Martín-Estal I, de la Garza RG, Castilla-Cortázar I. Intrauterine growth retardation (IUGR) as a novel condition of insulin-like growth factor-1 (IGF-1) deficiency. Rev Physiol Biochem Pharmacol. 2016;170:1–35. https://doi.org/10.1007/112_2015_5001.
Article
CAS
PubMed
Google Scholar
Faraci M, Renda E, Monte S, Di Prima FA, Valenti O, De Domenico R, et al. Fetal growth restriction: current perspectives. J Prenat Med. 2011;5(2):31–3.
PubMed
PubMed Central
Google Scholar
Shrivastava D, Master A. Fetal growth restriction. J Obstet Gynaecol India. 2020;70(2):103–10. https://doi.org/10.1007/s13224-019-01278-4.
Article
PubMed
Google Scholar
Lee AC, Kozuki N, Cousens S, Stevens GA, Blencowe H, Silveira MF, et al. Estimates of burden and consequences of infants born small for gestational age in low and middle income countries with INTERGROWTH-21(st) standard: analysis of CHERG datasets. BMJ. 2017;358:j3677.
Article
Google Scholar
Meas T, Deghmoun S, Alberti C, Carreira E, Armoogum P, Chevenne D, et al. Independent effects of weight gain and fetal programming on metabolic complications in adults born small for gestational age. Diabetologia. 2010;53(5):907–13. https://doi.org/10.1007/s00125-009-1650-y.
Article
CAS
PubMed
Google Scholar
Darendeliler F. IUGR: genetic influences, metabolic problems, environmental associations/triggers, current and future management. Best Pract Res Cl En. 2019;33(3):101260. https://doi.org/10.1016/j.beem.2019.01.001.
Article
CAS
Google Scholar
Sacchi C, Marino C, Nosarti C, Vieno A, Visentin S, Simonelli A. Association of intrauterine growth restriction and small for gestational age status with childhood cognitive outcomes: a systematic review and meta-analysis. JAMA Pediatr. 2020;174(8):772–81. https://doi.org/10.1001/jamapediatrics.2020.1097.
Article
PubMed
Google Scholar
Golden TN, Simmons RA. Immune dysfunction in developmental programming of type 2 diabetes mellitus. Nat Rev Endocrinol. 2021;17(4):235–45. https://doi.org/10.1038/s41574-020-00464-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baldauf C, Sondhi M, Shin BC, Ko YE, Ye X, Lee KW, et al. Murine maternal dietary restriction affects neural humanin expression and cellular profile. J Neurosci Res. 2020;98(5):902–20. https://doi.org/10.1002/jnr.24568.
Article
CAS
PubMed
Google Scholar
Yu L, Zhou J, Zhang G, Huang W, Pei L, Lv F, et al. cAMP/PKA/EGR1 signaling mediates the molecular mechanism of ethanol-induced inhibition of placental 11β-HSD2 expression. Toxicol Appl Pharmacol. 2018;352:77–86. https://doi.org/10.1016/j.taap.2018.05.029.
Article
CAS
PubMed
Google Scholar
Zinkhan EK, Yu B, Callaway CW, McKnight RA. Intrauterine growth restriction combined with a maternal high-fat diet increased adiposity and serum corticosterone levels in adult rat offspring. J Dev Orig Health Dis. 2018;9(3):315–28. https://doi.org/10.1017/S2040174418000016.
Article
CAS
PubMed
Google Scholar
Busada JT, Cidlowski JA. Mechanisms of glucocorticoid action during development. Curr Top Dev Biol. 2017;125:147–70. https://doi.org/10.1016/bs.ctdb.2016.12.004.
Article
CAS
PubMed
Google Scholar
Konstantakou P, Mastorakos G, Vrachnis N, Tomlinson JW, Valsamakis G. Dysregulation of 11beta-hydroxysteroid dehydrogenases; implications during pregnancy and beyond. J Matern-Fetal Neo M. 2017;30(3):284–93. https://doi.org/10.3109/14767058.2016.1171308.
Article
CAS
Google Scholar
Sheng JA, Bales NJ, Myers SA, Bautista AI, Roueinfar M, Hale TM, et al. The hypothalamic-pituitary-adrenal axis: development, programming actions of hormones, and maternal-fetal interactions. Front Behav Neurosci. 2020;14:601939. https://doi.org/10.3389/fnbeh.2020.601939.
