJ, Perelson AS. Stochastic model of an influenza epidemic with drug resistance. J Theor Biol. 2007;248(1):179–93.
Article
PubMed
PubMed Central
Google Scholar
McCaw JM, Wood JG, McCaw CT, McVernon J. Impact of emerging antiviral drug resistance on influenza containment and spread: influence of subclinical infection and strategic use of a stockpile containing one or two drugs. PLoS One. 2008;3(6):e2362.
Article
PubMed
PubMed Central
CAS
Google Scholar
Handel A, Longini IM Jr, Antia R. Intervention strategies for an influenza pandemic taking into account secondary bacterial infections. Epidemics. 2009;1(3):185–95.
Article
PubMed
PubMed Central
Google Scholar
Moghadas SM, Bowman CS, Rost G, Fisman DN, Wu J. Post-exposure prophylaxis during pandemic outbreaks. BMC Med. 2009;7:73.
Article
PubMed
PubMed Central
Google Scholar
Van Den Dool C, Hak E, Bonten MJM, Wallinga J. A model-based assessment of oseltamivir prophylaxis strategies to prevent influenza in nursing homes. Emerg Infect Dis. 2009;15(10):1547–55.
Article
PubMed
PubMed Central
Google Scholar
Dafilis MP, Moss R, McVernon J, McCaw J. Drivers and consequences of influenza antiviral resistant-strain emergence in a capacity-constrained pandemic response. Epidemics. 2012;4(4):219–26.
Article
PubMed
Google Scholar
Moghadas SM. Management of drug resistance in the population: influenza as a case study. Proc Biol Sci. 2008;275(1639):1163–9.
Article
PubMed
PubMed Central
Google Scholar
Moghadas SM, Bowman CS, Rost G, Wu J. Population-wide emergence of antiviral resistance during pandemic influenza. PLoS One. 2008;3(3):e1839.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alexander ME, Dietrich SM, Hua Y, Moghadas SM. A comparative evaluation of modelling strategies for the effect of treatment and host interactions on the spread of drug resistance. J Theor Biol. 2009;259(2):253–63.
Article
PubMed
PubMed Central
Google Scholar
Arino J, Bowman CS, Moghadas SM. Antiviral resistance during pandemic influenza: implications for stockpiling and drug use. BMC Infect Dis. 2009;9:8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shim E, Chapman GB, Galvani AP. Decision making with regard to antiviral intervention during an influenza pandemic. Med Decis Mak. 2010;30(4):E64–81.
Article
Google Scholar
Patterson-Lomba O, Althouse BM, Goerg GM, Hebert-Dufresne L. Optimizing treatment regimes to hinder antiviral resistance in influenza across time scales. PLoS One. 2013;8(3):e59529.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexander ME, Bowman CS, Feng Z, Gardam M, Moghadas SM, Rost G, Wu J, Yan P. Emergence of drug resistance: implications for antiviral control of pandemic influenza. Proc Biol Sci. 2007;274(1619):1675–84.
Article
PubMed
PubMed Central
Google Scholar
Jaberi-Douraki M, Heffernan JM, Wu J, Moghadas SM. Optimal treatment profile during an influenza epidemic. Differential Equations and Dynamical Systems. 2013;21(3):237–52.
Article
Google Scholar
Jaberi-Douraki M, Moghadas SM. Optimality of a time-dependent treatment profile during an epidemic. J Biol Dyn. 2013;7:133–47.
Article
PubMed
PubMed Central
Google Scholar
Hansen J, Day T. Coinfection and the evolution of drug resistance. J Evol Biol. 2014;27(12):2595–604.
Article
CAS
PubMed
Google Scholar
Laxminarayan R, Over M, Smith DL. Will a global subsidy of new antimalarials delay the emergence of resistance and save lives? Health Aff. 2006;25(2):325–36.
Article
Google Scholar
Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM, Day NP, White NJ, White LJ. The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J. 2009;8:31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maude RJ, Socheat D, Nguon C, Saroth P, Dara P, Li G, Song J, Yeung S, Dondorp AM, Day NP, et al. Optimising strategies for Plasmodium falciparum malaria elimination in Cambodia: primaquine, mass drug administration and artemisinin resistance. PLoS One. 2012;7(5):e37166.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maude RJ, Nguon C, Dondorp AM, White LJ, White NJ. The diminishing returns of atovaquone-proguanil for elimination of Plasmodium falciparum malaria: modelling mass drug administration and treatment. Malar J. 2014;13:380.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alexander N, Sutherland C, Roper C, Cissé B, Schellenberg D. Modelling the impact of intermittent preventive treatment for malaria on selection pressure for drug resistance. Malar J. 2007;6:9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gingras G, Guertin MH, Laprise JF, Drolet M, Brisson M. Mathematical modeling of the transmission dynamics of Clostridium difficile infection and colonization in healthcare settings: a systematic review. PLoS One. 2016;11(9):e0163880.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rupnow MF, Shachter RD, Owens DK, Parsonnet J. A dynamic transmission model for predicting trends in Helicobacter pylori and associated diseases in the United States. Emerg Infect Dis. 2000;6(3):228–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coen PG, Heath PT, Barbour ML, Garnett GP. Mathematical models of Haemophilus influenzae type b. Epidemiol Infect. 1998;120(3):281–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panackal AA. Optimizing containment and control of Candida parapsilosis Fungemia among neonates in the outbreak setting using a mathematical modeling approach. J Mycol. 2013;2013:11.
Google Scholar
Anstey NM, Russell B, Yeo TW, Price RN. The pathophysiology of vivax malaria. Trends Parasitol. 2009;25(5):220–7.
Article
CAS
PubMed
Google Scholar
Baird JK. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev. 2013;26(1):36–57.
Article
PubMed
PubMed Central
Google Scholar
Price RN, von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ. Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(10):982–91.
Article
PubMed
PubMed Central
Google Scholar
Witvrouw M, Pannecouque C, Switzer WM, Folks TM, De Clercq E, Heneine W. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis. Antivir Ther. 2004;9(1):57–65.
CAS
PubMed
Google Scholar
Boyer PL, Clark PK, Hughes SH. HIV-1 and HIV-2 reverse transcriptases: different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J Virol. 2012;86(10):5885–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Visseaux B, Damond F, Matheron S, Descamps D, Charpentier C. Hiv-2 molecular epidemiology. Infect Genet Evol. 2016;46:233–40.
Article
CAS
PubMed
Google Scholar
Morrill HJ, Caffrey AR, Jump RL, Dosa D, LaPlante KL. Antimicrobial stewardship in long-term care facilities: a call to action. J Am Med Dir Assoc. 2016;17(2):183 e181–16.
Article
Google Scholar
Augustine S, Bonomo RA. Taking stock of infections and antibiotic resistance in the elderly and long-term care facilities: a survey of existing and upcoming challenges. Eur J Microbiol Immunol (Bp). 2011;1(3):190–7.
Article
CAS
Google Scholar
van Buul LW, van der Steen JT, Veenhuizen RB, Achterberg WP, Schellevis FG, Essink RT, van Benthem BH, Natsch S, Hertogh CM. Antibiotic use and resistance in long term care facilities. J Am Med Dir Assoc. 2012;13(6):568 e561–13.
Google Scholar
Cabello FC, Godfrey HP, Buschmann AH, Dolz HJ. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect Dis. 2016;16(7):e127–33.
Article
PubMed
Google Scholar
Watts JEM, Schreier HJ, Lanska L, Hale MS. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar Drugs. 2017;15(6):E158.
Article
PubMed Central
CAS
Google Scholar
Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegard B, Soderstrom H, Larsson DG. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One. 2011;6(2):e17038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pruden A, Arabi M, Storteboom HN. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol. 2012;46(21):11541–9.
Article
CAS
PubMed
Google Scholar
Hocquet D, Muller A, Bertrand X. What happens in hospitals does not stay in hospitals: antibiotic-resistant bacteria in hospital wastewater systems. J Hosp Infect. 2016;93(4):395–402.
Article
CAS
PubMed
Google Scholar
Caminade C, KM MI, Jones AE. Impact of recent and future climate change on vector-borne diseases. Ann N Y Acad Sci. 2018;1436(1):157–173.
Article
PubMed
PubMed Central
Google Scholar
MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic resistance increases with local temperature. Nat Clim Chang. 2018;8(6):510–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holloway K, Mathai E, Gray A, Community-Based Surveillance of Antimicrobial U, Resistance in Resource-Constrained Settings Project G. Surveillance of antimicrobial resistance in resource-constrained settings - experience from five pilot projects. Tropical Med Int Health. 2011;16(3):368–74.
Article
CAS
Google Scholar
Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control. 2017;6:47.
Article
PubMed
PubMed Central
Google Scholar
Funk S, Salathe M, Jansen VA. Modelling the influence of human behaviour on the spread of infectious diseases: a review. J R Soc Interface. 2010;7(50):1247–56.
Article
PubMed
PubMed Central
Google Scholar
Oraby T, Thampi V, Bauch CT. The influence of social norms on the dynamics of vaccinating behaviour for paediatric infectious diseases. Proc Biol Sci. 2014;281(1780):20133172.
Article
PubMed
PubMed Central
Google Scholar
Funk S, Bansal S, Bauch CT, Eames KT, Edmunds WJ, Galvani AP, Klepac P. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models. Epidemics. 2015;10:21–5.
Article
PubMed
Google Scholar
Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Burgmann H, Sorum H, Norstrom M, Pons MN, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13(5):310–7.
Article
CAS
PubMed
Google Scholar
Fernandez J, Guerra B, Rodicio MR. Resistance to carbapenems in non-typhoidal Salmonella enterica Serovars from humans, animals and food. Vet Sci. 2018;5(2):E40.
Article
PubMed Central
Google Scholar
Vossenkuhl B, Brandt J, Fetsch A, Kasbohrer A, Kraushaar B, Alt K, Tenhagen BA. Comparison of spa types, SCCmec types and antimicrobial resistance profiles of MRSA isolated from turkeys at farm, slaughter and from retail meat indicates transmission along the production chain. PLoS One. 2014;9(5):e96308.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jobbins SE, Alexander KA. From whence they came--antibiotic-resistant Escherichia Coli in African wildlife. J Wildl Dis. 2015;51(4):811–20.
Article
CAS
PubMed
Google Scholar
Bonnedahl J, Jarhult JD. Antibiotic resistance in wild birds. Ups J Med Sci. 2014;119(2):113–6.
Article
PubMed
PubMed Central
Google Scholar
Baggaley RF, Powers KA, Boily MC. What do mathematical models tell us about the emergence and spread of drug-resistant HIV? Curr Opin HIV AIDS. 2011;6(2):131–40.
Article
PubMed
PubMed Central
Google Scholar
Antia R, Regoes RR, Koella JC, Bergstrom CT. The role of evolution in the emergence of infectious diseases. Nature. 2003;426(6967):658–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gog JR, Pellis L, Wood JL, McLean AR, Arinaminpathy N, Lloyd-Smith JO. Seven challenges in modeling pathogen dynamics within-host and across scales. Epidemics. 2015;10:45–8.
Article
PubMed
Google Scholar
Patyk K, Caraguel C, Kristensen C, Forde-folle K. Lexicon of disease spread modelling terms. Rev Sci Tech. 2011;30(2):547–54.
Article
CAS
PubMed
Google Scholar
Mishra S, Fisman DN, Boily MC. The ABC of terms used in mathematical models of infectious diseases. J Epidemiol Community Health. 2011;65(1):87–94.