Article
CAS
PubMed
Google Scholar
Moisiadis VG, Matthews SG. Glucocorticoids and fetal programming part 2: mechanisms. Nat Rev Endocrinol. 2014;10(7):403–11. https://doi.org/10.1038/nrendo.2014.74.
Article
CAS
PubMed
Google Scholar
Xu D, Zhang B, Liang G, Ping J, Kou H, Li X, et al. Caffeine-induced activated glucocorticoid metabolism in the hippocampus causes hypothalamic-pituitary-adrenal axis inhibition in fetal rats. PLoS One. 2012;7(9):e44497. https://doi.org/10.1371/journal.pone.0044497.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Liu F, Yu L, Xu D, Li B, Zhang G, et al. nAChRs-ERK1/2-Egr-1 signaling participates in the developmental toxicity of nicotine by epigenetically down-regulating placental 11β-HSD2. Toxicol Appl Pharmacol. 2018;344:1–12. https://doi.org/10.1016/j.taap.2018.02.017.
Article
CAS
PubMed
Google Scholar
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and pathophysiology of steroid biosynthesis, transport and metabolism in the human placenta. Front Pharmacol. 2018;9:1027. https://doi.org/10.3389/fphar.2018.01027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoyt AT, Browne M, Richardson S, Romitti P, Druschel C. Maternal caffeine consumption and small for gestational age births: results from a population-based case-control study. Matern Child Health J. 2014;18(6):1540–51. https://doi.org/10.1007/s10995-013-1397-4.
Article
PubMed
PubMed Central
Google Scholar
Galéra C, Bernard JY, van der Waerden J, Bouvard MP, Lioret S, Forhan A, et al. Prenatal caffeine exposure and child IQ at age 5.5 years: the EDEN mother-child cohort. Biol Psychiatry. 2016;80(9):720–6. https://doi.org/10.1016/j.biopsych.2015.08.034.
Article
CAS
PubMed
Google Scholar
Kobayashi S, Sata F, Murata K, Saijo Y, Araki A, Miyashita C, et al. Dose-dependent associations between prenatal caffeine consumption and small for gestational age, preterm birth, and reduced birthweight in the Japan environment and children’s study. Paediatr Perinat Epidemiol. 2019;33(3):185–94. https://doi.org/10.1111/ppe.12551.
Article
PubMed
Google Scholar
Leviton A. Biases inherent in studies of coffee consumption in early pregnancy and the risks of subsequent events. Nutrients. 2018;10(9):1152. https://doi.org/10.3390/nu10091152.
Article
CAS
PubMed Central
Google Scholar
He Z, Lv F, Ding Y, Huang H, Liu L, Zhu C, et al. High-fat diet and chronic stress aggravate adrenal function abnormality induced by prenatal caffeine exposure in male offspring rats. Sci Rep. 2017;7(1):14825. https://doi.org/10.1038/s41598-017-14881-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv F, Fan G, Wan Y, Chen Y, Ni Y, Huang J, et al. Intrauterine endogenous high glucocorticoids program ovarian dysfunction in female offspring secondary to prenatal caffeine exposure. Sci Total Environ. 2021;789:147691. https://doi.org/10.1016/j.scitotenv.2021.147691.
Article
CAS
PubMed
Google Scholar
Pei LG, Yuan C, Guo YT, Kou H, Xia LP, Zhang L, et al. Prenatal caffeine exposure induced high susceptibility to metabolic syndrome in adult female offspring rats and its underlying mechanisms. Reprod Toxicol. 2017;71:150–8. https://doi.org/10.1016/j.reprotox.2017.06.045.
Article
CAS
PubMed
Google Scholar
Tan Y, Lu K, Li J, Ni Q, Zhao Z, Magdalou J, et al. Prenatal caffeine exposure increases adult female offspring rat’s susceptibility to osteoarthritis via low-functional programming of cartilage IGF-1 with histone acetylation. Toxicol Lett. 2018;295:229–36. https://doi.org/10.1016/j.toxlet.2018.06.1221.
Article
CAS
PubMed
Google Scholar
Choi YK, Cho SG, Choi HS, Woo SM, Yun YJ, Shin YC, et al. JNK1/2 activation by an extract from the roots of Morus alba L. reduces the viability of multidrug-resistant MCF-7/Dox cells by inhibiting YB-1-dependent MDR1 expression. Evid Based Complement Alternat Med. 2013;2013(6):741985.