Article
PubMed
Google Scholar
Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF. The ODD protocol: a review and first update. Ecol Model. 2010;221:2760–8.
Article
Google Scholar
Lim YW, Steinhoff M, Girosi F, Holtzman D, Campbell H, Boer R, Black R, Mulholland K. Reducing the global burden of acute lower respiratory infections in children: the contribution of new diagnostics. Nature. 2006;444(Suppl 1):9–18.
Article
PubMed
Google Scholar
Bruzzese E, Giannattasio A, Guarino A. Antibiotic treatment of acute gastroenteritis in children. F1000Res. 2018;7:193.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hurford A, Morris AM, Fisman DN, Wu J. Linking antimicrobial prescribing to antimicrobial resistance in the ICU: before and after an antimicrobial stewardship program. Epidemics. 2012;4(4):203–10.
Article
PubMed
Google Scholar
Talaminos A, Lopez-Cerero L, Calvillo J, Pascual A, Roa LM, Rodriguez-Bano J. Modelling the epidemiology of Escherichia coli ST131 and the impact of interventions on the community and healthcare centres. Epidemiol Infect. 2016;144(9):1974–82.
Article
CAS
PubMed
Google Scholar
Pelat C, Kardas-Sloma L, Birgand G, Ruppe E, Schwarzinger M, Andremont A, Lucet JC, Yazdanpanah Y. Hand hygiene, cohorting, or antibiotic restriction to control outbreaks of multidrug-resistant Enterobacteriaceae. Infect Control Hosp Epidemiol. 2016;37(3):272–80.
Article
PubMed
Google Scholar
D'Agata EMC, Horn MA, Ruan S, Webb GF, Wares JR. Efficacy of infection control interventions in reducing the spread of multidrug-resistant organisms in the hospital setting. PLoS One. 2012;7(2):e30170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park AW, Haven J, Kaplan R, Gandon S. Refugia and the evolutionary epidemiology of drug resistance. Biol Lett. 2015;11(11):20150783.
Article
PubMed
PubMed Central
CAS
Google Scholar
Laurenson YCSM, Kahn LP, Bishop SC, Kyriazakis I. Which is the best phenotypic trait for use in a targeted selective treatment strategy for growing lambs in temperate climates? Vet Parasitol. 2016;226:174–88.
Article
PubMed
Google Scholar
Leathwick DM, Waghorn TS, Miller CM, Candy PM, Oliver AM. Managing anthelmintic resistance--use of a combination anthelmintic and leaving some lambs untreated to slow the development of resistance to ivermectin. Vet Parasitol. 2012;187(1–2):285–94.
Article
CAS
PubMed
Google Scholar
Verelst F, Willem L, Beutels P. Behavioural change models for infectious disease transmission: a systematic review (2010-2015). J R Soc Interface. 2016;13(125):20160820.
Article
PubMed Central
PubMed
Google Scholar
Lipsitch M, Siber GR. How can vaccines contribute to solving the antimicrobial resistance problem? MBio. 2016;7(3):e00428–16.
Ginsburg AS, Klugman KP. Vaccination to reduce antimicrobial resistance. Lancet Glob Health. 2017;5(12):e1176–7.
Article
PubMed
Google Scholar
Jansen KU, Knirsch C, Anderson AS. The role of vaccines in preventing bacterial antimicrobial resistance. Nat Med. 2018;24(1):10–9.
Article
CAS
PubMed
Google Scholar
Bansal S, Chowell G, Simonsen L, Vespignani A, Viboud C. Big data for infectious disease surveillance and modeling. J Infect Dis. 2016;214(suppl_4):S375–9.
Article
PubMed
PubMed Central
Google Scholar
Worby CJ, Chang HH, Hanage WP, Lipsitch M. The distribution of pairwise genetic distances: a tool for investigating disease transmission. Genetics. 2014;198(4):1395–404.
Article
PubMed
PubMed Central
Google Scholar
Brock AR, Gibbs CA, Ross JV, Esterman A. The impact of antimalarial use on the emergence and transmission of Plasmodium falciparum resistance: a scoping review of mathematical models. Trop Med Infect Dis. 2017;2(4):54.
Article
PubMed Central
Google Scholar
Cohen T, Dye C, Colijn C, Williams B, Murray M. Mathematical models of the epidemiology and control of drug-resistant TB. Expert Rev Respir Med. 2009;3(1):67–79.
Article
PubMed
Google Scholar
Wu JT, Cowling BJ. The use of mathematical models to inform influenza pandemic preparedness and response. Exp Biol Med (Maywood). 2011;236(8):955–61.
Article
CAS
Google Scholar
Caudill L, Wares JR. The role of mathematical modeling in designing and evaluating antimicrobial stewardship programs. Curr Treat Options Inf Dis. 2016;8(2):124–38.
Article
Google Scholar
DalBen MF, Teixeira Mendes E, Moura ML, Abdel Rahman D, Peixoto D, Alves Dos Santos S, Barcelos de Figueiredo W, Vitale Mendes P, Utino Taniguchi L, Bezerra Coutinho FA, et al. A model-based strategy to control the spread of Carbapenem-resistant Enterobacteriaceae: simulate and implement. Infect Control Hosp Epidemiol. 2016;37(11):1315–22.
Article
PubMed
Google Scholar
Domenech de Cellès M, Zahar JR, Abadie V, Guillemot D. Limits of patient isolation measures to control extended-spectrum beta-lactamase-producing Enterobacteriaceae: model-based analysis of clinical data in a pediatric ward. BMC Infect Dis. 2013;13:187.
Article
PubMed
PubMed Central
Google Scholar
Ballarin A, Posteraro B, Demartis G, Gervasi S, Panzarella F, Torelli R, Paroni Sterbini F, Morandotti G, Posteraro P, Ricciardi W, et al. Forecasting ESKAPE infections through a time-varying auto-adaptive algorithm using laboratory-based surveillance data. BMC Infect Dis. 2014;14:634.
Article
PubMed
PubMed Central
Google Scholar
Wang X, Chen Y, Zhao W, Wang Y, Song Q, Liu H, Zhao J, Han X, Hu X, Grundmann H, et al. A data-driven mathematical model of multi-drug resistant Acinetobacter baumannii transmission in an intensive care unit. Sci Rep. 2015;5:9478.
Article
PubMed
PubMed Central
CAS
Google Scholar
Doan TN, Kong DCM, Marshall C, Kirkpatrick CMJ, McBryde ES. Modeling the impact of interventions against Acinetobacter baumannii transmission in intensive care units. Virulence. 2016;7(2):141–52.
Article
PubMed
Google Scholar
Fresnadillo-Martinez MJ, Garcia-Merino E, Garcia-Sanchez E, Martin-del Rey A, Rodriguez-Encinas A, Rodriguez-Sanchez G, Garcia-Sanchez JE. Prevention of an outbreak of Acinetobacter baumannii in intensive care units: study of the efficacy of different mathematical methods. Revista Espanola de Quimioterapia. 2015;28(1):10–20.
PubMed
Google Scholar
Handel A, Regoes RR, Antia R. The role of compensatory mutations in the emergence of drug resistance. PLoS Comput Biol. 2006;2(10):e137.
Article
PubMed
PubMed Central
Google Scholar
Chan CH, McCabe CJ, Fisman DN. Core groups, antimicrobial resistance and rebound in gonorrhoea in North America. Sex Transm Infect. 2012;88(3):200–4.
Article
PubMed
Google Scholar
Hui BB, Ryder N, Su JY, Ward J, Chen MY, Donovan B, Fairley CK, Guy RJ, Lahra MM, Law MG, et al. Exploring the benefits of molecular testing for gonorrhoea antibiotic resistance surveillance in remote settings. PLoS One. 2015;10(7):e0133202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trecker MA, Hogan DJ, Waldner CL, Dillon JA, Osgood ND. Revised simulation model does not predict rebound in gonorrhoea prevalence where core groups are treated in the presence of antimicrobial resistance. Sex Transm Infect. 2015;91(4):300–2.
Article
PubMed
Google Scholar
Xiridou M, Soetens LC, Koedijk FD, MA VANDERS, Wallinga J. Public health measures to control the spread of antimicrobial resistance in Neisseria gonorrhoeae in men who have sex with men. Epidemiol Infect. 2015;143(8):1575–84.
Article
CAS
PubMed
Google Scholar
Fingerhuth SM, Bonhoeffer S, Low N, Althaus CL. Antibiotic-resistant Neisseria gonorrhoeae spread faster with more treatment, not more sexual partners. PLoS Pathog. 2016;12(5):e1005611.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bootsma MCJ, Diekmann O, Bonten MJM. Controlling methicillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci U S A. 2006;103(14):5620–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
McBryde ES, Pettitt AN, McElwain DL. A stochastic mathematical model of methicillin resistant Staphylococcus aureus transmission in an intensive care unit: predicting the impact of interventions. J Theor Biol. 2007;245(3):470–81.
Article
CAS
PubMed
Google Scholar
Pettitt AN, Forrester ML, Gibson GJ. Bayesian inference of hospital-acquired infectious diseases and control measures given imperfect surveillance data. Biostatistics. 2007;8(2):383–401.
Article
PubMed
Google Scholar
Robotham JV, Jenkins DR, Medley GF. Screening strategies in surveillance and control of methicillin-resistant Staphylococcus aureus (MRSA). Epidemiol Infect. 2007;135(2):328–42.
Article
CAS
PubMed
Google Scholar
Drovandi CC, Pettitt AN. Multivariate Markov process models for the transmission of methicillin-resistant Staphylococcus aureus in a hospital ward. Biometrics. 2008;64(3):851–9.
Article
CAS
PubMed
Google Scholar
Allen BD, Perla RJ. A long-term forecast of MRSA daily burden using logistic modeling. Clin Lab Sci. 2009;22(1):26–9.
PubMed
Google Scholar
Beggs CB, Shepherd SJ, Kerr KG. How does healthcare worker hand hygiene behaviour impact upon the transmission of MRSA between patients?: an analysis using a Monte Carlo model. BMC Infect Dis. 2009;9:64.
Article
PubMed
PubMed Central
Google Scholar
D'Agata EM, Webb GF, Horn MA, Moellering RC Jr, Ruan S. Modeling the invasion of community-acquired methicillin-resistant Staphylococcus aureus into hospitals. Clin Infect Dis. 2009;48(3):274–84.
Article
PubMed
Google Scholar
Skov RL, Jensen KS. Community-associated meticillin-resistant Staphylococcus aureus as a cause of hospital-acquired infections. J Hosp Infect. 2009;73(4):364–70.
Article
CAS
PubMed
Google Scholar
Barnes S, Golden B, Wasil E. MRSA transmission reduction using agent-based modeling and simulation. INFORMS J Comput. 2010;22(4):635–46.
Article
Google Scholar
Donker T, Wallinga J, Grundmann H. Patient referral patterns and the spread of hospital-acquired infections through national health care networks. PLoS Comput Biol. 2010;6(3):e1000715.
Article
PubMed
PubMed Central
CAS
Google Scholar
Friedman A, Ziyadi N, Boushaba K. A model of drug resistance with infection by health care workers. Math Biosci Eng. 2010;7(4):779–92.
Article
PubMed
Google Scholar
Lee BY, Bailey RR, Smith KJ, Muder RR, Strotmeyer ES, Lewis GJ, Ufberg PJ, Song Y, Harrison LH. Universal methicillin-resistant Staphylococcus aureus (MRSA) surveillance for adults at hospital admission: an economic model and analysis. Infect Control Hosp Epidemiol. 2010;31(6):598–606.