PubMed
PubMed Central
Google Scholar
Sobočan M, Bračič S, Knez J, Takač I, Haybaeck J. The communication between the PI3K/AKT/mTOR pathway and Y-box binding protein-1 in gynecological cancer. Cancers. 2020;12(1):205.
Article
Google Scholar
Priante E, Verlato G, Giordano G, Stocchero M, Visentin S, Mardegan V, et al. Intrauterine growth restriction: new insight from the metabolomic approach. Metabolites. 2019;9(11):267.
Article
CAS
Google Scholar
Henley D, Brown S, Pennell C, Lye S, Torpy DJ. Evidence for central hypercortisolism and elevated blood pressure in adolescent offspring of mothers with pre-eclampsia. Clin Endocrinol (Oxf). 2016;85:583–9.
Article
CAS
Google Scholar
Eberle C, Fasig T, Brüseke F, Stichling S. Impact of maternal prenatal stress by glucocorticoids on metabolic and cardiovascular outcomes in their offspring: a systematic scoping review. PLoS One. 2021;16(1):e0245386. https://doi.org/10.1371/journal.pone.0245386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu D, Xia LP, Shen L, Lei YY, Liu L, Zhang L, et al. Prenatal nicotine exposure enhances the susceptibility to metabolic syndrome in adult offspring rats fed high-fat diet via alteration of HPA axis-associated neuroendocrine metabolic programming. Acta Pharmacol Sin. 2013;34(12):1526–34. https://doi.org/10.1038/aps.2013.171.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu YM, Luo HW, Kou H, Wen YX, Shen L, Pei LG, et al. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism. Toxicol Appl Pharmacol. 2015;289(1):109–16. https://doi.org/10.1016/j.taap.2015.09.007.
Article
CAS
PubMed
Google Scholar
Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF III. Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinol. 1986;118(4):1567–82. https://doi.org/10.1210/endo-118-4-1567.
Article
CAS
Google Scholar
Zhang N, Wang WS, Li WJ, Liu C, Wang Y, Sun K. Reduction of progesterone, estradiol and hCG secretion by perfluorooctane sulfonate via induction of apoptosis in human placental syncytiotrophoblasts. Placenta. 36(5):575–80.
Liu F, Soares MJ, Audus KL. Permeability properties of monolayers of the human trophoblast cell line BeWo. Am J Physiol. 1997;273(5 Pt 1):C1596–604. https://doi.org/10.1152/ajpcell.1997.273.5.C1596.
Article
CAS
PubMed
Google Scholar
Didziapetris R, Japertas P, Avdeef A, Petrauskas A. Classification analysis of P-glycoprotein substrate specificity. J Drug Target. 2003;11(7):391–406. https://doi.org/10.1080/10611860310001648248.
Article
CAS
PubMed
Google Scholar
Martinec O, Huliciak M, Staud F, Cecka F, Vokral I, Cerveny L. Anti-HIV and anti-hepatitis C virus drugs inhibit P-glycoprotein efflux activity in Caco-2 cells and precision-cut rat and human intestinal slices. Antimicrob Agents Chemother. 2019;63(11):e00910.
Article
CAS
Google Scholar
Hawkins SJ, Crompton LA, Sood A, Saunders M, Boyle NT, Buckley A, et al. Nanoparticle-induced neuronal toxicity across placental barriers is mediated by autophagy and dependent on astrocytes. Nat Nanotechnol. 2018;13(5):427–33. https://doi.org/10.1038/s41565-018-0085-3.
Article
CAS
PubMed
Google Scholar
Zhang C, Xu D, Luo H, Lu J, Lu L, Ping J, et al. Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis programming alteration. Toxicol. 2014;325:74–84. https://doi.org/10.1016/j.tox.2014.08.015.
Article
CAS
Google Scholar
Berretta E, Guida E, Forni D, Provenzi L. Glucocorticoid receptor gene (NR3C1) methylation during the first thousand days: environmental exposures and developmental outcomes. Neurosci Biobehav Rev. 2021;125:493–502. https://doi.org/10.1016/j.neubiorev.2021.03.003.
Article
CAS
PubMed
Google Scholar
Zambrano E, Lomas-Soria C, Nathanielsz PW. Rodent studies of developmental programming and ageing mechanisms: special issue: in utero and early life programming of ageing and disease. Eur J Clin Invest. 2021;1(10):e13631. https://doi.org/10.1111/eci.13631.