Article
PubMed
PubMed Central
Google Scholar
Barnes SL, Harris AD, Golden BL, Wasil EA, Furuno JP. Contribution of interfacility patient movement to overall methicillin-resistant Staphylococcus aureus prevalence levels. Infect Control Hosp Epidemiol. 2011;32(11):1073–8.
Article
PubMed
PubMed Central
Google Scholar
Bootsma MC, Wassenberg MW, Trapman P, Bonten MJ. The nosocomial transmission rate of animal-associated ST398 meticillin-resistant Staphylococcus aureus. J R Soc Interface. 2011;8(57):578–84.
Article
PubMed
Google Scholar
Christopher S, Verghis RM, Antonisamy B, Sowmyanarayanan TV, Brahmadathan KN, Kang G, Cooper BS. Transmission dynamics of methicillin-resistant Staphylococcus aureus in a medical intensive care unit in India. PLoS One. 2011;6(7):e20604.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kouyos RD, Abelzur Wiesch P, Bonhoeffer S. Informed switching strongly decreases the prevalence of antibiotic resistance in hospital wards. PLoS Comput Biol. 2011;7(3):e1001094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee BY, McGlone SM, Wong KF, Yilmaz SL, Avery TR, Song Y, Christie R, Eubank S, Brown ST, Epstein JM, et al. Modeling the spread of methicillin-resistant Staphylococcus aureus (MRSA) outbreaks throughout the hospitals in Orange County, California. Infect Control Hosp Epidemiol. 2011;32(6):562–72.
Article
PubMed
PubMed Central
Google Scholar
Lee BY, Song Y, McGlone SM, Bailey RR, Feura JM, Tai JH, Lewis GJ, Wiringa AE, Smith KJ, Muder RR, et al. The economic value of screening haemodialysis patients for methicillin-resistant Staphylococcus aureus in the USA. Clin Microbiol Infect. 2011;17(11):1717–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Milazzo L, Bown JL, Eberst A, Phillips G, Crawford JW. Modelling of healthcare associated infections: a study on the dynamics of pathogen transmission by using an individual-based approach. Comput Methods Prog Biomed. 2011;104(2):260–5.
Article
CAS
Google Scholar
Chamchod F, Ruan S. Modeling methicillin-resistant Staphylococcus aureus in hospitals: transmission dynamics, antibiotic usage and its history. Theor Biol Med Model. 2012;9:25.
Article
PubMed
PubMed Central
Google Scholar
Chamchod F, Ruan S. Modeling the spread of methicillin-resistant Staphylococcus aureus in nursing homes for elderly. PLoS One. 2012;7(1):e29757.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurieva T, Bootsma MC, Bonten MJ. Successful Veterans Affairs initiative to prevent methicillin-resistant Staphylococcus aureus infections revisited. Clin Infect Dis. 2012;54(11):1618–20.
Article
PubMed
Google Scholar
Gurieva TV, Bootsma MC, Bonten MJ. Decolonization of patients and health care workers to control nosocomial spread of methicillin-resistant Staphylococcus aureus: a simulation study. BMC Infect Dis. 2012;12:302.
Article
PubMed
PubMed Central
Google Scholar
Hall IM, Barrass I, Leach S, Pittet D, Hugonnet S. Transmission dynamics of methicillin-resistant Staphylococcus aureus in a medical intensive care unit. J R Soc Interface. 2012;9(75):2639–52.
Article
PubMed
PubMed Central
Google Scholar
Nielsen KL, Pedersen TM, Udekwu KI, Petersen A, Skov RL, Hansen LH, Hughes D, Frimodt-Moller N. Fitness cost: a bacteriological explanation for the demise of the first international methicillin-resistant Staphylococcus aureus epidemic. J Antimicrob Chemother. 2012;67(6):1325–32.
Article
CAS
PubMed
Google Scholar
Tekle YI, Nielsen KM, Liu J, Pettigrew MM, Meyers LA, Galvani AP, Townsend JP. Controlling antimicrobial resistance through targeted, vaccine-induced replacement of strains. PLoS One. 2012;7(12):e50688.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Xiao Y, Wang J, Lu X. A mathematical model of effects of environmental contamination and presence of volunteers on hospital infections in China. J Theor Biol. 2012;293:161–73.
Article
PubMed
Google Scholar
Deeny SR, Cooper BS, Cookson B, Hopkins S, Robotham JV. Targeted versus universal screening and decolonization to reduce healthcare-associated meticillin-resistant Staphylococcus aureus infection. J Hosp Infect. 2013;85(1):33–44.
Article
CAS
PubMed
Google Scholar
Gurieva T, Bootsma MC, Bonten MJ. Cost and effects of different admission screening strategies to control the spread of methicillin-resistant Staphylococcus aureus. PLoS Comput Biol. 2013;9(2):e1002874.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kardas-Sloma L, Boelle PY, Opatowski L, Guillemot D, Temime L. Antibiotic reduction campaigns do not necessarily decrease bacterial resistance: the example of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(9):4410–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kong F, Paterson DL, Whitby M, Coory M, AC C. A hierarchical spatial modelling approach to investigate MRSA transmission in a tertiary hospital. BMC Infect Dis. 2013;13:449.
Article
PubMed
PubMed Central
Google Scholar
Lee BY, Bartsch SM, Wong KF, Singh A, Avery TR, Kim DS, Brown ST, Murphy CR, Yilmaz SL, Potter MA, et al. The importance of nursing homes in the spread of methicillin-resistant Staphylococcus aureus (MRSA) among hospitals. Med Care. 2013;51(3):205–15.
Article
PubMed
PubMed Central
Google Scholar
Lee BY, Singh A, Bartsch SM, Wong KF, Kim DS, Avery TR, Brown ST, Murphy CR, Yilmaz SL, Huang SS. The potential regional impact of contact precaution use in nursing homes to control methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol. 2013;34(2):151–60.
Article
PubMed
Google Scholar
Lee BY, Yilmaz SL, Wong KF, Bartsch SM, Eubank S, Song Y, Avery TR, Christie R, Brown ST, Epstein JM, et al. Modeling the regional spread and control of vancomycin-resistant enterococci. Am J Infect Control. 2013;41(8):668–73.
Article
PubMed
Google Scholar
Moxnes JF, de Blasio BF, Leegaard TM, AEF M. Methicillin-resistant Staphylococcus aureus (MRSA) is increasing in Norway: a time series analysis of reported MRSA and methicillin-sensitive S. aureus cases, 1997-2010. PLoS One. 2013;8(8):e70499.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plipat N, Spicknall IH, Koopman JS, Eisenberg JNS. The dynamics of methicillin-resistant Staphylococcus aureus exposure in a hospital model and the potential for environmental intervention. BMC Infect Dis. 2013;13:11.
Article
Google Scholar
Wang X, Panchanathan S, Chowell G. A data-driven mathematical model of CA-MRSA transmission among age groups: evaluating the effect of control interventions. PLoS Comput Biol. 2013;9(11):e1003328.
Article
PubMed
PubMed Central
CAS
Google Scholar
Worby CJ, Jeyaratnam D, Robotham JV, Kypraios T, O'Neill PD, De Angelis D, French G, Cooper BS. Estimating the effectiveness of isolation and decolonization measures in reducing transmission of methicillin-resistant Staphylococcus aureus in hospital general wards. Am J Epidemiol. 2013;177(11):1306–13.
Article
PubMed
PubMed Central
Google Scholar
Deeny SR, Worby CJ, Tosas Auguet O, Cooper BS, Edgeworth J, Cookson B, Robotham JV. Impact of mupirocin resistance on the transmission and control of healthcare-associated MRSA. J Antimicrob Chemother. 2015;70(12):3366–78.
CAS
PubMed
PubMed Central
Google Scholar
Gidengil CA, Gay C, Huang SS, Platt R, Yokoe D, Lee GM. Cost-effectiveness of strategies to prevent methicillin-resistant Staphylococcus aureus transmission and infection in an intensive care unit. Infect Control Hosp Epidemiol. 2015;36(1):17–27.
Article
PubMed
PubMed Central
Google Scholar
Ziakas PD, Zacharioudakis IM, Zervou FN, Mylonakis E. Methicillin-resistant staphylococcus aureus prevention strategies in the ICU: a clinical decision analysis. Crit Care Med. 2015;43(2):382–93.
Article
PubMed
Google Scholar
Agusto FB. Optimal control of methicillin-resistant Staphylococcus aureus transmission in hospital settings. App Math Modell. 2016;40(7–8):4822–43.
Article
Google Scholar
Berk Z, Laurenson Y, Forbes AB, Kyriazakis I. Modelling the consequences of targeted selective treatment strategies on performance and emergence of anthelmintic resistance amongst grazing calves. Int J Parasitol Drugs Drug Resist. 2016;6(3):258–71.
Article
PubMed
PubMed Central
Google Scholar
Ding W, Webb GF. Optimal control applied to community-acquired methicillin-resistant Staphylococcus aureus in hospitals. J Biol Dyn. 2016;12:1–14.
Hetem DJ, Bootsma MCJ, Bonten MJM, Weinstein RA. Prevention of surgical site infections: decontamination with mupirocin based on preoperative screening for Staphylococcus aureus carriers or universal decontamination? Clin Infect Dis. 2016;62(5):631–6.
Article
CAS
PubMed
Google Scholar
López-García M. Stochastic descriptors in an SIR epidemic model for heterogeneous individuals in small networks. Math Biosci. 2016;271:42–61.
Article
PubMed
Google Scholar
Robotham JV, Deeny SR, Fuller C, Hopkins S, Cookson B, Stone S. Cost-effectiveness of national mandatory screening of all admissions to English National Health Service hospitals for meticillin-resistant Staphylococcus aureus: a mathematical modelling study. Lancet Infect Dis. 2016;16(3):348–56.
Article
PubMed
Google Scholar
Hetem DJ, Westh H, Boye K, Jarlov JO, Bonten MJ, Bootsma MC. Nosocomial transmission of community-associated methicillin-resistant Staphylococcus aureus in Danish hospitals. J Antimicrob Chemother. 2012;67(7):1775–80.
Article
CAS
PubMed
Google Scholar
Kajita E, Okano JT, Bodine EN, Layne SP, Blower S. Modelling an outbreak of an emerging pathogen. Nat Rev Microbiol. 2007;5(9):700–9.
Article
CAS
PubMed
Google Scholar
Wang X, Xiao Y, Wang J, Lu X. Stochastic disease dynamics of a hospital infection model. Math Biosci. 2013;241(1):115–24.
Article
PubMed
Google Scholar
Kardas-Sloma L, Boelle PY, Opatowski L, Brun-Buisson C, Guillemot D, Temime L. Impact of antibiotic exposure patterns on selection of community-associated methicillin-resistant Staphylococcus aureus in hospital settings. Antimicrob Agents Chemother. 2011;55(10):4888–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cooper BS, Kypraios T, Batra R, Wyncoll D, Tosas O, Edgeworth JD. Quantifying type-specific reproduction numbers for nosocomial pathogens: evidence for heightened transmission of an Asian sequence type 239 MRSA clone. PLoS Comput Biol. 2012;8(4):e1002454.