Article
CAS
Google Scholar
Chen Y, He Z, Chen G, Liu M, Wang H. Prenatal glucocorticoids exposure and fetal adrenal developmental programming. Toxicol. 2019;428:152308. https://doi.org/10.1016/j.tox.2019.152308.
Article
CAS
Google Scholar
Tupova L, Hirschmugl B, Sucha S, Pilarova V, Székely V, Bakos É, et al. Interplay of drug transporters P-glycoprotein (MDR1), MRP1, OATP1A2 and OATP1B3 in passage of maraviroc across human placenta. Biomed Pharmacother. 2020;129:110506. https://doi.org/10.1016/j.biopha.2020.110506.
Article
CAS
PubMed
Google Scholar
Han LW, Gao C, Mao Q. An update on expression and function of p-gp/abcb1 and bcrp/abcg2 in the placenta and fetus. Expert Opin Drug Metab Toxicol. 2018;14(8):817–29. https://doi.org/10.1080/17425255.2018.1499726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mark PJ, Augustus S, Lewis JL, Hewitt DP, Waddell BJ. Changes in the placental glucocorticoid barrier during rat pregnancy: impact on placental corticosterone levels and regulation by progesterone. Biol Reprod. 2009;80(6):1209–15. https://doi.org/10.1095/biolreprod.108.073650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yakusheva EN, Titov DS. Structure and function of multidrug resistance protein 1. Biochemistry. 2018;83(8):907–29. https://doi.org/10.1134/S0006297918080047.
Article
CAS
PubMed
Google Scholar
Dunk CE, Pappas JJ, Lye P, Kibschull M, Javam M, Bloise E, et al. P-glycoprotein (P-gp)/ABCB1 plays a functional role in extravillous trophoblast (EVT) invasion and is decreased in the pre-eclamptic placenta. J Cell Mol Med. 2018;22(11):5378–93. https://doi.org/10.1111/jcmm.13810.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wierzejska R, Jarosz M, Wojda B. Caffeine intake during pregnancy and neonatal anthropometric parameters. Nutrients. 2019;11(4):806. https://doi.org/10.3390/nu11040806.
Article
CAS
PubMed Central
Google Scholar
Błaszczyk-Bębenek E, Piórecka B, Kopytko M, Chadzińska Z, Jagielski P, Schlegel-Zawadzka M. Evaluation of caffeine consumption among pregnant women from southern Poland. Int J Environ Res Public Health. 2018;15(11):2373. https://doi.org/10.3390/ijerph15112373.
Article
CAS
PubMed Central
Google Scholar
Okubo H, Miyake Y, Tanaka K, Sasaki S, Hirota Y. Maternal total caffeine intake, mainly from Japanese and Chinese tea, during pregnancy was associated with risk of preterm birth: the Osaka Maternal and Child Health Study. Nutr Res. 2015;35(4):309–16. https://doi.org/10.1016/j.nutres.2015.02.009.
Article
CAS
PubMed
Google Scholar
Christian MS, Brent RL. Teratogen update: evaluation of the reproductive and developmental risks of caffeine. Teratology. 2001;64(1):51–78. https://doi.org/10.1002/tera.1047.
Article
CAS
PubMed
Google Scholar
Guilbert JJ. The world health report 2002—reducing risks, promoting healthy life. Educ Health. 2003;16:230.
Article
CAS
Google Scholar
Mark PJ, Waddell BJ. P-glycoprotein restricts access of cortisol and dexamethasone to the glucocorticoid receptor in placental BeWo cells. Endocrinol. 2006;147(11):5147–52. https://doi.org/10.1210/en.2006-0633.
Article
CAS
Google Scholar
Parry S, Zhang J. Multidrug resistance proteins affect drug transmission across the placenta. Am J Obstet Gynecol. 2007;196(5):476.e1–6.
Article
Google Scholar
Huang J, Zhou S, Ping J, Pan X, Liang G, Xu D, et al. Role of p53-dependent placental apoptosis in the reproductive and developmental toxicities of caffeine in rodents. Clin Exp Pharmacol Physiol. 2012;39(4):357–63. https://doi.org/10.1111/j.1440-1681.2012.05676.x.
Article
CAS
PubMed
Google Scholar
Xu D, Luo HW, Hu W, Hu SW, Yuan C, Wang GH, et al. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring. FASEB J. 2018;32(10):5563–76. https://doi.org/10.1096/fj.201701557R.