Article
CAS
PubMed
PubMed Central
Google Scholar
Batina NG, Crnich CJ, Anderson DF, Döpfer D. Identifying conditions for elimination and epidemic potential of methicillin-resistant Staphylococcus aureus in nursing homes. Antimicrob Resist Infect Control. 2016;5:32.
McBryde ES, McElwain DLS. A mathematical model investigating the impact of an environmental reservoir on the prevalence and control of vancomycin-resistant enterococci. J Infect Dis. 2006;193(10):1473–4.
Article
PubMed
Google Scholar
Cooper BS, Medley GF, Bradley SJ, Scott GM. An augmented data method for the analysis of nosocomial infection data. Am J Epidemiol. 2008;168(5):548–57.
Article
PubMed
PubMed Central
Google Scholar
Wolkewitz M, Dettenkofer M, Bertz H, Schumacher M, Huebner J. Statistical epidemic modeling with hospital outbreak data. Stat Med. 2008;27(30):6522–31.
Article
CAS
PubMed
Google Scholar
Ortiz AR, Banks HT, Castillo-Chavez C, Chowell G, Wang X. A deterministic methodology for estimation of parameters in dynamic Markov chain models. J Biol Syst. 2011;19(1):71–100.
Article
Google Scholar
Yahdi M, Abdelmageed S, Lowden J, Tannenbaum L. Vancomycin-resistant enterococci colonization-infection model: parameter impacts and outbreak risks. J Biol Dyn. 2012;6:645–62.
Article
PubMed
Google Scholar
Lowden J, Miller Neilan R, Yahdi M. Optimal control of vancomycin-resistant enterococci using preventive care and treatment of infections. Math Biosci. 2014;249(1):8–17.
Article
PubMed
Google Scholar
Grima DT, Webb GF, D'Agata EM. Mathematical model of the impact of a nonantibiotic treatment for Clostridium difficile on the endemic prevalence of vancomycin-resistant enterococci in a hospital setting. Comput Math Methods Med. 2012;2012:605861.
Article
PubMed
PubMed Central
Google Scholar
van Bunnik BA, Ssematimba A, Hagenaars TJ, Nodelijk G, Haverkate MR, Bonten MJ, Hayden MK, Weinstein RA, Bootsma MC, De Jong MC. Small distances can keep bacteria at bay for days. Proc Natl Acad Sci U S A. 2014;111(9):3556–60.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singer RS, Cox LA Jr, Dickson JS, Hurd HS, Phillips I, Miller GY. Modeling the relationship between food animal health and human foodborne illness. Prev Vet Med. 2007;79(2–4):186–203.
Article
PubMed
Google Scholar
Hald T, Lo Fo Wong DM, Aarestrup FM. The attribution of human infections with antimicrobial resistant Salmonella bacteria in Denmark to sources of animal origin. Foodborne Pathog Dis. 2007;4(3):313–26.
Article
CAS
PubMed
Google Scholar
Pitzer VE, Feasey NA, Msefula C, Mallewa J, Kennedy N, Dube Q, Denis B, Gordon MA, Heyderman RS. Mathematical modeling to assess the drivers of the recent emergence of typhoid fever in Blantyre, Malawi. Clin Infect Dis. 2015;61(Suppl 4):S251–8.
Article
PubMed
PubMed Central
Google Scholar
Maher MC, Alemayehu W, Lakew T, Gaynor BD, Haug S, Cevallos V, Keenan JD, Lietman TM, Porco TC. The fitness cost of antibiotic resistance in Streptococcus pneumoniae: insight from the field. PLoS One. 2012;7(1):e29407.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geli P, Rolfhamre P, Almeida J, Ekdahl K. Modeling pneumococcal resistance to penicillin in southern Sweden using artificial neural networks. Microbial Drug Resist. 2006;12(3):149–57.
Article
CAS
Google Scholar
Wang YC, Lipsitch M. Upgrading antibiotic use within a class: tradeoff between resistance and treatment success. Proc Natl Acad Sci U S A. 2006;103(25):9655–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opatowski L, Mandel J, Varon E, Boelle PY, Temime L, Guillemot D. Antibiotic dose impact on resistance selection in the community: a mathematical model of beta-lactams and Streptococcus pneumoniae dynamics. Antimicrob Agents Chemother. 2010;54(6):2330–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Domenech de Celles M, Opatowski L, Salomon J, Varon E, Carbon C, Boelle PY, Guillemot D. Intrinsic epidemicity of Streptococcus pneumoniae depends on strain serotype and antibiotic susceptibility pattern. Antimicrob Agents Chemother. 2011;55(11):5255–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opatowski L, Varon E, Dupont C, Temime L, van der Werf S, Gutmann L, Boelle PY, Watier L, Guillemot D. Assessing pneumococcal meningitis association with viral respiratory infections and antibiotics: insights from statistical and mathematical models. Proc Biol Sci. 2013;280(1764):20130519.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boëlle PY, Thomas G. Resistance to antibiotics: limit theorems for a stochastic SIS model structured by level of resistance. J Math Biol. 2016;73(6–7):1353–78.
Article
PubMed
Google Scholar
Gao D, Lietman TM, Porco TC. Antibiotic resistance as collateral damage: the tragedy of the commons in a two-disease setting. Math Biosci. 2015;263:121–32.
Article
PubMed
PubMed Central
Google Scholar
Stelling J, Yih WK, Galas M, Kulldorff M, Pichel M, Terragno R, Tuduri E, Espetxe S, Binsztein N, O'Brien TF, et al. Automated use of WHONET and SaTScan to detect outbreaks of Shigella spp. using antimicrobial resistance phenotypes. Epidemiol Infect. 2010;138(6):873–83.
Article
CAS
PubMed
Google Scholar
Resch SC, Salomon JA, Murray M, Weinstein MC. Cost-effectiveness of treating multidrug-resistant tuberculosis. PLoS Med. 2006;3(7):1048–57.
Article
Google Scholar
Rodrigues P, Gomes MG, Rebelo C. Drug resistance in tuberculosis--a reinfection model. Theor Popul Biol. 2007;71(2):196–212.
Article
PubMed
Google Scholar
Basu S, Orenstein E, Galvani AP. The theoretical influence of immunity between strain groups on the progression of drug-resistant tuberculosis epidemics. J Infect Dis. 2008;198(10):1502–13.
Article
PubMed
Google Scholar
Cohen T, Colijn C, Finklea B, Wright A, Zignol M, Pym A, Murray M. Are survey-based estimates of the burden of drug resistant TB too low? Insight from a simulation study. PLoS One. 2008;3(6):e2363.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gumel AB, Song B. Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis. Math Biosci Eng. 2008;5(3):437–55.
Article
PubMed
Google Scholar
Colijn C, Cohen T, Murray M. Latent coinfection and the maintenance of strain diversity. Bull Math Biol. 2009;71(1):247–63.
Article
PubMed
Google Scholar
Jacob BG, Krapp F, Ponce M, Gotuzzo E, Griffith DA, Novak RJ. Accounting for autocorrelation in multi-drug resistant tuberculosis predictors using a set of parsimonious orthogonal eigenvectors aggregated in geographic space. Geospat Health. 2010;4(2):201–17.
Article
PubMed
Google Scholar
Oxlade O, Schwartzman K, Pai M, Heymann J, Benedetti A, Royce S, Menzies D. Predicting outcomes and drug resistance with standardised treatment of active tuberculosis. Eur Respir J. 2010;36(4):870–7.
Article
CAS
PubMed
Google Scholar
De Espíndola AL, Bauch CT, Troca Cabella BC, Martinez AS. An agent-based computational model of the spread of tuberculosis. J Stat Mech. 2011;(2011):P05003.
Liu YQ, Sun ZD, Sun GQ, Zhong Q, Jiang L, Zhou L, Qiao YP, Jia ZW. Modeling transmission of tuberculosis with MDR and undetected cases. Discrete Dyn Nat Soc. 2011;2011:1–12. http://dx.doi.org/10.1155/2011/296905.
Google Scholar
Sergeev R, Colijn C, Cohen T. Models to understand the population-level impact of mixed strain M. tuberculosis infections. J Theor Biol. 2011;280(1):88–100.
Article
PubMed
PubMed Central
Google Scholar
Thomas EG, Barrington HE, Lokuge KM, Mercer GN. Modelling the spread of tuberculosis, including drug resistance and HIV: a case study in Papua New Guinea’s western province. ANZIAM J. 2011;52(1):26–45.
Article
Google Scholar
Liao CM, Lin YJ. Assessing the transmission risk of multidrug-resistant Mycobacterium tuberculosis epidemics in regions of Taiwan. Int J Infect Dis. 2012;16(10):e739–47.
Article
PubMed
Google Scholar
Agusto FB, Adekunle AI. Optimal control of a two-strain tuberculosis-HIV/AIDS co-infection model. Bio Systems. 2014;119:20–44.
Article
CAS
PubMed
Google Scholar
Ahmadin, Fatmawati: Mathematical modeling of drug resistance in tuberculosis transmission and optimal control treatment. Appli Math Sci 2014, 8(92):4547–4559.
Article
Google Scholar
Denholm JT, McBryde ES. Can Australia eliminate TB? Modelling immigration strategies for reaching MDG targets in a low-transmission setting. Aust N Z J Public Health. 2014;38(1):78–82.
Article
PubMed
Google Scholar
Lin YJ, Liao CM. Seasonal dynamics of tuberculosis epidemics and implications for multidrug-resistant infection risk assessment. Epidemiol Infection. 2014;142(2):358–70.
Article
Google Scholar
Raimundo SM, Yang HM, Venturino E. Theoretical assessment of the relative incidences of sensitive and resistant tuberculosis epidemic in presence of drug treatment. Math Biosci Eng. 2014;11(4):971–93.
Article
Google Scholar
Knight GM, Colijn C, Shrestha S, Fofana M, Cobelens F, White RG, Dowdy DW, Cohen T. The distribution of fitness costs of resistance-conferring mutations is a key determinant for the future burden of drug-resistant tuberculosis: a model-based analysis. Clin Infect Dis. 2015;61:S147–54.
Article
PubMed Central
Google Scholar
Lin HH, Wang L, Zhang H, Ruan Y, Chin DP, Dye C. Tuberculosis control in China: use of modelling to develop targets and policies. Bull World Health Org. 2015;93(11):790–8.
Article
PubMed
PubMed Central
Google Scholar
Sachdeva KS, Raizada N, Gupta RS, Nair SA, Denkinger C, Paramasivan CN, Kulsange S, Thakur R, Dewan P, Boehme C, et al. The potential impact of up-front drug sensitivity testing on India’s epidemic of multi-drug resistant tuberculosis. PLoS One. 2015;10(7):e0131438.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trauer JM, Denholm JT, Waseem S, Ragonnet R, McBryde ES. Scenario analysis for programmatic tuberculosis control in Western Province, Papua New Guinea. Am J Epidemiol. 2016;183(12):1138–48.
Article
PubMed
Google Scholar
Gilbert JA, Shenoi SV, Moll AP, Friedland GH, Paltiel AD, Galvani AP. Cost-effectiveness of community-based TB/HIV screening and linkage to care in rural South Africa. PLoS One. 2016;11(12):e0165614.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gilbert JA, Long EF, Brooks RP, Friedland GH, Moll AP, Townsend JP, Galvani AP, Shenoi SV. Integrating community-based interventions to reverse the convergent TB/HIV epidemics in rural South Africa. PLoS One. 2015;10(5):e0126267.
Article
PubMed
PubMed Central
CAS
Google Scholar