Article
CAS
PubMed
Google Scholar
Wang L, Myles RC, De Jesus NM, Ohlendorf AKP, Ripplinger CM. Optical mapping of sarcoplasmic reticulum Ca2 + in the intact heart: ryanodine receptor refractoriness during alternans and fibrillation. Circ Res. 2014;114(9):1410–21. https://doi.org/10.1161/CIRCRESAHA.114.302505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venetucci LA, Trafford AW, O’Neill SC, Eisner DA. The sarcoplasmic reticulum and arrhythmogenic calcium release. Cardiovasc Res. 2008;77(2):285–92. https://doi.org/10.1093/cvr/cvm009.
Article
CAS
PubMed
Google Scholar
Li Y, Lin X, Zhao X, Xie J, JunNan W, Sun T, et al. Ozone (O3) elicits neurotoxicity in spinal cord neurons (SCNs) by inducing ER Ca2 + release and activating the CaMKII/MAPK signaling pathway. Toxicol Appl Pharmacol. 2014;280(3):493–501. https://doi.org/10.1016/j.taap.2014.08.024.
Article
CAS
PubMed
Google Scholar
Zhang H, Xu H, Ashby CRJ, Assaraf YG, Chen ZS, Liu HM. Chemical molecular-based approach to overcome multidrug resistance in cancer by targeting P-glycoprotein (P-gp). Med Res Rev. 2021;41(1):525–55. https://doi.org/10.1002/med.21739.
Article
CAS
PubMed
Google Scholar
Sengupta S, Mantha AK, Mitra S, Bhakat KK. Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1. Oncogene. 2011;30(4):482–93. https://doi.org/10.1038/onc.2010.435.
Article
CAS
PubMed
Google Scholar
Li Y, Yan YE, Wang H. Enhancement of placental antioxidative function and P-gp expression by sodium ferulate mediated its protective effect on rat IUGR induced by prenatal tobacco/alcohol exposure. Environ Toxicol Pharmacol. 2011;32(3):465–71. https://doi.org/10.1016/j.etap.2011.08.013.
Article
CAS
PubMed
Google Scholar
Sekimoto A, Tanaka K, Hashizume Y, Sato E, Sato H, Ikeda T, et al. Tadalafil alleviates preeclampsia and fetal growth restriction in RUPP model of preeclampsia in mice. Biochem Biophys Res Commun. 2020;521(3):769–74. https://doi.org/10.1016/j.bbrc.2019.10.186.
Article
CAS
PubMed
Google Scholar
Wang Y, Liao S, Guan N, Liu Y, Dong K, Weber W, et al. A versatile genetic control system in mammalian cells and mice responsive to clinically licensed sodium ferulate. Sci Adv. 2020;6:eabb9484.
Article
CAS
Google Scholar
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Szeszko K, Gowkielewicz M, et al. Placenta transcriptome profiling in intrauterine growth restriction (IUGR). Int J Mol Sci. 2019;20(6):1510.
Article
CAS
Google Scholar
Paquette AG, Houseman EA, Green BB, Lesseur C, Armstrong DA, Lester B, et al. Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics. 2016;11(8):603–13. https://doi.org/10.1080/15592294.2016.1195534.
Article
PubMed
PubMed Central
Google Scholar
Isaevska E, Moccia C, Asta F, Cibella F, Gagliardi L, Ronfani L, et al. Exposure to ambient air pollution in the first 1000 days of life and alterations in the DNA methylome and telomere length in children: a systematic review. Environ Res. 2021;193:110504. https://doi.org/10.1016/j.envres.2020.110504.
Article
CAS
PubMed
Google Scholar
Yadama AP, Maiorino E, Carey VJ, McElrath TF, Litonjua AA, Loscalzo J, et al. Early-pregnancy transcriptome signatures of preeclampsia: from peripheral blood to placenta. Sci Rep. 2020;10(1):17029. https://doi.org/10.1038/s41598-020-74100-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Grada CM, Morine MJ, Morris C, Ryan M, Dillon ET, Walsh M, et al. PBMCs reflect the immune component of the WAT transcriptome--implications as biomarkers of metabolic health in the postprandial state. Mol Nutr Food Res. 2014;58(4):808–20. https://doi.org/10.1002/mnfr.201300182.
Article
CAS
PubMed
Google Scholar
Li MX, Zheng HL, Luo Y, He JG, Wang W, Han J, et al. Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Mol Psychiatry. 2018;23(3):556–68. https://doi.org/10.1038/mp.2017.76.
Article
CAS
PubMed
Google Scholar